(完整word)高中数学解析几何大题专项练习
- 格式:doc
- 大小:1.31 MB
- 文档页数:19
高考数学《解析几何》专项训练一、单选题1.已知直线l 过点A (a ,0)且斜率为1,若圆224x y +=上恰有3个点到l 的距离为1,则a 的值为( )A .B .±C .2±D .2.已知双曲线2222:1x y C a b-=(0,0)a b >>,过右焦点F 的直线与两条渐近线分别交于A ,B ,且AB BF =uu u r uu u r,则直线AB 的斜率为( ) A .13-或13B .16-或16C .2D .163.已知点P 是圆()()22:3cos sin 1C x y θθ--+-=上任意一点,则点P 到直线1x y +=距离的最大值为( )AB .C 1D 2+4.若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .⎡⎣B .(C .33⎡-⎢⎣⎦D .33⎛⎫- ⎪ ⎪⎝⎭5.已知抛物线C :22x py =的焦点为F ,定点()M ,若直线FM 与抛物线C 相交于A ,B 两点(点B 在F ,M 中间),且与抛物线C 的准线交于点N ,若7BN BF =,则AF 的长为( )A .78B .1C .76D6.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( )A .2-BC .2D7.已知抛物线C :22(0)y px p =>的焦点F ,点00(2p M x x ⎛⎫>⎪⎝⎭是抛物线上一点,以M 为圆心的圆与直线2p x =交于A 、B 两点(A 在B 的上方),若5sin 7MFA ∠=,则抛物线C 的方程为( )A .24y x =B .28y x =C .212y x =D .216y x =8.已知离心率为2的椭圆E :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,过点2F 且斜率为1的直线与椭圆E 在第一象限内的交点为A ,则2F 到直线1F A ,y 轴的距离之比为( )A .5B .35C .2D二、多选题9.已知点A 是直线:0l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .(B .()1C .)D .)1,110.已知抛物线2:2C y px =()0p >的焦点为F ,F ,直线l 与抛物线C交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =uuu r uu rC .2BD BF = D .4BF =三、填空题11.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________.12.已知圆()2239x y -+=与直线y x m =+交于A 、B 两点,过A 、B 分别作x 轴的垂线,且与x轴分别交于C 、D 两点,若CD =m =_____.13.已知双曲线()2222:10,0x y C a b a b-=>>的焦距为4,()2,3A 为C 上一点,则C 的渐近线方程为__________.14.已知抛物线()220y px p =>,F 为其焦点,l 为其准线,过F 任作一条直线交抛物线于,A B 两点,1A 、1B 分别为A 、B 在l 上的射影,M 为11A B 的中点,给出下列命题: (1)11A F B F ⊥;(2)AM BM ⊥;(3)1//A F BM ;(4)1A F 与AM 的交点的y 轴上;(5)1AB 与1A B 交于原点. 其中真命题的序号为_________.四、解答题15.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设不经过点(0,Q 的直线l 与曲线C 相交于A ,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为-2,证明:直线l 过定点.16.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅u u u r u u u u r的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.参考答案1.D 【解析】 【分析】因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,即圆心到直线l 的距离为1,根据点到直线的距离公式即可求出a 的值. 【详解】直线l 的方程为:y x a =-即0x y a --=.因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,而圆的半径为2,即圆心到直线l 的距离为1.1=,解得a =故选:D . 【点睛】本题主要考查直线与圆的位置关系的应用,以及点到直线的距离公式的应用,解题关键是将圆上存在3个点到l 的距离为1转化为两条直线与圆的位置关系,意在考查学生的转化能力与数学运算能力,属于中档题. 2.B 【解析】 【分析】根据双曲线的离心率求出渐近线方程,根据AB BF =u u u r u u u r,得到B 为AF 中点,得到B 与A 的坐标关系,代入到渐近线方程中,求出A 点坐标,从而得到AB 的斜率,得到答案. 【详解】因为双曲线2222:1x y C a b-=(0,0)a b >>,又222c e a =22514b a =+=,所以12b a =,所以双曲线渐近线为12y x =± 当点A 在直线12y x =-上,点B 在直线12y x =上时, 设(),A A Ax y (),B B B x y ,由(c,0)F 及B 是AF 中点可知22A B A B x c x y y +⎧=⎪⎪⎨⎪=⎪⎩,分别代入直线方程,得121222A A A A y x y x c ⎧=-⎪⎪⎨+⎪=⋅⎪⎩,解得24A Ac x c y ⎧=-⎪⎪⎨⎪=⎪⎩,所以,24c c A ⎛⎫-⎪⎝⎭, 所以直线AB 的斜率AB AFk k =42cc c =--16=-,由双曲线的对称性得,16k =也成立. 故选:B. 【点睛】本题考查求双曲线渐近线方程,坐标转化法求点的坐标,属于中档题. 3.D 【解析】 【分析】计算出圆心C 到直线10x y +-=距离的最大值,再加上圆C 的半径可得出点P 到直线10x y +-=的距离的最大值. 【详解】圆C 的圆心坐标为()3cos ,sin θθ+,半径为1,点C 到直线10x y +-=的距离为sin 14d πθ⎛⎫===++≤+ ⎪⎝⎭因此,点P 到直线1x y +=距离的最大值为12122++=+. 故选:D. 【点睛】本题考查圆上一点到直线距离的最值问题,当直线与圆相离时,圆心到直线的距离为d ,圆的半径为r ,则圆上一点到直线的距离的最大值为d r +,最小值为d r -,解题时要熟悉这个结论的应用,属于中等题. 4.D 【解析】设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1x y -+=有公共点,圆心到直线的距离小于等于半径22411k k d k -=≤+,得222141,3k k k ≤+≤,选择C 另外,数形结合画出图形也可以判断C 正确. 5.C 【解析】 【分析】由题意画出图形,求出AB 的斜率,得到AB 的方程,求得p ,可得抛物线方程,联立直线方程与抛物线方程,求解A 的坐标,再由抛物线定义求解AF 的长. 【详解】解:如图,过B 作'BB 垂直于准线,垂足为'B ,则'BF BB =,由7BN BF =,得7'BN BB =,可得1sin 7BNB '∠=, 3cos 7BNB '∴∠=-,tan 43BNB '∠=又()23,0M ,AB ∴的方程为2343y x =-, 取0x =,得12y =,即10,2F ⎛⎫ ⎪⎝⎭,则1p =,∴抛物线方程为22x y =. 联立223432y x x y ⎧=-⎪⎨⎪=⎩,解得23A y =.12172326A AF y ∴=+=+=. 故选:C . 【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,是中档题. 6.D 【解析】 【分析】设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,根据对称性可得出22,22P c ⎛⎫⎪ ⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点, 由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得,22P c ⎛⎫ ⎪ ⎪⎝⎭, 将点P 的坐标代入双曲线C 的方程得2222122c c a b -=,即()22222122c c a c a -=-, 设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C 故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题. 7.C 【解析】 【分析】根据抛物线的定义,表示出MF ,再表示出MD ,利用5sin 7MFA ∠=,得到0x 和p 之间的关系,将M 点坐标,代入到抛物线中,从而解出p 的值,得到答案.【详解】抛物线C :22(0)y px p =>, 其焦点,02p F ⎛⎫⎪⎝⎭,准线方程2p x =-,因为点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线上一点, 所以02p MF x =+AB所在直线2p x =, 设MD AB ⊥于D ,则02p MD x =-, 因为5sin 7MFA ∠=,所以57 MD MF=,即5272pxpx-=+整理得03x p=所以()3,66M p将M点代入到抛物线方程,得()26623p p=⨯,0p>解得6p=,所以抛物线方程为212y x=故选:C.【点睛】本题考查抛物线的定义,直线与圆的位置关系,求抛物线的标准方程,属于中档题.8.A【解析】【分析】结合椭圆性质,得到a,b,c的关系,设2AF x=,用x表示112,AF F F,结合余弦定理,用c表示x,结合三角形面积公式,即可。
高中数学解析几何测试题(答案版)高中数学解析几何测试题(答案版)第一部分:平面解析几何1. 已知平面P1:2x + 3y - 4 = 0和平面P2:5x - 7y + 2z + 6 = 0,求平面P1和平面P2的夹角。
解析:首先,我们需要根据平面的一般式方程确定法向量。
对于平面P1,法向量为(n1, n2, n3) = (2, 3, 0),对于平面P2,法向量为(n4, n5,n6) = (5, -7, 2)。
根据向量的内积公式,平面P1和平面P2的夹角θ可以通过以下公式计算:cosθ = (n1 * n4 + n2 * n5 + n3 * n6) / √[(n1^2 + n2^2 + n3^2) * (n4^2 + n5^2 + n6^2)]代入数值计算,得到cosθ ≈ 0.760,因此夹角θ ≈ 40.985°。
2. 已知四边形ABCD的顶点坐标为A(1, 2, 3),B(4, 5, 6),C(7, 8, 9)和D(10, 11, 12),判断四边形ABCD是否为平行四边形,并说明理由。
解析:要判断四边形ABCD是否为平行四边形,我们需要比较四边形的对角线的斜率。
四边形ABCD的对角线分别为AC和BD。
根据两点间距离公式,我们可以计算出AC的长度为√99,BD的长度为√99。
同时,我们还需要计算坐标向量AC = (6, 6, 6)和坐标向量BD = (9, 9, 9)。
由于AC和BD的长度相等,且坐标向量AC与坐标向量BD的比值为1∶1∶1,因此四边形ABCD是一个平行四边形。
第二部分:空间解析几何3. 已知直线L1:(x - 1) / 2 = y / 3 = (z + 2) / -1和直线L2:(x - 4) / 3= (y - 2) / 1 = (z + 6) / 2,判断直线L1和直线L2是否相交,并说明理由。
解析:为了判断直线L1和直线L2是否相交,我们可以通过解方程组的方法来求解交点。
47. 已知椭圆E :()222210x y a b a b +=>>,其短轴为2.(1)求椭圆E 的方程;(2)设椭圆E 的右焦点为F ,过点()2,0G 作斜率不为0的直线交椭圆E 于M ,N 两点,设直线FM 和FN 的斜率为1k ,2k ,试判断12k k +是否为定值,若是定值,求出该定值;若不是定值,请说明理由.48. 如图,椭圆()2222:10x y C a b a b +=>>⎛ ⎝⎭,P 为椭圆上的一动点.(1)求椭圆C 的方程;(2)设圆224:5O x y +=,过点P 作圆O 的两条切线1l ,2l ,两切线的斜率分别为1k ,2k . ①求12k k 的值;①若1l 与椭圆C 交于P ,Q 两点,与圆O 切于点A ,与x 轴正半轴交于点B ,且满足OPA OQB S S =△△,求1l 的方程.49. 已知椭圆E :22221x y a b +=(a >b >0)的左、右焦点分別为12,F F ,离心率为e =左焦点1F 作直线1l 交椭圆E 于A ,B 两点,2ABF 的周长为8. (1)求椭圆E 的方程;(2)若直线2l :y =kx +m (km <0)与圆O :221x y +=相切,且与椭圆E 交于M ,N 两点,22MF NF +是否存在最小值?若存在,求出22MF NF +的最小值和此时直线2l 的方程.50. 已知动点M 与两个定点()0,0O ,()3,0A 的距离的比为12,动点M 的轨迹为曲线C .(1)求C 的轨迹方程,并说明其形状;(2)过直线3x =上的动点()()3,0P p p ≠分别作C 的两条切线PQ 、PR (Q 、R 为切点),N 为弦QR 的中点,直线l :346x y +=分别与x 轴、y 轴交于点E 、F ,求NEF 的面积S的取值范围.51. 在平面直角坐标系xOy 中,已知直线l :20x y ++=和圆O :221x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B . (1)若PA PB ⊥,求点P 的坐标; (2)求线段PA 长的最小值;(3)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若存在,求出点T ;若不存在,请说明理由.52. 已知以1C 为圆心的圆221:1C x y +=.(1)若圆222:(1)(1)4C x y -+-=与圆1C 交于,M N 两点,求||MN 的值;(2)若直线:l y x m =+和圆1C 交于,P Q 两点,若132PC PQ ⋅=,求m 的值. 53. 已知圆()22:21M x y +-=,点P 是直线:20l x y +=上的一动点,过点P 作圆M 的切线P A ,PB ,切点为A ,B .(1)当切线P A P 的坐标;(2)若PAM △的外接圆为圆N ,试问:当P 运动时,圆N 是否过定点?若存在,求出所有的定点的坐标;若不存在,请说明理由; (3)求线段AB 长度的最小值.54. 已知圆22:2O x y +=,直线:2l y kx =-.(1)若直线l 与圆O 交于不同的两点,A B ,当90AOB ∠=︒时,求实数k 的值;(2)若1,k P =是直线l 上的动点,过P 作圆O 的两条切线PC 、PD ,切点为C 、D ,试探究:直CD 是否过定点.若存在,请求出定点的坐标;否则,说明理由.55. 在平面直角坐标系xOy中,(A,B ,C 是满足π3ACB ∠=的一个动点. (1)求ABC 垂心H 的轨迹方程;(2)记ABC 垂心H 的轨迹为Γ,若直线l :y kx m =+(0km ≠)与Γ交于D ,E 两点,与椭圆T :2221x y +=交于P ,Q 两点,且||2||DE PQ =,求证:||k > 56. 平面上一动点C的坐标为),sin θθ.(1)求点C 轨迹E 的方程;(2)过点()11,0F -的直线l 与曲线E 相交于不同的两点,M N ,线段MN 的中垂线与直线l 相交于点P ,与直线2x =-相交于点Q .当MN PQ =时,求直线l 的方程.答案及解析47.(1)2212x y +=;(2)是定值,该定值为0.【分析】(1)依题意求得,a b ,进而可得椭圆E 的方程;(2)设直线MN 的方程为()()20y k x k =-≠,与椭圆E 方程联立,利用韦达定理和斜率公式即可求得12k k +的值. 【详解】(1)由题意可知:22b =,1b =,椭圆的离心率c e a ==a =①椭圆E 的标准方程:2212x y +=;(2)设直线MN 的方程为()()20y k x k =-≠.22(2)12y k x x y =-⎧⎪⎨+=⎪⎩,消去y 整理得:()2222128820k x k x k +-+-=.设()11,M x y ,()22,N x y , 则2122812k x x k +=+,21228212k x x k -=+,()()()1212121212121212222211111k x k x y y x x k k k x x x x x x x x ⎡⎤--+-+=+=+=-⎢⎥-----++⎢⎥⎣⎦222222228242122208282111212k k k k k k k k k k ⎡⎤-⎢⎥⎛⎫-+=-=-=⎢⎥ ⎪--⎝⎭⎢⎥-+⎢⎥++⎣⎦. ①120k k +=为定值.【点睛】关键点点睛:第(2)问的关键点是:得出()12121212221x x k k k x x x x ⎡⎤+-+=-⎢⎥-++⎢⎥⎣⎦.48.(1)2214x y +=;(2)①14- ;①yy =+【分析】(1)根据已知条件结合222c a b =-列关于,a b 的方程,解方程即可求解;(2)①设()00,P x y ,切线:l 00()y y k x x -=-,利用圆心到切线的距离列方程,整理为关于k 的二次方程,计算两根之积结合点P 在椭圆上即可求12k k ;①由OPA OQB S S =△△可得PA BQ =,可转化为A B P Q x x x x +=+,设1l :y kx m =+,与椭圆联立可得P Q x x +,再求出A x 、B x ,即可求出k 的值,进而可得出m 的值,以及1l 的方程. 【详解】(1)因为22222234c a b e a a -===,所以2a b =,因为点⎛ ⎝⎭在椭圆上,所以221314a b +=即2213144b b +=, 解得:1b =,2a =,所以椭圆方程为:2214x y +=;(2)①设()00,P x y ,切线:l 00()y y k x x -=-即000kx y y kx -+-= 圆心()0,0O到切线的距离d r ==整理可得:2220000442055x k x y k y ⎛⎫--+-= ⎪⎝⎭,所以2020122200441451544455x y k k x x ⎛⎫-- ⎪-⎝⎭===---,①因为OPA OQB S S =△△所以PA BQ =,所以A P Q B x x x x -=-,所以A B P Q x x x x +=+, 设切线为1:l y kx m =+,由2244y kx m x y =+⎧⎨+=⎩可得:()222418440k x kmx m +++-= 所以2841P Q kmx x k -+=+, 令0y =可得B mx k=-,设(),A A A x kx m +, 则1A OA A kx m k x k +==-,所以21A km x k -=+, 所以228411P Q km m kmx x k k k --+==-+++, 整理可得:()()()2222814121k k k k +=++,所以221k =,解得:k =, 因为圆心()0,0O 到1:l y kx m =+距离d ,所以mm =,因为0B mx k=->,所以当k =m =k =时,m =;所以所求1l的方程为y =或y = 【点睛】思路点睛:圆锥曲线中解决定值、定点的方法(1)从特殊入手,求出定值、定点、定线,再证明定值、定点、定线与变量无关; (2)直接计算、推理,并在计算、推理的过程中消去变量是此类问题的特点,设而不求的方法、整体思想和消元思想的运用可以有效的简化运算.49.(1)2214x y +=;(2)最小值为2,0x =或0x +-=.【分析】(1)由椭圆定义结合已知求出a ,半焦距c 即可得解;(2)由直线2l 与圆O 相切得221m k =+,联立直线2l 与椭圆E 的方程消去y ,借助韦达定理表示出22MF NF +,利用函数思想方法即可作答. 【详解】(1)依题意,结合椭圆定义知2ABF 的周长为4a ,则有4a =8,即a =2,又椭圆的离心率为c e a =c =2221b a c =-=, 所以椭圆E 的方程为2214x y +=;(2)因直线2l :y =kx +m (km <0)与圆O :221x y +=1=,即221m k =+,设()()()112212,,,,2,2M x y N x y x x ≤≤,而点M 在椭圆E 上,则221114x y +=,即221114x y =-,又2F ,21|2|MF x =-=12x -,同理222NF x =,于是得)22124MF NF x x +=+, 由2214y kx mx y =+⎧⎪⎨+=⎪⎩消去y 得:()222148440k x kmx m +++-=,显然Δ0>,则122814km x x k +=-+, 又km <0,且221m k =+,因此得1228||14km x x k +=+令2411t k =+≥,则12x x +=113t =,即t =3时等号成立,于是得22MF NF +存在最小值,且)221242MF NF x x +=+≥,22MF NF +的最小值为2,由2221413m k k ⎧=+⎨+=⎩,且km <0,解得k m ⎧=⎪⎪⎨⎪=⎪⎩或k m ⎧=⎪⎪⎨⎪=⎪⎩. 所以所求直线2l的方程为y x =y x =0x =或0x +=.【点睛】关键点睛:解决直线与椭圆的综合问题时,要注意:(1)观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题. 50.(1)()2214x y ++=,曲线C 是以1,0为圆心,半径为2的圆;(2)5542⎡⎤⎢⎥⎣⎦,.【分析】(1)设出动点M 坐标,代入距离比关系式,化简方程可得;(2)先求切点弦方程,再根据切点弦过定点及弦中点性质得出N 点轨迹,然后求出动点N 到定直线EF 的距离最值,最后求出面积最值.切点弦方程的求法可用以下两种方法.法一:由两切点即为两圆公共点,利用两圆相交弦方程(两圆方程作差)求出切点弦方程;法二:先分别求过Q 、R 两点的切线方程,再代入点P 坐标,得到Q 、R 两点都适合的同一直线方程,即切点弦方程. 【详解】解:(1)设(),M x y ,由12MO MA =12=. 化简得22230x y x ++-=,即()2214x y ++=. 故曲线C 是以1,0为圆心,半径为2的圆.(2)法一(由两圆相交弦方程求切点弦方程):由题意知,PQ 、PR 与圆相切,Q 、R 为切点,则DQ PQ ⊥,DR PR ⊥,则D 、R 、P 、Q 四点共圆,Q 、R 在以DP 为直径的圆上(如图).设()1,0D -,又()()3,0P p p ≠,则DP 的中点为1,2p ⎛⎫⎪⎝⎭,DP .以线段DP 为直径的圆的方程为()22212p x y ⎛⎫-+-= ⎪⎝⎭⎝⎭, 整理得22230x y x py +---=①(也可用圆的直径式方程()()()()1300x x y y p +-+--=化简得. ) 又Q 、R 在C :22230x y x ++-=①上, 由两圆方程作差即①-①得:40x py +=. 所以,切点弦QR 所在直线的方程为40x py +=. 法二(求Q 、R 均满足的同一直线方程即切点弦方程): 设()1,0D -,()11,Q x y ,()22,R x y .由DQ PQ ⊥,可得Q 处的切线上任一点(,)T x y 满足0QT DQ ⋅=(如图), 即切线PQ 方程为()()()()1111100x x x y y y -++--=.整理得()221111110x x y y x y x ++---=.又22111230x y x ++-=,整理得()111130x x y y x +++-=.同理,可得R 处的切线PR 方程为()222130x x y y x +++-=. 又()3,P p 既在切线PQ 上,又在切线PR 上,所以()()11122231303130x py x x py x ⎧+++-=⎪⎨+++-=⎪⎩,整理得11224040x py x py +=⎧⎨+=⎩. 显然,()11,Q x y ,()22,R x y 的坐标都满足直线40x py +=的方程. 而两点确定一条直线,所以切点弦QR 所在直线的方程为40x py +=. 则QR 恒过坐标原点()0,0O .由()2240,14x py x y +=⎧⎪⎨++=⎪⎩消去x 并整理得()22168480p y py +--=. 设()11,Q x y ,()22,R x y ,则122816py y p +=+.点N 纵坐标1224216N y y py p +==+. 因为0p ≠,显然0N y ≠,所以点N 与点()1,0D -,()0,0O 均不重合.(或者由对称性可知,QR 的中点N 点在x 轴上当且仅当点P 在x 轴上,因为0p ≠,点P 不在x 轴上,则点N 也不在x 轴上,所以点N 与D 、O 均不重合.) 因为N 为弦QR 的中点,且()1,0D -为圆心,由圆的性质,可得DN QR ⊥,即DN ON ⊥(如图).所以点N 在以OD 为直径的圆上,圆心为1,02G ⎛⎫- ⎪⎝⎭,半径12r =.因为直线346x y +=分别与x 轴、y 轴交于点E 、F ,所以()2,0E ,30,2F ⎛⎫⎪⎝⎭,52EF =.又圆心1,02G ⎛⎫- ⎪⎝⎭到直线3460x y +-=的距离32d ==. 设NEF 的边EF 上的高为h ,则点N 到直线346x y +=的距离h 的最小值为31122d r -=-=; 点N 到直线346x y +=的距离h 的最大值为31222d r +=+=(如图).则S 的最小值min 1551224S =⨯⨯=,最大值max 1552222S =⨯⨯=.因此,NEF 的面积S 的取值范围是5542⎡⎤⎢⎥⎣⎦,.【点睛】设00(,)P x y 是圆锥曲线外一点,过点P 作曲线的两条切线,切点为A 、B 两点,则 A 、B 两点所在的直线方程为切点弦方程.常见圆锥曲线的切点弦方程有以下结论: 圆222()()x a y b r -+-=的切点弦方程:200()()()()x a x a y b y b r --+--=, 圆220x y Dx Ey F ++++=的切点弦方程: 0000022x x y yx x y y D E F ++++++= 椭圆22221x y a b+=的切点弦方程:00221x x y y a b +=;双曲线22221x y a b-=的切点弦方程:00221x x y y a b -=;抛物线22y px =的切点弦方程为:00()y y p x x =+.特别地,当00(,)P x y 为圆锥曲线上一点时,可看作两切线重合,两切点A 、B 重合,以上切点弦方程即曲线在P 处的切线方程.51.(1)()1,1P --;(2)1;(3)存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.理由见解析.【分析】(1)依题意可得四边形PAOB 为正方形,设(),2P x x --,利用平面直角坐标系上两点的距离公式得到方程,计算可得;(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小,利用点到线的距离公式求出PO 的最小值,即可得解;(3)设()00,2P x x --,求出以OP 为直径的圆的方程,即可求出公共弦AB 所在直线方程,从而求出动点Q 的轨迹方程,即可得解; 【详解】解:(1)若PA PB ⊥,则四边形PAOB 为正方形, 则P①P 在直线20x y ++=上,设(),2P x x --,则OP =,解得1x =-,故()1,1P --.(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小. 线段PO 长最小值即点O 到直线l的距离,故min PO ==所以min 1PA =.(3)设()00,2P x x --,则以OP 为直径的圆的方程为()2222000022224x x x x x y +----⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, 化简得()220020x x x x y y -+++=,与221x y +=联立,可得AB 所在直线方程为()0021x x x y -+=,联立()002221,1,x x x y x y ⎧-+=⎨+=⎩得()222000002443024x x x x x x x ++----=, ①Q 的坐标为002200002,244244x x x x x x --++++⎛⎫⎪⎝⎭,可得Q 点轨迹为22111448x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,圆心11,44⎛⎫-- ⎪⎝⎭,半径R =.其中原点()0,0为极限点(也可以去掉).故存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.【点睛】本题考查了直线与圆的位置关系、方程思想、数形结合方法、转化方法,考查运算求解能力和应用意识.52.(1;(2)m = 【分析】(1)由两个圆相交,可将两个圆的方程相减求得直线MN 的方程.利用圆心到直线的距离,结合垂径定理即可求得||MN 的值.(2)设()()1122,,,P x y Q x y ,利用向量的坐标运算表示出1,PC PQ .将直线方程与圆的方程联立,化简后由>0∆求得m 的取值范围,并表示出12x x +,12x x ,进而由直线方程表示出12y y .根据平面向量数量积的坐标运算,代入化简计算即可求得m 的值. 【详解】(1)直线MN 的方程为2222(1)(1)410x y x y -+----+=, 即2 2 10x y ++=;故圆1C 的圆心到2210x y ++=的距离d =故||MN == (2)设()()1122,,,P x y Q x y ,则()()1112121,,,PC x y PQ x x y y =--=--,由22,1,y x m x y =+⎧⎨+=⎩化简可得222210x mx m ++-=, 故()222481840,m m m ∆=--=->解得m < 12x x m +=-,2121,2m x x -=所以()()()212121212y y x m x m x x m x x m =++=+++,又()()2211121211212113,,2PC PQ x y x x y y x x y y x y ⋅=--⋅--=--++=, 又22111x y +=故121212x x y y +=-,故()21212122x x m x x m +++=-, 将12x x m +=-,2121,2m x x -=代入可得222112m m m --+=-,解得m =又因为m <所以2m =± 【点睛】本题考查了圆与圆的位置关系及公共弦长度的求法,直线与圆位置关系的综合应用,由韦达定理求参数的值,平面向量数量积的运算,综合性强,计算量大,属于难题.53.(1)()0,0P 或84,55P ⎛⎫- ⎪⎝⎭;(2)圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭;(3)当25b =时,AB 有最小【分析】(1)设()2,P b b -,由MP b ,得出结果;(2)因为A 、P 、M 三点的圆N 以MP 为直径,所以圆N 的方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭,化简为()()222220x y b x y y -+++-=,由方程恒成立可知2222020x y x y y -+=⎧⎨+-=⎩,即可求得动圆所过的定点; (3)由圆M 和圆N 方程作差可得直线AB 方程,设点()0,2M 到直线AB 的距离d ,则AB =.【详解】(1)由题可知,圆M 的半径1r =,设()2,P b b -, 因为P A 是圆M 的一条切线,所以90MAP ∠=︒,所以2MP ==,解得0b =或45b =, 所以点P 的坐标为()0,0P 或84,55P ⎛⎫- ⎪⎝⎭.(2)设()2,P b b -,因为90MAP ∠=︒, 所以经过A 、P 、M 三点的圆N 以MP 为直径, 其方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()()222220x y b x y y -+++-=,由2222020x y x y y -+=⎧⎨+-=⎩, 解得02x y =⎧⎨=⎩或4525x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭.(3)因为圆N 方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()222220x y bx b y b ++-++=①又圆22:430M x y y +-+=①①-①得圆M 方程与圆N 相交弦AB 所在直线方程为 ()22230bx b y b --+-=.点()0,2M 到直线AB的距离d =所以相交弦长AB == 所以当25b =时,AB【点睛】本题考查直线和圆的位置关系,考查定点问题和距离的最值问题,难度较难. 54.(1)k =(2)直线CD 过定点(1,1)- 【分析】(1)由已知结合垂径定理求得圆心到直线的距离,再由点到直线的距离公式列式求得k ; (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,求出两条切线方程,计算出直线CD 的方程,从而得到定点坐标;解法2:由题意可知,O 、P 、C 、D 四点共圆且在以OP为直径的圆上,求出公共弦所在直线方程,再由直线系方程求得定点坐标. 【详解】(1)2AOB π∠=,∴点O 到l 的距离2d r =,k = (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,则圆在点C 处的切线方程为 1111()()0y y y x x x -+-=,所以221111x x y y x y +=+,即112x x y y +=同理,圆在点D 处的切线方程为222x x y y += 又点00(,)P x y 是两条切线的交点, 10102x x y y ∴+=,20202x x y y +=,所以点()11,C x y ,()22,D x y 的坐标都适合方程002x x y y +=, 上述方程表示一条直线,而过C 、D 两点的直线是唯一的, 所以直线CD 的方程为:002x x y y +=. 设(,2)P t t -,则直线CD 的方程为(2)2tx t y +-=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-.解法2:由题意可知:O 、P 、C 、D 四点共圆且在以OP 为直径的圆上, 设(,2)P t t -,则此圆的方程为:()(2)0x x t y y t -+-+=, 即:22(2)0x tx y t y -+--=, 又C 、D 在圆22:2O x y +=上,两圆方程相减得():220CD l tx t y +--=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-. 【点睛】本题考查了直线与圆的相交问题,由弦长求直线斜率,只需结合弦长公式计算圆心到直线的距离,然后求得结果,在求直线恒过定点坐标时,一定要先表示出直线方程,然后在求解. 55.(1)22(1)4x y ++=(2y ≠-);(2)证明见解析. 【分析】(1)由题可求出顶点C 的轨迹方程,再利用相关点法可求垂心H 的轨迹方程;(2)利用弦长公式可求||DE ,再利用韦达定理法求||PQ ,由||2||DE PQ =得出2221m k ≥+,然后结合判别式大于零即可证. 【详解】设ABC 的外心为1O ,半径为R ,则有22sin ABR ACB==∠,所以1πcos 13OO R ==即1(0,1)O ,设(,)C x y ,()00,H x y ,有1O C R =,即有22(1)4x y +-=(0y ≠), 由CH AB ⊥,则有0x x =,由AH BC ⊥,则有(00(0AH BC x x y y ⋅=+=,所以有(220(3(1)12x x x y y y yy y---=-===-,则有()220014x y ++=(02y ≠-),所以ABC 垂心H 的轨迹方程为22(1)4x y ++=(2y ≠-); (2)记点(0,1)-到直线l 的距离为d ,则有d =所以||DE==,设()11,P x y,()22,Q x y,联立2221y kx mx y=+⎧⎨+=⎩,有()2222210k x kmx m+++-=,所以()224220k m∆=+->,||PQ==由||2||DE PQ=,可得()()()()()2222222222222418141(1)8412222k m k km mk k kk k++++-=-≤-+++++,所以()22222248(1)212m mk kk++≤+++,即有()()()22222224181(1)22k k mmk k+++≤+++,所以()()()22222222418122(1)22k k mm mk k+++--≥-++,即22222222222221(1)101222k k m k mm mk k k k⎛⎫-=-⇒-≥⇒≥+⎪+++⎝⎭又0∆>,可得2212km<+,所以222112kk+<+,解得22k>,故||k>56.(1)2212xy+=;(2)10x y±-=.【分析】(1)利用22sin cos1θθ+=求得点C的轨迹E的方程.(2)设直线l的方程为1x my=-,联立直线l的方程和曲线E的方程,化简写出根与系数关系,求得MN、PQ,由1PQMN=求得m的值,从而求得直线l的方程.【详解】 (1)设(),C x y ,则,sin x y θθ⎧=⎪⎨=⎪⎩,即cos sin yθθ⎧=⎪⎨⎪=⎩, 所以2212x y +=,所以E 的方程为2212x y +=.(2)由题意知,直线l 的斜率不为0,设直线:1l x my =-,()()()1122,,,,,p p M x y N x y P x y .联立2221,1x y x my ⎧+=⎨=-⎩,消去x ,得()22+2210m y my --=,此时()281m ∆=+0>,且12222m y y m +=+,12212y y m =-+又由弦长公式得MN =整理得2212m MN m ++. 又122+=22p y y m y m =+,所以2212p p x my m -=-=+,所以222222p m PQ x m ++=+,所以1PQMN =, 所以21m =,即1m =±.综上,当1m =±,即直线l 的斜率为±1时,MN PQ =, 此时直线l 为10x y ±-=. 【点睛】求解直线和圆锥曲线相交所得弦长,往往采用设而不求,整体代入的方法来求解.。
解析几何训练试题1.如图所示,O 为坐标原点,点F 为抛物线)0(2:21>=p py x C 的焦点,且抛物线1C 上点P 处的切线与圆1:222=+y x C 相切于点Q.(1)当直线PQ 的方程为02=--y x 时,求抛物线1C 的方程; (2)当正数p 变化时,求:FOQ FPQ S S ∆∆的最小值.[解答]: (1)设点)2,(200px x P ,因为直线PQ 的斜率为1,所以:10=p x ,又022200=--p x x ,有22=p ,抛物线1C 的方程为: y x 242=; (2)Θ点P 处的切线方程为:)(20020x x px p x y -=-,即022020=-+x x x py ; 直线与圆相切有:14422020=+p x x ,化简有:2204044p x x +=,再结合圆122=+y x ,可以解出:)24,2(200p x x Q -, ∴|2|||020202x x p x p PQ -+= 点F 到直线PQ 的距离为:20221x p d += ∴|2|4||21020202x x p x p PQ d S FPQ -+==∆ ∴||2||||210x p x OF S Q FOQ =⋅=∆ Θ2204044p x x +=,∴2||0>x∴FOQ FPQS S ∆∆=322344242020+≥+-+-x x ,∴当222+=p 时, FOQ FPQ S S ∆∆的最小值为322+. 2. 在平面直角坐标系xOy 中,如图所示,已知椭圆22195x y +=的左、右顶点为,A B ,右焦点为F ,设过点(,)T t m 的直线与此椭圆分别交于点11(,)M x y ,22(,)N x y ,其中0m >,10y >,20y <.(1)设动点P 满足224PF PB -=,求点P 的轨迹;(2)设12x =,213x =,求点T 的坐标; (3)设9t =,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关). [解答]:由题设得到:)0,3(-A , )0,3(B ,)0,2(F(1) 设点),(y x P ,则222)2(y x PF +-=,222)3(y x PB +-=由224PF PB -=得22)2(y x +-=4+22)3(y x +-,解得:29=x . ∴点P 的轨迹为29=x . (2) 由12x =,22195x y +=及10y >,得9202-=y ,则点)920,31(-N , 而直线BN 的方程为2565-=x y , 由⎪⎩⎪⎨⎧-=+=2565131x y x y 解得: )310,7(T (3)由题设知,直线AT 的方程为:)3(12+=x m y ,直线BT 的方程为:)3(6-=x m y ,点),(11y x M 满足 ⎪⎪⎩⎪⎪⎨⎧=++=159)3(12212111y x x m y 得5)3(129)3)(3(212211+⋅-=-+x m x x , Θ31-≠x ,则5312931221+⋅-=-x m x ,解得:221803240m m x +-=,218040mm y +=.点),(22y x N 满足⎪⎪⎪⎩⎪⎪⎪⎨⎧≠=+-=3159)3(62222222x y x x m y 解得22220603m m x +-=,222020m m y +-=, 若21x x =,则=+-22803240m m 2220603mm +-及0m >,得102=m , 此时直线MN 的方程为1=x ,过点)0,1(D , 若21x x ≠,102≠m ,直线MD 的斜率24010m m k MD -=, 直线ND 的斜率24010mm k ND -=,得到: =MD k ND k 所以直线MN 过点D.综上: 直线MN 必过x 轴上的一定点)0,1(. 3.[解答]。
高中数学解析几何复习题集附答案高中数学解析几何复习题集附答案一、直线的方程在解析几何中,我们经常需要求解直线的方程。
直线的一般方程可以表示为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。
下面我们通过一些例题来复习直线的方程的求解方法。
例题1:已知直线L1经过点(2,3)和(4,1),求直线L1的方程。
解析:首先我们可以求出直线L1的斜率k。
直线L1的斜率可以通过两个已知点的坐标计算出来:k = (y2 - y1) / (x2 - x1) = (1 - 3) / (4 - 2) = -1接下来,我们可以使用点斜式的形式来表示直线L1的方程:y - y1 = k(x - x1)将已知点(2,3)代入方程中,得到:y - 3 = -1(x - 2)化简得到直线L1的方程为:y = -x + 5因此,直线L1的方程为y = -x + 5。
例题2:已知直线L2过点(3,-2)且与直线L1: 2x - 3y + 4 = 0 平行,求直线L2的方程。
解析:由于直线L2与直线L1平行,所以它们具有相同的斜率。
直线L1的斜率为:k = 2 / (-3) = -2/3因此,直线L2的斜率也为-2/3。
再结合已知直线L2过点(3,-2),我们可以使用点斜式来表示直线L2的方程:y - y1 = k(x - x1)将已知点(3,-2)代入方程中,得到:y - (-2) = (-2/3)(x - 3)化简得到直线L2的方程为:3y + 2x + 10 = 0因此,直线L2的方程为3y + 2x + 10 = 0。
二、直线和平面的交点在解析几何中,我们经常需要求解直线和平面的交点。
我们可以通过直线的方程和平面的方程来求解交点的坐标。
下面我们通过一些例题来复习直线和平面交点的求解方法。
例题3:已知直线L3的方程为2x - y + 3z - 7 = 0,平面Q的方程为x + y - z + 4 = 0,求直线L3与平面Q的交点坐标。
x一、选择题:本大题共12小题,每小题5分,共60分。
1若直线x 1的倾斜角为,则等于( )A.0 B . C D.不存在422抛物线y=4x2的准线方程是( )A.x=1B .x1Cy=—1 D y 1P4162 223.已知双曲线X —y = 1 (a>0, b> 0)的右焦点为F,右准线与一条渐近线交于点A,A OAF勺面积为a(0为原点),则两条渐2 2a b2近线的夹角为( )A . 30oB .45oC60o D . 90o4.点P(2,3)到直线:ax (a 1)y30的距离d为最大时,d的值为( )A1. 7 B . 5C.3 D . 15 .“点M在曲线y X上”是“点M到两坐标轴距离相等”的()A .充要条件 B.必要不充分条件 C .充分不必要条件D .既不充分又不必要条件6 •方程x2寸 2ax by c 0表示圆心为C( 2 , 2),半径为2的圆,_则a, b, C的值8 .设a,b,c分别是△ ABC中, Z A,Z B,Z C所对边的边长,则直线sinA • x+ay+c = 0与bx —sinB • y+sinC = 0的位置关系是()A.平行B. 重合C. 垂直D. 相交但不垂直9•已知R、F2是双曲线x2 y2的两焦点,以线段FH为边作正三角形MFF2,若边MF的中点在双曲线上,则双曲线的离p H 1(a 0,b 0) 'a b心率是( )A.4 23B.3 1 C 3 1D .-.J 11. 已知实数x,y满足y x 120,则(x 1) 2 2(y 1)的最小值是A.1B. C.-22211 若双曲线2x2与1与直线y 2x无交点,则离心率e的取值范围是2 a b2A.(1, 5]B.(1, 5)C.(1,2]( )D . 2( )D. (1,2)12 .(理科)E F是椭圆x! / 1的左4 2右焦点,|是椭圆的一条准线,点P在I上,则Z EPF最大值是60°.30° C . 90° D . 45°2y的直线I ,1与双曲线的右支交于点( )(文科)双曲线2x ~-a 1(a 0,b 0)P,若线段的左、右焦点分别为PF1的中点M落在y轴上,则双曲线的渐近线方程为F1、F2,过点F1作倾斜角为依次为(A . 2、4、4;B . -2、4、4;)C. 2、-4、4;D. 2、-4、-47 •已知椭圆的焦点F,( 1,0),( )F2(1,0) , P是椭圆上一点,且卩芾2是PF tPF的等差中项,则椭圆的方程是A. x2162X- 19x216 122X- 1C. x2 D . x2xA.C. y ,2x D . y 2x13 .点(1 , 0)关于直线x+y+1=0的对称点是__________________ 。
解析几何大题精选题-共四套(答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN解析几何大题精选四套(答案)解析几何大题训练(一)1. (2011年高考江西卷) (本小题满分12分)已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若λ+=,求λ的值.2. (2011年高考福建卷)(本小题满分12分)如图,直线l :y=x+b 与抛物线C :x 2=4y 相切于点A 。
(1) 求实数b 的值;(11) 求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.3. (2011年高考天津卷)(本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点(,)P a b 满足212||||PF F F =.(Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于A,B 两点.若直线2PF 与圆22(1)(16x y ++-=相交于M,N 两点,且|MN|=58|AB|,求椭圆的方程.4.(2010辽宁)(本小题满分12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =,求椭圆C 的方程.解析几何大题训练(二)1.(2010辽宁)(本小题满分12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =.(I) 求椭圆C 的离心率;(II) 如果|AB|=154,求椭圆C 的方程.2.(2010北京)(本小题共14分)已知椭圆C 的左、右焦点坐标分别是(,y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P,圆心为P 。
椭圆专题练习1.【2017浙江,2】椭圆22194x y +=的离心率是A B C .23D .592.【2017课标3,理10】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .B C D .133.【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则()A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<14.【2016高考新课标3理数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为()(A )13(B )12(C )23(D )345.【2015高考新课标1,理14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为.6.【2016高考江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=o ,则该椭圆的离心率是. 7.【2017课标1,理20】已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =u u u r u u u r。
解析几何大量精选1.在直角坐标系xOy 中,点M到点()1,0F,)2,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q .⑴求轨迹C 的方程;⑴当0AP AQ ⋅=u u u r u u u r时,求k 与b 的关系,并证明直线l 过定点.【解析】 ⑴ 2214x y +=.⑴将y kx b =+代入曲线C 的方程,整理得222(14)8440k x kbx b +++-=,因为直线l 与曲线C 交于不同的两点P 和Q ,所以222222644(14)(44)16(41)0k b k b k b ∆=-+-=-+> ①设()11,P x y ,()22,Q x y ,则122814kbx x k +=-+,21224414b x x k -=+ ② 且22221212121224()()()14b k y y kx b kx b k x x kb x x b k -⋅=++=+++=+,显然,曲线C 与x 轴的负半轴交于点()2,0A -,所以()112,AP x y =+u u u r ,()222,AQ x y =+u u u r. 由0AP AQ ⋅=u u u r u u u r,得1212(2)(2)0x x y y +++=.将②、③代入上式,整理得22121650k kb b -+=.所以(2)(65)0k b k b -⋅-=,即2b k =或65b k =.经检验,都符合条件①当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符.当65b k =时,直线l 的方程为6655y kx k k x ⎛⎫=+=+ ⎪⎝⎭.显然,此时直线l 经过定点6,05⎛⎫- ⎪⎝⎭点,满足题意.综上,k 与b 的关系是65b k =,且直线l 经过定点6,05⎛⎫- ⎪⎝⎭2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线0x y -=相切. ⑴ 求椭圆C 的方程;⑴ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ;⑴ 在⑴的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ⋅u u u u r u u u r的取值范围.【解析】 ⑴22143x y +=.⑴ 由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.由22(4),1.43y k x x y =-⎧⎪⎨+=⎪⎩得2222(43)3264120k x k x k +-+-=. ①设点11(,)B x y ,22(,)E x y ,则11(,)A x y -.直线AE 的方程为212221()y y y y x x x x +-=--.令0y =,得221221()y x x x x y y -=-+.将11(4)y k x =-,22(4)y k x =-代入整理,得12121224()8x x x x x x x -+=+-.②由①得21223243k x x k +=+,2122641243k x x k -=+代入②整理,得1x =.所以直线AE 与x 轴相交于定点(10)Q ,.⑶ 54,4⎡⎤--⎢⎥⎣⎦.3.设椭圆2222:1(0)x y C a b a b+=>>的一个顶点与抛物线2:C x =的焦点重合,12F F ,分别是椭圆的左、右焦点,且离心率12e =,过椭圆右焦点2F 的直线l 与椭圆C 交于M N 、两点.⑴ 求椭圆C 的方程;⑴ 是否存在直线l ,使得2OM ON ⋅=-u u u u r u u u r.若存在,求出直线l 的方程;若不存在,说明理由.【解析】 ⑴22143x y +=.⑴ 由题意知,直线l 与椭圆必有两个不同交点.①当直线斜率不存在时,经检验不合题意. ②设存在直线l 为(1)(0)y k x k =-≠,且11()M x y ,,22()N x y ,.由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩,得2222(34)84120k x k x k +-+-=, 2122834k x x k +=+,212241234k x x k -=+, 21212121212[()1]OM ON x x y y x x k x x x x ⋅=+=+-++u u u u r u u u r2222222224128512(1)2343434k k k k k k k k k ---=+⋅-⋅+==-+++,所以k =故直线l的方程为1)y x =-或1)y x =-.本题直线l 的方程也可设为1my x =-,此时m 一定存在,不能讨论,且计算时数据更简单.4.如图,椭圆()22122:10x y C a b a b+=>>x 轴被曲线22:C y x b =-截得的线段长等于1C 的长半轴长.⑴ 求12C C ,的方程;⑴ 设2C 与y 轴的交点为M ,过坐标原点O 的直线l 与2C 相交于点A B ,,直线MA MB ,分别与1C 相交与D E ,. ①证明:MD ME ⊥;②记MAB MDE △,△的面积分别是12S S ,.问是否存在直线l ,使得121732S S =?请说明理由.【解析】 ⑴ 222114x y y x +==-,.⑴ ①由题意知,直线l 的斜率存在,设为k ,则直线l 的方程为y kx =. 由21y kx y x =⎧⎨=-⎩得210x kx --=, 设()()1122A x y B x y ,,,,则12x x ,是上述方程的两个实根,于是12121x x k x x +==-,. 又点M 的坐标为()01-,,所以()()()212121212121212111111MA MB kx kx k x x k x x y y k k x x x x x x +++++++⋅=⋅===-, 故MA MB ⊥,即MD ME ⊥.②设直线KM 的斜率为1k ,则直线的方程为11y k x =-,由1211y k x y x =-⎧⎪⎨=-⎪⎩,解得01x y =⎧⎨=-⎩或1211x k y k =⎧⎪⎨=-⎪⎩,则点A 的坐标为()2111k k -,. 又直线MB 的斜率为11k -,同理可得点B 的坐标为211111k k ⎛⎫-- ⎪⎝⎭,.于是211111111||||||||22||k S MA MB k k k +=⋅=-=.由1221440y k x x y =-⎧⎪⎨+-=⎪⎩得()22111480k x k x +-=, 解得01x y =⎧⎨=-⎩或12121218144114k x k k y k ⎧=⎪+⎪⎨-⎪=⎪+⎩,则点D 的坐标为21122118411414k k k k ⎛⎫- ⎪++⎝⎭,; 又直线MB 的斜率为11k -,同理可得点E 的坐标21122118444k k k k ⎛⎫-- ⎪++⎝⎭,. 于是()()()21122211321||1||||2144k k S MD ME k k +⋅=⋅=++. 因此222111122211(14)(4)144176464S k k k S k k ⎛⎫++==++ ⎪⎝⎭,由题意知,212114174176432k k ⎛⎫++= ⎪⎝⎭解得214k =或2114k =. 又由点A B ,的坐标可知,21211111111k k k k k k k -==-+,所以32k =±.故满足条件的直线l 存在,且有两条,其方程分别为32y x =和32y x =-.5. 在直角坐标系xOy 中,点M到点()1,0F,)2,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P和Q .⑴ 求轨迹C 的方程;⑴ 当0AP AQ ⋅=u u u r u u u r时,求k 与b 的关系,并证明直线l 过定点.【解析】 ⑴ 2214x y +=.⑴将y kx b =+代入曲线C 的方程,整理得222(14)8440k x kbx b +++-=,因为直线l 与曲线C 交于不同的两点P 和Q ,所以222222644(14)(44)16(41)0k b k b k b ∆=-+-=-+> ①设()11,P x y ,()22,Q x y ,则122814kbx x k +=-+,21224414b x x k -=+ ② 且22221212121224()()()14b k y y kx b kx b k x x kb x x b k -⋅=++=+++=+,显然,曲线C 与x 轴的负半轴交于点()2,0A -,所以()112,AP x y =+u u u r ,()222,AQ x y =+u u u r. 由0AP AQ ⋅=u u u r u u u r,得1212(2)(2)0x x y y +++=.将②、③代入上式,整理得22121650k kb b -+=.所以(2)(65)0k b k b -⋅-=,即2b k =或65b k =.经检验,都符合条件①当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符.当65b k =时,直线l 的方程为6655y kx k k x ⎛⎫=+=+ ⎪⎝⎭.显然,此时直线l 经过定点6,05⎛⎫- ⎪⎝⎭点,满足题意.综上,k 与b 的关系是65b k =,且直线l 经过定点6,05⎛⎫- ⎪⎝⎭.。
高中数学解析几何深度练习题及答案1. 平面几何题目一:已知平面上三点A(1, -2),B(3, 4),C(7, 1),求证:三角形ABC为等腰三角形。
解答:首先计算AB、AC、BC的长度,分别利用两点之间的距离公式:AB = √[(3-1)^2 + (4-(-2))^2] = √[4 + 36] = √40AC = √[(7-1)^2 + (1-(-2))^2] = √[36 + 9] = √45BC = √[(7-3)^2 + (1-4)^2] = √[16 + 9] = √25由于AB的平方等于BC的平方,即AB^2 = BC^2,可以得出AB = BC。
因此,三角形ABC为等腰三角形。
题目二:已知平面上直线L1过点A(2, -1),斜率为k,与直线L2:3x + ky + 5 = 0 互相垂直,求k的值。
解答:首先计算直线L2的斜率:L2: 3x + ky + 5 = 0化简得:ky = -3x - 5因此,L2的斜率k2为 -3/k。
由于L1与L2互相垂直,根据垂直直线的特性可知斜率k1与k2之积为 -1。
即 k * (-3/k) = -1。
解上述方程可以得出:k^2 = 3,因此k的两个解为k = √3 和 k = -√3。
题目三:已知直线L1:4x + 3y - 2 = 0 与直线L2垂直,并且直线L2通过点A(5,-1),求直线L2的方程式。
解答:由于L1与L2垂直,它们的斜率之积为 -1。
L1的斜率为 -4/3,所以L2的斜率为 3/4。
通过点斜式可以得到L2的方程式:y - (-1) = (3/4)(x - 5)化简得到:y = (3/4)x + 2因此,直线L2的方程式为:y = (3/4)x + 2。
2. 空间几何题目一:已知直线L1:x = 3 - 2t,y = 5 + 3t,z = -1 + 4t,求直线L1的参数方程。
解答:直线的参数方程为x = x0 + at,y = y0 + bt,z = z0 + ct,其中(a, b, c)为直线的方向向量。
高中数学解析几何训练题(带答案)试卷分析高中数学习题精选第三部分解析几何一、选择题:1、直线的倾斜角是______。
A. B. C. D.2、直线m、l关于直线_ = y对称,若l的方程为,则m的方程为_____。
A. B. C. D.3、已知平面内有一长为4的定线段AB,动点P满足|PA||PB|=3,O为AB中点,则|OP|的最小值为______。
A.1 B. C.2 D.34、点P分有向线段成定比,若,则所对应的点P的集合是___。
A.线段 B.线段的延长线 C.射线 D.线段的反向延长线5 、已知直线L经过点A 与点B ,则该直线的倾斜角为______。
A.150 B.135 C.75 D.456、经过点A 且与直线垂直的直线为______。
A. B. C. D.7、经过点且与直线所成角为30的直线方程为______。
A. B.或C. D.或8、已知点A 和点B ,直线m过点P 且与线段AB相交,则直线m的斜率k的取值范围是______。
A. B. C. D.9、两不重合直线和相互平行的条件是______。
A. B.或 C. D.10、过且倾斜角为15的直线方程为______。
A. B. C. D.11、a = 1是直线和互相垂直的___。
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也非必要条件12、与曲线关于直线对称的曲线方程是______。
A. B. C. D.13、曲线关于点对称的曲线的方程是______。
A. B. C. D.14、实数a = 0是和平行的______A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也非必要条件15、已知m和n的斜率分别是方程的两根,则m和n所成角为______。
A.15 B.30 C.45 D.6016、直线的倾斜角为______。
A. B. C. D.17、a为非负实数,直线不通过的象限是______。
数学训练二解析几何大题评卷人得分一、解答题1.在平面直角坐标系xOy 中,已知椭圆C :22143x y+=的左,右焦点分别为1F ,2F ,过点()4,0T 且不与x 轴重合的直线l 与椭圆C 交于A ,B 两点(点A 在点T ,B 之间).(1)记直线2AF ,2BF 的斜率分别为1k ,2k ,求12k k +的值;(2)设直线1AF 与2BF 交于点M ,求12MF MF -的值.【答案】(1)0(2)1【分析】(1)设直线l 的方程为4x my =+,联立方程组,利用韦达定理求参数,从而得12k k +的值;(2)设()00,A x y 由对称关系得AF 的方程和2BF 的方程,联立方程组得001,.x xy y x ⎧=⎪⎪⎨⎪=⎪⎩,代入椭圆方程,得点M 在双曲线2211344x y -=上运动,且1F ,2F 恰好为该双曲线的焦点,从而得12MF MF -的值.【详解】(1)设直线l 的方程为4x my =+,()11,A x y ,()22,B x y .联立方程组224143x my x y =+⎧⎪⎨+=⎪⎩,整理得()223424360m y my +++=,则()()22122122Δ2436434024343634m m m y y m y y m ⎧=-⨯⨯+>⎪⎪-⎪+=⎨+⎪⎪=⎪+⎩,即1221222224343634m m m y y m y y m ⎧⎪-⎪-⎪+=⎨+⎪⎪=⎪+⎩或,所以()()()121212121212121223113333my y y y y y y y k k x x my my my my +++=+=+=--++++()()22123624233434033mm m m my my -⋅+⨯++==++;(2)由(1)可知,120k k +=,故直线2BF 与2AF 关于直线1x =对称,设直线2BF 与椭圆C 的另一个交点为A ',则A 与A '关于x 轴对称,设()00,A x y ,则()00,A x y '-.所以直线1AF 的方程为()0011y y x x =++,直线2BF 的方程为()0011y y x x -=--,故点(),M x y 满足方程组()()00001111y y x x y y x x ⎧=+⎪+⎪⎨-⎪=-⎪-⎩,解得001x xy y x ⎧=⎪⎪⎨⎪=⎪⎩,因为点()00,A x y 在椭圆C 上,所以221143y x x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,即2221143y x x+=,整理得2211344x y -=,所以点M 在双曲线2211344x y -=上运动,且1F ,2F 恰好为该双曲线的焦点,依题意,点A 在T ,B 之间,所以00x >,得0x >,点M 在双曲线的右支上运动,所以121212MF MF -=⨯=.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.2.在一张纸上有一个圆C :()2224x y ++=,圆心为点C ,定点()2,0M ,折叠纸片使圆C 上某一点1M 好与点M 重合,这样每次折叠都会留下一条直线折痕PQ ,设折痕PQ 与直线1M C 的交点为T .(1)求出点T 的轨迹E 的方程;(2)若过点M 且斜率为k (k >k <的直线l 交曲线E 于A ,B 两点,Q 为x 轴上一点,满足QA QB =,试问4AC BC QM+-是否为定值?若是,求出该定值;若不是,请说明理由【答案】(1)2213y x -=;(2)41AC BC QM+-=为定值.【分析】(1)由题意1||||TM TM =且1||||||||||||2||4TM TC TM TC CM -=-=<=,根据双曲线定义确定轨迹方程即可;(2)令:2=+l x ky 且33k -<<,1122(,),(,)A x y B x y ,联立双曲线方程,应用韦达定理求AB 中点坐标,进而写出AB 垂直平分线,即可求Q 坐标并得到||QM ,再根据双曲线定义求4AC BC +-,即可判断目标式是否为定值.【详解】(1)由题意,可画出如下示意图,1||||TM TM =,由圆:C ()2224x y ++=,则圆心(2,0)C -,半径为2,所以1||||||||||||2||4TM TC TM TC CM -=-=<=,即T 轨迹是以,C M 为焦点的双曲线,且22a =,24c =,故2223b c a =-=,所以轨迹E 的方程为2213y x -=.(2)令:2=+l x ky 且k <<2213y x -=,所以22(31)1290k y ky -++=,且236(1)0k ∆=+>,令1122(,),(,)A x y B x y ,则121222129,1331k y y y y k k +==--,所以121224()413x x k y y k +=++=-,221212122342()413k x x k y y k y y k +=+++=-,故AB 中点坐标为2226(,)1313k k k --,则AB 垂直平分线为22216()1313k x y k k k-=----,令0y =,则2813x k =-,即28(,0)13Q k -,故22286(1)|||2|1313k QM k k+=-=--,又直线l 交曲线E 于A ,B 两点必在右支,则||||||||2AC AM BC BM -=-=,所以||||||||4||4AC BC AM BM AB +=++=+,则4||AC BC AB +-=,而226(1)||13k AB k +==-,综上,41AC BC QM+-=为定值.【点睛】关键点点睛:第一问,应用垂直平分线性质有1||||TM TM =,结合已知及双曲线定义确定轨迹;第二问,设直线,联立双曲线,应用韦达定理求AB 垂直平分线为关键.3.已知椭圆C :22143x y +=,其右焦点为F ,过点F 且与坐标轴不垂直的直线与椭圆C交于P ,Q 两点.(1)求椭圆C 的离心率;(2)设O 为坐标原点,线段OF 上是否存在点(),0N n ,使得QP NP PQ NQ ⋅=⋅?若存在,求出n 的取值范围;若不存在,说明理由;(3)过点()04,0P 的直线与椭圆C 交于A ,B 两点,点B 关于x 轴的对称点为E ,试证明:直线AE 过定点.【答案】(1)12(2)存在,10,4⎛⎫⎪⎝⎭(3)证明见解析【分析】(1)根据椭圆标准方程得出a ,b ,进而求出c ,再利用离心率定义可得解;(2)设出直线PQ 的方程与椭圆联立方程组,由根与系数关系的出线段PQ 的中点为R 的坐标,向量关系坐标化可得直线NR 为直线PQ 的垂直平分线,进而求出直线NR 的方程,求出N 点的横坐标,分析得到n 的范围;(3)设出直线AB 的方程与椭圆联立方程组,设()33,A x y ,()44,B x y ,()44,E x y -表示出直线AE 的方程,令0y =,求得x 的表达式,由根与系数关系代入化简可得1x =,当0k =时,也满足题意,得证.【详解】(1)因为椭圆的方程为22143x y +=,所以24a =,23b =,2431c =-=,即1c =,∴离心率为12e =.(2)设直线PQ 的方程为:()1y k x =-,0k ≠,代入22143x y +=,得:()22223484120k xk x k +-+-=,()()()222284344120k k k ∆=--+->恒成立,设()11,P x y ,()22,Q x y ,线段PQ 的中点为()00,R x y ,则212024234x x k x k +==+,()0023134k y k x k =-=-+,由QP NP PQ NQ ⋅=⋅ ,得:()()20P P PQ NQ Q NQ QP NP PQ NR N ⋅+=-⋅⋅=⋅=,所以直线NR 为直线PQ 的垂直平分线,直线NR 的方程为:2223143434k k y x k k k ⎛⎫+=-- ⎪++⎝⎭,令0y =得:N 点的横坐标22213344k n k k==++,因为()20,k ∈+∞,所以()2344,k +∈+∞,所以10,4n ⎛⎫∈ ⎪⎝⎭,即线段OF 上存在点(),0N n ,使得QP NP PQ NQ ⋅=⋅ ,其中10,4n ⎛⎫∈ ⎪⎝⎭.(3)设直线AB 的方程为:()4y k x =-,0k ≠,代入22143x y+=,得:()2222343264120k xk x k +-+-=,因为过点()04,0P 的直线与椭圆交于A ,B 两点,所以()()()22223243464120∆=--+->k k k ,得:11,00,22k ⎛⎫⎛⎫∈- ⎪ ⎪⎝⎭⎝⎭,设()33,A x y ,()44,B x y ,()44,E x y -,则23423234k x x k +=+,2342641234k x x k -=+,则直线AE 的方程为()343334y y y y x x x x +-=--,令0y =得:()()()344334344333343434448x k x x k x x x x y x yx y x y y y y k x x ⋅-+⋅--+=-⋅+==+++-()222234342342641232242434341328834k k x x x x k k k x x k -⋅-⋅-+++===+--+,当0k =时,也满足题意,所以直线AE 过定点()1,0,综上,直线AE 过定点()1,0.4.已知椭圆C 的对称中心为坐标原点,对称轴为坐标轴,焦点在y 轴上,离心率12e =,且过点3,2)P (.(1)求椭圆C 的标准方程;(2)若直线l 与椭圆交于,A B 两点,且直线,PA PB 的倾斜角互补,判断直线AB 的斜率是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)2211612y x +=(2)是定值,定值为2【分析】(1)利用离心率求得,,a b c 之间的关系,结合点在椭圆上,解方程即可得答案;(2)设出直线方程,联立椭圆方程,得到根与系数的关系,利用直线,PA PB 的倾斜角互补,可得121222033PA PB y y k k x x --+=+=--,结合根与系数关系化简即可得结论.【详解】(1)设椭圆C 的标准方程为22221(0)y x a b a b+=>>,由题意知122c e a c b a ==∴==,,,故椭圆的标准方程又为2222134x y c c+=,即2224312x y c +=,又椭圆过点3,2)(,223612124c c ∴+=∴=,,∴椭圆的标准方程为2211612y x +=;(2)由题意可知直线l 的斜率存在且不过点3,2)P (,设直线l 的方程为320)y kx m,k m =+(+-≠,1122(,),(,)A x y B x y,由224348y kx m x y =+⎧⎨+=⎩,消去y 整理得22234)63480k x kmx m (+++-=,需满足22481216)0k m ∆=(+->,则122634km x x k +=-+,212234834m x x k -=+,直线,PA PB 的倾斜角互补,121222033PA PB y y k k x x --∴+=+=--,1212122211232))03333kx m kx m k k m x x x x +-+-∴++(+-(+=----,1212126232)03)9x x k k m x x x x +-∴+(+-⋅=-(++,将122634km x x k +=-+,212234834m x x k -=+代入得22226634232)03483463934kmk k k km m k m k --++(+-⋅=⋅+++-+,整理得2)32)0k k m (-(+-=,而320k m +-≠,2k ∴=,所以直线AB 的斜率为定值,其定值为2.【点睛】难点点睛:本题考查了椭圆方程的求解以及直线和椭圆位置关系中的定值问题,解答的难点在于定值问题,解答时困难在于计算的复杂性,且都是关于字母参数的计算,计算量较大,要十分细心才可以.5.我们约定,如果一个椭圆的长轴和短轴分别是另一条双曲线的实轴和虚轴,则称它们互为“姊妹”圆锥曲线.已知椭圆1C :()2221024x y b b+=<<,双曲线2C 是椭圆1C 的“姊妹”圆锥曲线,1e ,2e 分别为1C ,2C 的离心率,且12e e =点M ,N 分别为椭圆1C 的左、右顶点,设过点()4,0G 的动直线l 交双曲线2C 右支A ,B 两点,若直线AM ,BN 的斜率分别为AM k ,BN k .(1)求双曲线2C 的方程;(2)试探究AM k 与BN k 的AMBNk k 是否定值.若是定值,求出这个定值;若不是定值,请说明理由;(3)求223AM BN w k k =+的取值范围.【答案】(1)2214x y -=;(2)是,定值13;(3)311135,,436364⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭;【分析】(1)根据题意,直接列式计算可得答案;(2)直线与双曲线联立,利用韦达定理进行消参,进而证明其比值为定值;(3)根据题意,利用韦达定理得出AM k 的范围,然后根据3BN AM k k =-,可得22AM AM w k k =-,进而可得取值范围.【详解】(1)由题意可设双曲线2C :22214x y b -=,则12e e =21b =,所以双曲线2C 的方程为2214x y -=.(2)设()11,A x y ,()22,B x y ,直线AB 的方程为4x ty =+,由22414x ty x y =+⎧⎪⎨-=⎪⎩,消元得()2248120t y ty -++=.则2t ≠±,2161920t ∆=+>,且12212284124t y y t y y t ⎧+=-⎪⎪-⎨⎪=⎪-⎩,∴()()11211212121221122222222662AMBNy y ty k x y x ty y y y k x y y ty ty y y x ++-+==⨯==+++-()12122122226ty y y y y ty y y ++-=+22222222212164221444121236644t t ty y t t t t t y y t t -------===-++--;或由韦达定理可得121223y y ty y +=-,即()121232ty y y y =-+,∴()()()()11211211212121221122122232222223266622AMBNy y y y y ty k x y x ty y y y k x y y ty ty y y y y y x -++++-+==⨯===+++-++-121231393y y y y -==--+,即AM k 与BN k 的比值为定值13-.(3)思路一:设直线AM :()2y k x =+,代入双曲线方程并整理得:()()2222214161640140k xk x k k ----=-≠,由于点M 为双曲线的左顶点,所以此方程有一根为2-,由韦达定理得:22164214A k x k ---=-,解得()2224114A k x k+=-.因为点A 在双曲线的右支上,所以()22241014A k x k +=>-,解得11,22k ⎛⎫∈- ⎪⎝⎭,即11,22AM k ⎛⎫∈- ⎪⎝⎭,同理可得11,,22BN k ∞∞⎛⎫⎛⎫∈--⋃+ ⎪ ⎪⎝⎭⎝⎭,由(2)中结论可知113,,22BN AM k k ∞∞⎛⎫⎛⎫=-∈--⋃+ ⎪ ⎪⎝⎭⎝⎭,得11,,66AM k ∞∞⎛⎫⎛⎫∈--⋃+ ⎪ ⎪⎝⎭⎝⎭,所以1111,,2662AM k ⎛⎫⎛⎫∈--⋃ ⎪ ⎪⎝⎭⎝⎭,故()222223233AM BN AM AM AM AM w k k k k k k =+=+-=-,设()22h x x x =-,其图象对称轴为1x =,则()22h x x x =-在11,26--⎛⎫ ⎪⎝⎭,11,62⎛⎫ ⎪⎝⎭上单调递减,故()311135,,436364h x ⎛⎫⎛⎫∈-- ⎪ ⎪⎝⎭⎝⎭ ,故223AM BN w k k =+的取值范围为311135,,436364⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭.思路二:由于双曲线2214x y -=的渐近线方程为12y x =±,如图,过点M 作两渐近线的平行线1l 与2l ,由于点A 在双曲线2214x y -=的右支上,所以直线AM 介于直线1l 与2l 之间(含x 轴,不含直线1l 与2l ),所以11,22AM k ⎛⎫∈- ⎪⎝⎭,同理,过点N 作两渐近线的平行线3l 与4l ,由于点B 在双曲线2214x y -=的右支上,所以直线BN 介于直线3l 与4l 之间(不含x 轴,不含直线3l 与4l ),所以11,,22BN k ∞∞⎛⎫⎛⎫∈--⋃+ ⎪ ⎪⎝⎭⎝⎭.由(2)中结论可知113,,22BN AM k k ∞∞⎛⎫⎛⎫=-∈--⋃+ ⎪ ⎪⎝⎭⎝⎭,得11,,66AM k ∞∞⎛⎫⎛⎫∈--⋃+ ⎪ ⎪⎝⎭⎝⎭,所以1111,,2662AM k ⎛⎫⎛⎫∈--⋃ ⎪ ⎪⎝⎭⎝⎭,故()2222231113532,,33436364AM BN AM AM AM AM w k k k k k k ⎛⎫⎛⎫=+=+-=-∈--⋃ ⎪ ⎪⎝⎭⎝⎭.【点睛】本题的解题关键是理解题目定义,求出双曲线方程,根据定点位置合理设出直线的方程形式,再利用直线与双曲线的位置关系得到韦达定理,然后利用斜率公式代入消元,即可判断斜率的比值是否为定值,注意非对称韦达的使用技巧,第三问,由第二问较容易得到函数关系式,难点是准确找到斜率AM k 的取值范围,从而得到精确的ω的范围.6.已知椭圆2222Γ:1(0)x y a b a b+=>>的离心率是12,其左、右焦点分别为12,F F ,过点()0,B b 且与直线2BF 垂直的直线交x 轴负半轴于D .(1)求证:12220F F F D +=;(2)若点()3,0D -,过椭圆Γ右焦点2F 且不与坐标轴垂直的直线l 与椭圆Γ交于,P Q 两点,点M 是点P 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得,,M Q N 三点共线?若存在,求出点N 的坐标;若不存在,说明理由.【答案】(1)证明见解析(2)存在,()4,0N 【分析】(1)设椭圆Γ的半焦距为c,根据题意求得直线:3BD y x b =+,得到(),0D ,进而求得向量12F F ,2F D的坐标,即可得证.(2)根据题意,求得椭圆方程为22143x y +=,设直线l 的方程为1x ty =+,联立方程组,求得12122269,4343t y y y y t t --+==++,得出MQ 的方程为()211112x x x x y y y y --=++,令0y =,求得4x =,即可得到结论.【详解】(1)证明:设椭圆Γ的半焦距为c ,因为12c e a ===,所以1,22c a b ==,又因为()()212,0,,0,BF bF c F c k c-=-=,所以213BD BF k k =-=,所以直线:BD y b =+,令0y =,解得x =,所以(),0D ,所以()()122,0,0F F c a ==,()()2,02,0F D c a =-=- ,所以12220F F F D +=.(2)解:如图所示,若点()3,0D -,则3=-,解得b =2,1a c ==,所以椭圆方程为22143x y +=.设直线l 的方程为1,0x ty t =+≠,()()1122,,,P x y Q x y ,则()11,M x y -,联立方程组221431x y x ty ⎧+=⎪⎨⎪=+⎩,整理得()2243690t y ty ++-=,则()22Δ3636430t t =++>,且12122269,4343t y y y y t t --+==++直线MQ 的方程为()211112x x x x y y y y --=++,令0y =,可得()211211*********1121212x x y x y x y x y x y x y x y x xy y y y y y --+++=+==+++()()21121211ty y ty y y y +++=+()121212121229221146t ty y y y ty y y y y y t⨯-++==+=+=++-.故在x 轴上存在一个定点()4,0N ,使得,,M Q N 三点共线.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.7.在平面直角坐标系xOy 中,椭圆2222:(0)x y a b a b G +=>>端点与两焦点,构成的三角形周长为1)+.(1)求椭圆Γ的方程;(2)已知,,A B C是椭圆Γ上的相异三点,并且,A C 关于原点对称,若ABC ,求||||AB BC ⋅的取值范围.【答案】(1)22132x y +=(2)⎡⎤⎣⎦.【分析】(1)由椭圆的离心率知c a =)2221a c c +=,联立方程组即可求出a 和c ,根据222a b c =+,求得b ,即可求出椭圆方程.(2)首先需对直线AB 斜率是否存在分情况讨论,直线AB 斜率不存在时,ABC 为直角三角形,所以此时2AB BC S ×==;当直线AB 斜率存在时,设出直线方程,将直线与椭圆方程联立,得到()()222236320kxkm m +++-=,根据直线与椭圆相交弦长公式,点到直线距离公式,求出ABC 中底边AB 长,和底边AB 上的高,表示出ABC 面积,根据中位线的性质求出BC 的长,然后得出AB BC ⋅,求其范围即可.【详解】(1)设椭圆的半焦距为c ,则由c a a ==,短轴的一个端点与两焦点构成的三角形周长为)2221a c c +=,所以))2121c =,解得1c =,从而2222a b a c ==-=,所以椭圆的方程为22132x y +=.(2)当直线AB 的斜率存在时,设其方程为y kx m =+,由题意知0m ≠.将y kx m =+代入方程22132x y +=中,整理得()()222236320k x km m +++-=,此时必须有()()2222Δ36122320k m k m =-+->,即2232k m +>(*),设()()1122,,,A x y B x y ,则有()2121222326,2323m km x x x x k k-+=-=++,所以12AB x =-=又,A C 关于原点的对称,则()11,C x y --,所以点C 到直线AB 的距离:h ===所以三角形ABC 的面积S ==,整理得22322k m +=,符合(*)式,又122233322322x x km km kk m m+=-=-=-+,22121232312222y y x x k m k k m k m m m m ++-⎛⎫=+=-+== ⎪⎝⎭,所以弦AB 的中点为31,2k M m m ⎛⎫-⎪⎝⎭,从而2BC OM ===,12AB x =-===,所以AB BC ⋅==,因为22322k m +=,所以21m ≥,所以2211256234m m ⎛⎫⎛⎫≤+-≤ ⎪⎪⎝⎭⎝⎭,所以5AB BC ≤⋅≤,当直线AB 的斜率不存在时,三角形ABC 为直角三角形,2AB BC S ×==综上,||||AB BC ⋅的取值范围为⎡⎤⎣⎦.8.已知双曲线C 的中心为坐标原点,左焦点为(-1A ,2A 为C 的左,右顶点.P 为直线1x =上的动点,1PA 与C 的另一个交点为M ,2PA 与C 的另一个交点为N .(1)求C 的方程;(2)证明:直线MN 过定点.【答案】(1)221416x y -=(2)证明见解析.【分析】(1)根据题意,列出方程,求得,a b ,即可得到C 的方程;(2)根据题意,分别得到,M N 的坐标,然后分直线MN 的斜率存在以及不存在分别讨论,即可得到结果.【详解】(1)由题意可设双曲线方程为()222210,0x y a b a b -=>>,左焦点为(-,则c =,c e a a===2a =,22220416b c a =-=-=,则C 的方程为221416x y -=.(2)因为点1A ,2A 为C 的左,右顶点,P 为直线1x =上的动点,所以()()122,0,2,0A A -,设()1,P t ,()()1122,,,M x y N x y ,则直线1PA 的方程为()23ty x =+,联立直线1PA 与双曲线的方程可得()22231416t y x x y ⎧=+⎪⎪⎨⎪-=⎪⎩,消去y 可得()222236441440t xt x t ----=,方程两根为1,2x -,由韦达定理可得2124144236t x t +-=-,所以21227236t x t +=-,()112482336t t y x t =+=-,即22227248,3636t t M t t ⎛⎫+ --⎝⎭;设直线2PA 方程为()2y t x =--,联立直线2PA 与双曲线的方程可得()2221416y t x x y ⎧=--⎪⎨-=⎪⎩,消去y 可得()2222444160t xt x t -+--=,方程两根为2,2x ,由韦达定理可得22241624t x t +=-,则222284t x t +=-,()2221624t y t x t -=--=-,即2222816,44t t N t t ⎛⎫+- ⎪--⎝⎭;由对称性可知,若直线MN 过定点,则定点在x 轴上,当直线MN 的斜率不存在时,222227228364t t t t ++=--,可得212t =,此时,124x x ==,则直线MN 经过点()4,0E ,当212t ≠时,22224883627212436MEt t t k t t t -==+---,22221684281244NE ME tt t k k t t t --===+---,所以,,M N E 三点共线,即直线MN 经过点()4,0E .综上,直线MN 经过定点()4,0.9.已知点()2,0-在椭圆()2222:10x y C a b a b +=>>上,设点,A B 为C 的短轴的上、下顶点,点T 是椭圆上任意一点,且TA ,TB 的斜率之积为34-.(1)求C 的方程;(2)过C 的两焦点1F 、2F 作两条相互平行的直线1l ,2l 交C 于M ,N 和P ,Q ,求四边形PQNM 面积的取值范围.【答案】(1)22:143x y C +=(2)[]0,6【分析】(1)求出2a =,设()()0,,0,A b B b -,(),T m n ,0m ≠,表达出24TA TBn b n b b k k m m -+⋅==-,从而得到方程,求出23b =,得到椭圆方程;(2)先考虑1l ,2l 的斜率不存在时四边形PQNM 面积为236⨯=,再考虑1l ,2l 的斜率存在时,结合弦长公式,表达出四边形PQNM面积为234S k =+,换元后得到S =[)0,6S ∈,求出四边形PQNM 面积的取值范围.【详解】(1)由题意得2a =,设()()0,,0,A b B b -,(),T m n ,0m ≠,则22214m n b +=,222244b n m b -=,故222222222444TA TBn b n b n b n b b k k b n m m m b -+--⋅=⋅==--,又TA ,TB 的斜率之积为34-,故2344b -=-,解得23b =,所以椭圆22:143x y C +=;(2)由(1)知,1c ===,故()()121,0,1,0F F -,当1l ,2l 的斜率不存在时,四边形MNQP 为矩形,令1x =得,32y =±,故331,,1,22P Q ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,同理可得331,,1,22M N ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,故3232NM QP ==⨯=,2NQ MP ==,故四边形PQNM 面积为236⨯=,当1l ,2l 的斜率存在时,由对称性可知,四边形PQNM 为平行四边形,设()1:1l y k x =+,联立22:143x y C +=得()22223484120k x k x k +++-=,易得0∆>,设()()1122,,,M x y N x y ,则221212228412,3434k k x x x x k k -+=-=++,则MN()2212134k k +=+,设点()21,0F 到直线1l 的距离为d,则d =故四边形PQNM 面积为()2212134k S k +=+,令2343k t +=≥,则234t k -=,则S =因为3t ≥,所以110,3t ⎛⎤∈ ⎥⎝⎦,故1112,333t ⎛⎤+∈ ⎥⎝⎦,21114,399t ⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦,231111,43312t ⎛⎫⎡⎫-+∈-- ⎪⎪⎢⎝⎭⎣⎭,2311110,4334t ⎛⎫⎡⎫-++∈ ⎪⎪⎢⎝⎭⎣⎭,故[)0,6S =,综上:四边形PQNM 面积的取值范围是[]0,6.【点睛】圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.10.已知点A为圆22:60C x y +--=上任意一点,点B的坐标为(),线段AB 的垂直平分线与直线AC 交于点D .(1)求点D 的轨迹E 的方程;(2)设轨迹E 与x 轴分别交于12,A A 两点(1A 在2A 的左侧),过()3,0R 的直线l 与轨迹E 交于,M N 两点,直线1A M 与直线2A N 的交于P ,证明:P 在定直线上.【答案】(1)22146x y -=(2)证明见解析【分析】(1)根据题意推出||||||4DC DB -=,结合双曲线定义即可求得答案;(2)设出直线l 的方程,联立双曲线方程,得到根与系数的关系,表示出直线1A M 和2A N 的方程,推得122121522ty y y x x ty y y ++=-+,结合根与系数的关系化简,即可证明结论.【详解】(1)由22:60C x y +--=得22:(61C x y +=,其半径为4,因为线段AB 的垂直平分线与直线AC 交于点D,故||||DB DA =,则||||||||||||||4DC DB DC DA AC -=-==,而||84BC =>,故点D 的轨迹E 为以,B C 为焦点的双曲线,则22224,2,26a a c c b c a ====∴=-=,故点D 的轨迹E 的方程为22146x y -=.(2)证明:由题意知12(2,0),(2,0)A A -,若直线l 斜率为0,则其与双曲线的交点为双曲线的两顶点,不合题意;故直线l 的斜率不能为0,故设其方程为3x ty =+,联立223146x ty x y =+⎧⎪⎨-=⎪⎩,得22(32)18150t y ty -++=,21441200t ∆=+>,故12212218321532t y y t y y t -⎧+=⎪⎪-⎨⎪=⎪-⎩,设()()1122,,,M x y N x y ,则直线1A M 的方程为1111(2)(2)25y y y x x x ty =+=+++,直线2A N 的方程为2222(2)2)21y y y x x x ty =-=--+,故122121522ty y y x x ty y y ++=-+,则122121122151875552323232=5151523232t t t y y x t t t t t x y y t t -⎛⎫+--- ⎪+--⎝⎭-==--++--,即252x x +=--,解得43x =,故直线1A M 与直线2A N 的交点P 在定直线上.【点睛】难点点睛:本题考查了利用双曲线定义求解双曲线方程以及直线和双曲线的位置关系中的点在定直线上的问题,难点在于证明直线1A M 与直线2A N 的交点P 在定直线上,解答时要设直线方程,利用根与系数的关系进行化简,计算过程比较复杂,且大都是关于字母参数的运算,要十分细心.11.已知()2,0A -,()2,0B 为椭圆C :()222210x y a b a b+=>>的左、右顶点,且椭圆C过点31,2⎛⎫ ⎪⎝⎭.(1)求C 的方程;(2)过左焦点F 的直线l 交椭圆C 于D ,E 两点(其中点D 在x 轴上方),求AEFBDFS S △△的取值范围.【答案】(1)22143x y +=(2)1,19⎛⎫ ⎪⎝⎭【分析】(1)由题意得a ,把31,2⎛⎫ ⎪⎝⎭代入椭圆方程可得答案;(2)①当l 斜率不存在时,易知△△=AFF BDF AF S S BF;②当l 斜率存在时,设l ()10x ty t =-≠,()()111,0D x y y >,()()222,0E x y y <,与椭圆方程联立,求出()212△=⋅-AEF S y 、132△=⋅BDFS y ,由2113AEF BDF S y S y =-⋅ 利用韦达定理可得()2121212212y y y y y y y y +=++,设21y k y =,转化为41203k k-<++<,可得答案.【详解】(1)由题意得2a =,把31,2⎛⎫⎪⎝⎭代入22214x y b +=,解得b =所以C 的方程为22143x y +=;.(2)由(1)知:1c ,()1,0F -,①当l 斜率不存在时,易知13AEF BDF AF S S BF == ;②当l 斜率存在时,设l :()10x ty t =-≠,()()111,0D x y y >,()()222,0E x y y <,由221143x ty x y =-⎧⎪⎨+=⎪⎩,得()2234690t y ty +--=,显然0∆>,所以122634ty y t +=+,122934y y t =-+,因为()221122AEF S AF y y =⋅=⋅-△,111322BDF S BF y y =⋅=⋅△,所以()2211112332AFFBDFy S y S y y ⋅-==-⋅△△,因为()()222221221222363444494343334t t y y t y y t t t++==-=->-+-++,所以()21212403y y y y +-<<.又()2221211221212122122y y y y y y y y y y y y y y +++==+,设21y k y =,则0k <,41203k k-<++<,解得133k -<<-且1k ≠-,所以211111,,13933AEF BDF S y S y ⎛⎫⎛⎫=-⋅∈ ⎪ ⎪⎝⎭⎝⎭△△,因为11,139⎛⎫∈ ⎪⎝⎭,可得AFF BDF S S △△的取值范围为1,19⎛⎫⎪⎝⎭.【点睛】关键点点睛:本题解题的关键点是借助()21212403y y y y +-<<求出AEF BDFS S △△的范围,本题考查了学生的思维能力、运算能力.12.已知过点)M的椭圆()2222:10x y C a b a b +=>>的离心率为2,过点133N ⎛⎫- ⎪ ⎪⎝⎭且不过点M 的直线l 与椭圆C 交于A ,B 两点.(1)求椭圆的方程;(2)证明:以线段AB 为直径的圆经过点M .【答案】(1)22142x y +=(2)证明见解析【分析】(1)根据题意,得出关于,,a b c 的方程,结合222a b c =+,求得,a b 的值,即可求解;(2)若直线l 斜率存在时,设直线l 的方程133k y kx ⎫=-+⎪⎪⎝⎭,令133k m ⎫=-+⎪⎪⎝⎭,即y kx m =-,联立方程组,由由韦达定理得122421km x x k +=-+,21222421-=+m x x k ,结合向量的数量积的运算,求得0MA MB ⋅= ,得出MA MB ⊥;若直线l 斜率不存在,得到,A B 两点的坐标,得到0MA MB ⋅=,即可得证.【详解】(1)解:由题意知,离心率2c a =,又因为椭圆过点)M ,可得22211a b +=,且222a b c =+,解得2,a b c ===22142x y +=.(2)解:若直线l斜率存在,则其方程为133y k x ⎛⎫+=- ⎪ ⎪⎝⎭,即133k y kx ⎫=-+⎪⎪⎝⎭,令13m ⎫=-⎪⎪⎝⎭,即y kx m =-,联立方程组22142y kx m x y =+⎧⎪⎨+=⎪⎩,整理得()222214240k x kmx m +++-=,设()11,A x y 、()22,B x y ,则由韦达定理得122421km x x k +=-+,21222421-=+m x x k ,所以()212122242222121k m my y k x x m m k k +=++=-+=++,()()()2212121212y y kx m kx m k x x km x x m =++=+++222222222444212121m km m k k km m k k k --⎛⎫=⋅+-+= ⎪+++⎝⎭,又由()111MA x y =--,()221MB x y =-- ,可得(()()121211MA MB x xy y ⋅=+--)()121212123x x x x y y y y =++-++222222224442321212121m km m k m k k k k --⎫=-+-+⎪++++⎭()22213221121m k m k ⎡⎤=++--⎣⎦+()()2131121m m k =+-+,因为133m ⎛⎫=-+ ⎪ ⎪⎝⎭,可得31110m ++=-++=所以0MA MB ⋅= ,所以MA MB ⊥ ,显然,,A M B 三点不同,所以90AMB ∠=︒,所以线段AB 为直径的圆经过点M ;若直线l 斜率不存在,则,A B两点的坐标分别为3A ⎛⎫ ⎪ ⎪⎝⎭,3B ⎛ ⎝⎭,可得(1),(,1)33MA MB =-=-- ,则0MA MB ⋅=,所以90AMB ∠=︒.此时线段AB 为直径的圆经过点M ,综上可得,以线段AB 为直径的圆经过点M .13.已知点M 到定点()3,0F 的距离和它到直线l :253x =的距离的比是常数35.(1)求点M 的轨迹C 的方程;(2)若直线l :y kx m =+与圆2216x y +=相切,切点N 在第四象限,直线l 与曲线C 交于A ,B 两点,求证:FAB 的周长为定值.【答案】(1)2212516x y +=(2)证明见解析,定长10=.【分析】(1)根据条件列方程,求出M 点的轨迹方程;(2)根据题意,设定N 点的参数,运用点斜式直线方程,联立椭圆与直线方程,运用韦达定理和弦长公式以及第一问的条件即可求解.【详解】(1)设(),M x y32553x ,等号的两边平方,整理后得:2212516x y +=;(2)由(1)的结论知:曲线C 是方程为2212516x y +=的椭圆,设(),N p t ,依题意有:()()2216,0,4,4,0t p p t +=∈∈-,则,ON AB t p k k p t =∴=-,所以直线l 的方程为:()16,p px y t x p y t t-+-=--=,联立方程:221251616x y px y t ⎧+=⎪⎪⎨-⎪=⎪⎩,得:2222221202516p p p x x t t t ⎛⎫+-+= ⎪⎝⎭,设()()1122,,,A x y B x y ,则2122222222222222516116169251625162516p p p pt x x p t p p p p t ⨯⨯+====-++++,2222212222222222516116169251625162516p p p p t x x p t p p p p t ⨯====-++++,124AB x t =-==223016169pp ⨯=+,由条件可知:21325325,5353BF x AF x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,()12223301610105169pAF BF x x p ⨯∴+=-+=-+,ABF △的周长10AB BF AF =++=,即定值为10;综上,曲线C 的方向为2212516x y +=,ABF △的周长10=.【点睛】本题的第一问是圆锥曲线的第二定义,难点在第二问的计算上,注意到出现的数字都是平方数,不必将所有的数乘起来,这样便于计算和思考.14.已知椭圆()2222:10x y E a b a b +=>>的右焦点为()1,0F ,点31,2P ⎛⎫- ⎪⎝⎭在E 上.(1)求椭圆E 的标准方程;(2)过点F 的直线l 与椭圆E 交于A ,B 两点,点Q 为椭圆E 的左顶点,直线QA ,QB分别交4x =于M ,N 两点,O 为坐标原点,求证:OM ON ⋅为定值.【答案】(1)22143x y +=(2)证明见解析【分析】(1)利用焦点坐标与点在椭圆上建立方程组求解即可;(2)联立直线与椭圆方程,设A ,B 两点坐标,写出直线QA ,QB 的方程,求出,M N的坐标,再坐标表示OM ON ⋅,将韦达定理代入证明其为定值.【详解】(1)由题意得1c =,又点31,2P ⎛⎫- ⎪⎝⎭在椭圆上,则222211914a b a b ⎧-=⎪⎨+=⎪⎩,解得2243a b ⎧=⎨=⎩,故所求椭圆E 的标准方程为22143x y +=.(2)由题意知直线l 的斜率不为0,可设l 方程为1x my =+,联立221143x my x y =+⎧⎪⎨+=⎪⎩,消x 得22(34)690m y my ++-=,则223649(34)0m m ∆=+⨯+>,设1122(,),(,),A x y B x y 由韦达定理得,12122269,3434m y y y y m m --+==++,则2121212226811()223434m x x my my m y y m m -+=+++=++=+=++,且212121212(1)(1)()1x x my my m y y m y y =++=+++222222961241343434m m m m m m ---+=++=+++,又(2,0),Q -则直线QA 的方程为:11(2)2y y x x =++,令4x =得,116(4,2y M x +,同理可得,226(4,)2y N x +,故1212121266364,4,1622(2)(2)y y y y OM ON x x x x ⎛⎫⎛⎫⋅=⋅=+⎪ ⎪++++⎝⎭⎝⎭ ,由21212122221241636(2)(2)2()44343434m x x x x x x m m m -+++=+++=++=+++,则2122123636(9)349(2)(2)3436y y m x x m ⨯-+=⨯=-+++,则1697OM ON ⋅=-=.即OM ON ⋅为定值.【点睛】处理圆锥曲线中定值问题的方法:(1)从特殊入手,求出定值,再证明与变量无关;(2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值.15.已知椭圆2222:1(0)x y E a b a b+=>>,连接E 的四个顶点所得四边形的面积为4,1,2M ⎛⎫⎪ ⎪⎝⎭是E 上一点.(1)求椭圆E 的方程;(2)设斜率为k 的直线l 与椭圆E 交于A ,B 两点,D 为线段AB 的中点,O 为坐标原点,若E 上存在点C ,使得20OC OD +=,求三角形ABC 的面积.【答案】(1)2214x y +=(2)2【分析】(1)由面积和2M ⎛ ⎝⎭的坐标建立方程组待定,a b 即可;(2)设出直线方程,联立直线与椭圆方程,由D 为线段AB 的中点,利用韦达定理得到1212,x x y y ++,即2OD 的坐标,又20OC OD +=,则C 点坐标也可用,k m 表示,根据点C 在椭圆上,化简得到,k m 的关系,由点线距及弦长公式求解OAB S 面积,再由比例关系即可得到三角形ABC 的面积.【详解】(1)由题意知连接E 的四个顶点所得四边形的面积为2ab ,又点2M ⎛ ⎝⎭在E 上,得22241314ab a b a b=⎧⎪⎪+=⎨⎪>⎪⎩,解得2a =,1b =,故椭圆E 的方程为2214x y +=.(2)设直线l 的方程为y kx m =+,由2214x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得()222418440k x kmx m +++-=,又()()2222Δ64441440m k k m =-+->,得2241k m +>,设()11,A x y ,()22,B x y ,()33,C x y ,则122841kmx x k +=-+,12122241m y y kx m kx m k +=+++=+.由20OC OD +=,可得O 为三角形ABC 的重心,所以3ABC OAB S S = ,且1212332(,)(,)OC OD x x y y x y =-=-++=,()3122841mk x x x k =-+=+,()3122241my y y k =-+=-+,故由()33,C x y 在椭圆E 上,得222282411441km m k k ⎛⎫⎪+⎛⎫⎝⎭+= ⎪+⎝⎭,得22441m k =+,21AB x =-=21m m⋅⋅,又原点O 到直线l的距离为d =所以12OAB S AB d =⨯⨯=△3ABC OAB S S ==△△【点睛】面积计算的一般方法就是弦长乘以点到直线距离(高),当然注意到弦过定点的话,我们可以将其拆分成铅锤高或水平长的计算,而四边形面积一般转化为三角形来计算.而有关面积比的转化问题,关键则在观察已知条件中等底或等高或公共边的特点,化为共线长度比或点线距离比或夹角正弦比等问题再加以探求.16.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点为12,F F ,离心率为12.点P 是椭圆C上不同于顶点的任意一点,射线12,PF PF 分别与椭圆C 交于点,A B ,1PF B △的周长为8.(1)求椭圆C 的标准方程;(2)设12PF F △,1PF B △,PAB 的面积分别为123,,S S S .求证:213221S S S S S S +--为定值.【答案】(1)22143x y +=(2)证明见解析【分析】(1)根据题意,求得2a =,结合离心率12c e a ==,得到1c =,进而求得23b =,即可得到椭圆的标准方程;(2)设001122(,),(,),(,)P x y A x y B x y ,则2200143x y +=,设直线PA 的方程为1x my =-,联立方程,得到012009134y y x y -=⎛⎫++ ⎪⎝⎭,同理得到022009134y y x y -=⎛⎫-+ ⎪⎝⎭,结合三角形的面积公式,化简得到1121121221322112PF B PF F AF B BF F S S PF PF S S S S S S S S AF BF +==+-- ,进而得出定值.【详解】(1)解:因为1PF B △的周长为8,即1212228PF PF BF BF a a +++=+=所以48a =,可得2a =,由椭圆的离心率12c e a ==,可得1c =,从而2223b a c =-=,所以椭圆C 的标准方程为22143x y +=.(2)证明:设001122(,),(,),(,)P x y A x y B x y ,则2200143x y +=,可设直线PA 的方程为1x my =-,其中001x m y +=,联立方程221143x my x y =-⎧⎪⎨+=⎪⎩,整理得22(34)690m y my +--=,则0122009934134y y m x y --==+⎛⎫++ ⎪⎝⎭,同理可得,022009134y y x y -=⎛⎫-+ ⎪⎝⎭.因为112112111122122132211112122111·sin ·sin 2211·sin ·sin 22PF B PF F AF B BF F PF F B PF B PF F F PF F S S S S S S S S S S AF F B AF B BF F F BF F ∠∠+==+--∠∠ 1212PF PF AF BF =+,所以213221S S S S S S +=--1212PF PF AF BF +0012y y y y =+--01211y y y ⎛⎫=-+ ⎪⎝⎭222000001134349x x y y y ⎡⎤⎛⎫⎛⎫+-⎢⎥+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=2220003(1)3(1)89x x y ++-+=220068624610993x y +++===所以213221S S S S S S +--是定值.【点睛】方法点拨:圆锥曲线中的定值问题的求解方法:1、直接法:根据题设条件,直接推理计算,并在计算过程中消去变量,从而得到定点或定值;2、特殊位置法:先从特殊情况入手,求出定点或定值,再证明定点或定值与变量无关;3、函数方程思想:运用函数的思想方法进行求解,一般步骤(1)选择适当的变量;(2)把要求解或证明的是定值的量表示成上述变量的函数;(3)把是定值的量化成与变量无关的形式,从而证明是定值.17.已知椭圆C :()222210x y a b a b +=>>经过点22,33P ⎛⎫-- ⎪⎝⎭,O 为坐标原点,若直线l与椭圆C 交于A ,B 两点,线段AB 的中点为M ,直线l 与直线OM 的斜率乘积为12-.(1)求椭圆C 的标准方程;(2)若四边形OAPB 为平行四边形,求四边形OAPB 的面积.【答案】(1)2214233x y +=【分析】(1)直线l :y kx m =+,()()1122,,,A x y B x y ,利用点差法可得222a b =,在结合点22,33P ⎛⎫-- ⎪⎝⎭在椭圆C 上,列式求解即可;(2)根据四边形OAPB 为平行四边形分析可得直线l 的方程为210x y ++=,联立方程利用韦达定理求弦长,进而可得结果.【详解】(1)由题意可设:直线l :y kx m =+,()()1122,,,A x y B x y ,则1212,22x x y y M ++⎛⎫⎝⎭,可得:直线l 的斜率1212y y k x x -=-,直线OM 的斜率1212121222OMy y y y k x x x x ++==++,因为A ,B 两点在椭圆C 上,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得整理得2221222212y y b x x a -=--,即22OM b k k a⋅=-,所以2212b a -=-,可得222a b =,又因为点22,33P ⎛⎫-- ⎪⎝⎭在椭圆C 上,则2222244991a b a b⎧=⎪⎪⎨⎪+=⎪⎩,解得224323a b ⎧=⎪⎪⎨⎪=⎪⎩,所以椭圆C 的标准方程为2214233x y +=.(2)因为四边形OAPB 为平行四边形,则M 为OP 的中点,可得11,33M ⎛⎫-- ⎪⎝⎭,则23123OM k -==-,可得直线l 的斜率12k =-,所以直线l 的方程为111323y x ⎛⎫+=-+ ⎪⎝⎭,即210x y ++=,可得点()0,0O 到直线l的距离d ==,由(1)可知:椭圆C 的标准方程为2214233x y +=,即22364x y +=,联立方程22210364x y x y ++=⎧⎨+=⎩,消去y 得29650x x +-=,可得()364952160∆=-⨯⨯-=>,且121225,39x x x x +=-=-,则AB =所以四边形OAPB的面积122533OAPB S d AB =⨯⨯⨯=⨯.【点睛】方法点睛:有关圆锥曲线弦长、面积问题的求解方法1.涉及弦长的问题中,应熟练地利用根与系数的关系、设而不求计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.2.面积问题常采用12S =⨯ 底⨯高,其中底往往是弦长,而高用点到直线距离求解即可,选择底很重要,选择容易坐标化的弦长为底.有时根据所研究三角形的位置,灵活选择其面积表达形式,若求多边形的面积问题,常转化为三角形的面积后进行求解.18.在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=(0a b >>),且右焦点F 到直线l :2a x c =-的距离为(1)求椭圆的标准方程;(2)设椭圆C 上的任一点00(,)M x y ,从原点O 向圆M :()()22008x x y y -+-=引两条切线,设两条切线的斜率分别为1k ,2k (120k k ≠),求证:12k k 为定值;(3)在(2)的条件下,当两条切线分别交椭圆于P ,Q 时,求OP OQ ⋅的最大值.【答案】(1)2212412x y +=(2)证明见解析(3)18【分析】(1)分别求出a 、b 的值即可.(2)设出切线方程,由圆与直线相切d r =列式可得1k ,2k 是方程()22200008280x k x y k y --+-=的两个不相等的实数根,结合韦达定理及点00(,)M x y 在椭圆上即可求得结果.(3)设出设()11,P x y ,()22,Q x y ,由1212k k =-可得2222121214y y x x =,再结合点P 、Q 在椭圆上即2211222211221122y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩可得2212x x +、2212y y +的值,进而可求得22OP OQ +的值,再结合重要不等式即可求得结果.【详解】(1)依题意,2222c aa c cb ac ⎧=⎪⎪⎪+=⎨⎪=-⎪⎪⎩,解得a =c =,b =所以椭圆C 的方程为2212412x y +=;。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载解析几何大题带答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容三、解答题26.(江苏18)如图,在平面直角坐标系中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k (1)当直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:PA⊥PB本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分.解:(1)由题设知,所以线段MN中点的坐标为,由于直线PA平分线段MN,故直线PA过线段MN的中点,又直线PA过坐标原点,所以(2)直线PA的方程解得于是直线AC的斜率为(3)解法一:将直线PA的方程代入则故直线AB的斜率为其方程为解得.于是直线PB的斜率因此解法二:设直线PB,AB的斜率分别为因为C在直线AB上,所以从而因此28.(北京理19)已知椭圆.过点(m,0)作圆的切线I交椭圆G于A,B两点. (I)求椭圆G的焦点坐标和离心率;(II)将表示为m的函数,并求的最大值.(19)(共14分)解:(Ⅰ)由已知得所以所以椭圆G的焦点坐标为离心率为(Ⅱ)由题意知,.当时,切线l的方程,点A、B的坐标分别为此时当m=-1时,同理可得当时,设切线l的方程为由设A、B两点的坐标分别为,则又由l与圆所以由于当时,所以.且当时,|AB|=2,所以|AB|的最大值为2.32.(湖南理21)如图7,椭圆的离心率为,x轴被曲线截得的线段长等于C1的长半轴长。
新高考优质解析几何大题练习一.解答题(共30小题)1.(2022秋•浙江月考)如图,已知抛物线C:y2=2px(p>0)的焦点F,且经过点A(2p,m)(m>0),|AF|=5.(1)求p和m的值;(2)点M,N在C上,且AM⊥AN.过点A作AD⊥MN,D为垂足,证明:存在定点Q,使得|DQ|为定值.2.(2022秋•浙江月考)已知点A(2,1)在双曲线C:﹣=1(b>0)上.(Ⅰ)求双曲线C的渐近线方程;(Ⅱ)设直线l:y=k(x﹣1)与双曲线C交于不同的两点E,F,直线AE,AF分别交直线x=3于点M,N.当△AMN的面积为时,求k的值.3.(2022秋•玄武区校级月考)设A,B为双曲线C:﹣=1(a>b>0)的左、右顶点,直线l过右焦点F且与双曲线C的右支交于M,N两点,当直线l垂直于x轴时,△AMN为等腰直角三角形.(1)求双曲线C的离心率;(2)已知AB=4,若直线AM,AN分别交直线x=1于P,Q两点,若D(t,0)为x 轴上一动点,当直线l的倾斜角变化时,若∠PDQ为锐角,求t的取值范围.4.(2022•南京模拟)已知点F1,F2分别为双曲线C:的左、右焦点,点A为双曲线C的右顶点,已知,且点F2到一条渐近线的距离为2.(1)求双曲线C的方程;(2)若直线l:y=mx+n与双曲线C交于两点M,N,直线OM,ON的斜率分别记为k OM,k ON,且,求证:直线l过定点,并求出定点坐标.5.(2022春•开福区校级月考)已知双曲线C的渐近线方程为,且过点P(3,).(1)求C的方程;(2)设Q(1,0),直线x=t(t∈R)不经过P点且与C相交于A,B两点,若直线BQ 与C交于另一点D,过Q点作QN⊥AD于N,证明:直线AD过定点M,且点N在以QM为直径的圆上.6.(2022秋•皇姑区校级月考)已知椭圆Γ的方程为,圆C与x轴相切于点T(2,0),与y轴正半轴相交于A,B两点,且|AB|=3,如图.(1)求圆C的方程;(2)如图,过点(0,1)的直线l与椭圆Γ相交于P,Q两点,求证:射线AO平分∠PAQ.7.(2022秋•开福区校级月考)已知双曲线经过点(2,﹣3),两条渐近线的夹角为60°,直线l交双曲线于A,B两点.(1)求双曲线C的方程;(2)若动直线l经过双曲线的右焦点F2,是否存在x轴上的定点M(m,0),使得以线段AB为直径的圆恒过M点?若存在,求实数m的值;若不存在,请说明理由.8.(2022秋•锦州期中)已知双曲线C:=1(a>0,b>0)与双曲线=1有相同的焦点;且C的一条渐近线与直线x﹣2y+2=0平行.(1)求双曲线C的方程;(2)若直线l与双曲线C右支相切(切点不为右顶点),且l分别交双曲线C的两条渐近线于A、B两点,O为坐标原点,试判断△AOB的面积是否为定值,若是,请求出;若不是,请说明理由.9.(2022秋•湖北期中)在△ABC中,已知A(﹣1,0),B(﹣2,0),且sin B=sin A.(1)求顶点C的轨迹E的方程;(2)曲线E与y轴交于P,Q两点,T是直线y=2上一点,连TP,TQ分别与E交于M,N两点(异于P,Q两点),试探究直线MN是否过定点,若是求定点,若不是说明理由.10.(2022秋•南阳期中)已知动点P到两个定点的距离之和为4,记点P的轨迹为Γ.(1)求Γ的方程;(2)若点Q(0,﹣3),过点T(0,1)的直线l与Γ交于M,N两点,求△QMN面积的最大值.11.(2022•临澧县校级开学)已知椭圆C的方程为+=1(a>0),斜率为k(k≠0)的直线与C交于M,N两点.(1)若G为MN的中点,O为坐标原点,且直线OG的斜率为﹣,求椭圆C的方程;(2)在(1)的条件下,若P是椭圆C的左顶点,直线PM的斜率为k PM,直线PN的斜率为k PN,k PM•k PN=﹣,F是椭圆的左焦点,要使F在以MN为直径的圆内,求k 的取值范围.12.(2022秋•辽宁期中)如图所示:已知椭圆C:的长轴长为4,离心率.A是椭圆的右顶点,直线l过点M(﹣1,0)交椭圆于C,D两点,记△ACD的面积为S.(1)求椭圆C的标准方程;(2)求S的最大值.13.(2022•烟台三模)已知椭圆C:+=1(a>b>0)的离心率为,(,1)为C与抛物线x2=2py的交点.(1)求椭圆C的方程;(2)设椭圆的上顶点为A,斜率为k的直线过抛物线的焦点F且与椭圆交于M,N两点,试探究直线AM,AN的斜率之积是否为定值?若是,求出此定值;若不是,说明理由.14.(2022•雨花区校级模拟)如图,已知椭圆,其左、右焦点分别为F1,F2,过右焦点F2且垂直于x轴的直线交椭圆于第一象限的点P,且.(1)求椭圆C的方程;(2)过点且斜率为k的动直线l交椭圆于A,B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,说明理由.15.(2022•鞍山模拟)已知O为坐标原点,F1、F2为椭圆C的左、右焦点,|F1F2|=2,P 为椭圆C的上顶点,以P为圆心且过F1、F2的圆与直线相切.(1)求椭圆C的标准方程;(2)若过点F2作直线l,交椭圆C于M,N两点(l与x轴不重合),在x轴上是否存在一点T,使得直线TM与TN的斜率之积为定值?若存在,请求出所有满足条件的点T的坐标;若不存在,请说明理由.16.(2022•洛阳模拟)已知抛物线C:y2=2px(p>0),A是C上位于第一象限内的动点,它到点B(3,0)距离的最小值为.直线AB与C交于另一点D,线段AD的垂直平分线交C于E,F两点.(1)求p的值;(2)若中,证明A,D,E,F四点共圆,并求该圆的方程.17.(2022•德州二模)已知△ABC的两个顶点A,B的坐标分别为(﹣,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,,动点C的轨迹为曲线G.(1)求曲线G的方程;(2)设直线l与曲线G交于M、N两点,点D在曲线G上,O是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.18.(2022•襄城区校级四模)已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点到F点的距离为.(1)求抛物线的方程及点A坐标;(2)设斜率为k的直线l过点B(2,0)且与抛物线交于不同的两点M、N,若且,求斜率k的取值范围.19.(2021秋•淄博期末)已知O为坐标原点,A(x1,y1),B(x2,y2)是直线l与抛物线C:y2=4x的两个交点,满足.试求y1y2的值,并证明直线l恒过定点.20.(2021秋•十堰期末)已知抛物线,,点M(x0,y0)在C2上,且不与坐标原点O重合,过点M作C1的两条切线,切点分别为A,B.记直线MA,MB,MO的斜率分别为k1,k2,k3.(1)当x0=1时,求k1+k2的值;(2)当点M在C2上运动时,求的取值范围.21.(2021秋•武汉期末)已知双曲线的左、右焦点分别为,动点M满足|MF2|﹣|MF1|=2.(1)求动点M的轨迹方程;(2)若动点M在双曲线C上,设双曲线C的左支上有两个不同的点P,Q,点N(4,0),且∠ONP=∠ONQ,直线NQ与双曲线C交于另一点B.证明:动直线PB经过定点.22.(2021秋•菏泽期末)已知Rt△ABC中,A(﹣1,0),B(1,0),∠CAB=90°,,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变.(1)求曲线E的方程;(2)过点(1,0)的直线l与曲线E交于M,N两点,则在x轴上是否存在定点Q.使得的值为定值?若存在,求出点Q的坐标和该定值;若不存在,请说明理由.23.(2021秋•南京月考)已知双曲线E:﹣=1(a>0,b>0)过点D(3,1),且该双曲线的虚轴端点与两顶点A1,A2的张角为120°.(1)求双曲线E的方程;(2)过点B(0,4)的直线l与双曲线E左支相交于点M,N,直线DM,DN与y轴相交于P,Q两点,求|BP|+|BQ|的取值范围.24.(2018秋•福田区校级期末)已知椭圆C的中心是坐标原点O,它的短轴长2,焦点F(c,0),点A(﹣c,0),且=2.(1)求椭圆C的标准方程;(2)是否存在过点A的直线与椭圆C相交于P、Q两点,且以线段PQ为直径的圆过坐标原点O,若存在,求出直线PQ的方程;不存在,说明理由.25.(2021•辽宁模拟)已知抛物线C1:y2=2px(p>0),椭圆C2:=1(a>b>0),抛物线与椭圆有共同的焦点F(4,0),且椭圆C2的离心率e=.(Ⅰ)求椭圆与抛物线的方程;(Ⅱ)直线l1的方程为x=﹣4,若不经过点P(4,8)的直线l2与抛物线交于A,B(A,B分别在x轴两侧),与直线l1交于点M,与椭圆交于点C,D,设PA,PM,PB的斜率分别为k1,k2,k3,若k1+k3=2k2.(ⅰ)证明:直线l2恒过定点;(ⅱ)点D关于x轴的对称点为D′,试问△CFD′的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.26.(2021•平邑县校级开学)已知椭圆(a>b>0)过点(,0),其焦距的平方是长轴长的平方与短轴长的平方的等差中项.(1)求椭圆的标准方程:(2)直线l过点M(1,0),与椭圆分别交于点A,B,与y轴交于点N,各点均不重合且满足,,求λ+μ.27.(2022秋•青羊区校级月考)已知椭圆=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆有相同的焦点,点P为抛物线与椭圆在第一象限的交点,且|PF1|=.(1)求椭圆的方程;(2)过F作两条斜率不为0且互相垂直的直线分别交椭圆于A,B和C,D,线段AB 的中点为M,线段CD的中点为N,证明:直线MN过定点,并求出该定点的坐标.28.(2022秋•思明区校级期中)在平面直角坐标系xOy中,△ABC的周长为12,AB,AC 边的中点分别为F1(﹣1,0)和F2(1,0),点M为BC边的中点.(1)求点M的轨迹方程;(2)设点M的轨迹为曲线Γ,直线MF1与曲线Γ的另一个交点为N,线段MF2的中点为E,记,求S的最大值.29.(2022秋•迎泽区校级月考)已知抛物线C:x2=2py(p>0)与圆O:x2+y2=12相交于A,B两点,且点A的横坐标为是抛物线C的焦点,过焦点的直线l与抛物线C 相交于不同的两点M,N.(1)求抛物线C的方程.(2)过点M,N作抛物线C的切线l1,l2,P(x0,y0)是l1,l2的交点,求证:点P在定直线上.参考公式:(cx2)′=2cx,其中c为常数.30.(2022秋•香坊区校级月考)动点M与定点A(1,0)的距离和M到定直线x=9的距离之比是常数.(1)求动点M的轨迹G的方程;(2)设O为原点,点B(﹣3,0),过点A的直线l与M的轨迹G交于P、Q两点,且直线l与x轴不重合,直线BP、BQ分别与y轴交于R、S两点,求证:|OR|⋅|OS|为定值.新高考优质解析几何大题练习参考答案与试题解析一.解答题(共30小题)1.(2022秋•浙江月考)如图,已知抛物线C:y2=2px(p>0)的焦点F,且经过点A(2p,m)(m>0),|AF|=5.(1)求p和m的值;(2)点M,N在C上,且AM⊥AN.过点A作AD⊥MN,D为垂足,证明:存在定点Q,使得|DQ|为定值.【答案】(1)p=2,m=4;(2)证明见解析.【解答】解:(1)由抛物线定义知:,则p=2,又A(4,m)(m>0)在抛物线上,则m2=4×4,可得m=4.(2)证明:设M(x1,y1),N(x2,y2),由(1)知:A(4,4),所以,,又AM⊥AN,所以(x1﹣4)(x2﹣4)+(y1﹣4)(y2﹣4)=x1x2﹣4(x1+x2)+y1y2﹣4(y1+y2)+32=0,令直线MN:x=ky+n,联立C:y2=4x,整理得y2﹣4ky﹣4n=0,且Δ=16k2+16n>0,所以y1+y2=4k,y1y2=﹣4n,则,,综上,n2﹣16k2﹣12n﹣16k+32=(n﹣4k﹣8)(n+4k﹣4)=0,当n=8+4k时,MN:x=k(y+4)+8过定点B(8,﹣4);当n=4﹣4k时,MN:x=k(y﹣4)+4过定点(4,4),即A,M,N共线,不合题意;所以直线MN过定点B(8,﹣4),又AD⊥MN,故D在以AB为直径的圆上,而AB中点为Q(6,0),即为定值,得证.2.(2022秋•浙江月考)已知点A(2,1)在双曲线C:﹣=1(b>0)上.(Ⅰ)求双曲线C的渐近线方程;(Ⅱ)设直线l:y=k(x﹣1)与双曲线C交于不同的两点E,F,直线AE,AF分别交直线x=3于点M,N.当△AMN的面积为时,求k的值.【答案】(Ⅰ)y=±x.(Ⅱ)2.【解答】解:(Ⅰ)因为点A(2,1)在双曲线上,所以﹣=1,b2=1,即双曲线C的方程为﹣y2=1,所以渐近线方程为y=±x,即y=±x.(Ⅱ)设直线AE的方程为y=k1(x﹣2)+1,直线AF的方程为y=k2(x﹣2)+1,联立,得(1﹣2k1)2x2+(8k12﹣4k1)x﹣8k12+8k1﹣4=0,所以x A+x E=﹣=,所以x E=﹣2=,y E=,所以E(,),同理可得F(,),联立,得M(3,k1+1),同理N(3,k2+1),所以|MN|=|k1﹣k2|,=|MN|×2=|k1﹣k2|=,所以S△AMN不妨设k1>k2,即k1=k2+,所以E(,),又E,F在直线l上,所以,解得,所以k的值为2.3.(2022秋•玄武区校级月考)设A,B为双曲线C:﹣=1(a>b>0)的左、右顶点,直线l过右焦点F且与双曲线C的右支交于M,N两点,当直线l垂直于x轴时,△AMN为等腰直角三角形.(1)求双曲线C的离心率;(2)已知AB=4,若直线AM,AN分别交直线x=1于P,Q两点,若D(t,0)为x 轴上一动点,当直线l的倾斜角变化时,若∠PDQ为锐角,求t的取值范围.【答案】(1)2;(2)(﹣∞,﹣2)∪(4,+∞).【解答】解:(1)由l⊥x轴,△AMN为等腰直角三角形,可得|AF|=|NF|=|MF|,所以a+c=,即c2﹣ac﹣2a2=0,可得e2﹣e﹣2=0,解得e=2或e=﹣1(舍),所以双曲线的离心率为2;(2)由AB=4,可得2a=4,即a=2,所以直线PQ的方程为:x=1,由(1)可得离心率为2,可得c=4,b==2,所以双曲线的方程为:﹣=1;由题意可得直线l的斜率不为0,设直线l的方程为x=my+4,m≠±,设M(x1,y1),N(x2,y2),联立,整理可得:(3m2﹣1)y2+24my+36=0,可得y1+y2=﹣,y1y2=,x1+x2=m(y1+y2)+8=,x1x2=(my1+4)(my2+4)=m2y1y2+4m(y1+y2)+16=,直线AM的方程为y=(x+2),直线AN的方程为:y=(x+2),令x=1,可得P(1,),Q(1,),∵D(t,0),∴=(1﹣t,),=(1﹣t,),∵•=(1﹣t)2+×=(1﹣t)2+=(1﹣t)2+=(1﹣t)2﹣9,∵∠PDQ为锐角,∴•>0,∴(1﹣t)2﹣9>0,∴t<﹣2或t>4.∴t的取值范围为(﹣∞,﹣2)∪(4,+∞).4.(2022•南京模拟)已知点F1,F2分别为双曲线C:的左、右焦点,点A为双曲线C的右顶点,已知,且点F2到一条渐近线的距离为2.(1)求双曲线C的方程;(2)若直线l:y=mx+n与双曲线C交于两点M,N,直线OM,ON的斜率分别记为k OM,k ON,且,求证:直线l过定点,并求出定点坐标.【答案】(1);(2)证明解析;定点为(﹣2,0)或(2,0).【解答】解:(1)由题知,F2(c,0),其中一条渐近线为,即bx﹣ay=0,所以,解得,所以,(2)证明:设M(x1,y1),N(x2,y2),将y=mx+n代入,整理得:(5m2﹣4)x2+10mnx+5n2+20=0,则,由Δ=100m2n2﹣4(5m2﹣4)(5n2+20)=80(n2﹣5m2+4)>0得n2﹣5m2+4>0,因为=,所以,得n2=4m2,即n=±2m,所以直线l的方程为y=m(x±2),所以当n2﹣5m2+4>0,且n=2m时,直线l过定点(﹣2,0);所以当n2﹣5m2+4>0,且n=﹣2m时,直线l过定点(2,0).5.(2022春•开福区校级月考)已知双曲线C的渐近线方程为,且过点P(3,).(1)求C的方程;(2)设Q(1,0),直线x=t(t∈R)不经过P点且与C相交于A,B两点,若直线BQ 与C交于另一点D,过Q点作QN⊥AD于N,证明:直线AD过定点M,且点N在以QM为直径的圆上.【答案】(1)﹣y2=1.(2)直线AD过定点(3,0).点N在以QM为直径的圆上.【解答】解:(1)因为双曲线C的渐近线方程为,故设C的方程为﹣y2=λ(λ≠0),又C过点P(3,).所以﹣()2=λ,解得λ=1,所以C的方程为﹣y2=1.(2)证明:显然直线BQ的斜率不为0,设直线BQ为x=my+1,B(x1,y1),D(x2,y2),A(x1,﹣y1),联立,消去x整理得(m2﹣3)y2+2my﹣2=0,依题意m2﹣3≠0且Δ=4m2+8(m2﹣3)>0,即m2>2且m2≠3,所以y1+y2=﹣,y1y2=﹣,直线AD的方程为y+y1=(x﹣x1),令y=0,得x=+x1=====3,所以直线AD过定点(3,0).过Q点作QN⊥AD于N,设QM的中点为R,若N和M不重合,则△QNM为直角三角形,所以|RN|=|MQ|,若N和M重合,|RN|=|MQ|,所以点N在以QM为直径的圆上.6.(2022秋•皇姑区校级月考)已知椭圆Γ的方程为,圆C与x轴相切于点T(2,0),与y轴正半轴相交于A,B两点,且|AB|=3,如图.(1)求圆C的方程;(2)如图,过点(0,1)的直线l与椭圆Γ相交于P,Q两点,求证:射线AO平分∠PAQ.【答案】(1);(2)证明见解析.【解答】解:(1)依题意,设圆心C(2,b),r=b,,解得,所以所求圆方程为:.(2)证明:x=0代入圆C方程,得y=1或y=4,所以B(0,1),A(0,4),若过B点的直线斜率不存在,此时A,P,Q在y轴上,∠PAB=∠QAB=0,射线AO平分∠PAQ;若过B(0,1)的直线l斜率存在,设其方程为y=kx+1,联立整理得(2k2+1)x2+4kx﹣6=0,Δ=16k2+24(2k2+1)=8(8k2+3)>0,设P(x1,y1),Q(x2,y2),,=,∴∠PAB=∠QAB.所以射线AO平分∠PAQ.综上,射线AO平分∠PAQ.7.(2022秋•开福区校级月考)已知双曲线经过点(2,﹣3),两条渐近线的夹角为60°,直线l交双曲线于A,B两点.(1)求双曲线C的方程;(2)若动直线l经过双曲线的右焦点F2,是否存在x轴上的定点M(m,0),使得以线段AB为直径的圆恒过M点?若存在,求实数m的值;若不存在,请说明理由.【答案】(1);(2)存在M(﹣1,0),使得以线段AB为直径的圆恒过M点.【解答】解:(1)∵两条渐近线的夹角为60°,∴渐近线的斜率或,即或;当时,由,得:a2=1,b2=3,∴双曲线C的方程为:;当时,方程无解;综上所述:双曲线C的方程为:.(2)由题意得:F2(2,0),假设存在定点M(m,0)满足题意,则恒成立;①当直线l斜率存在时,设l:y=k(x﹣2),A(x1,y1),B(x2,y2),由得:(3﹣k2)x2+4k2x﹣(4k2+3)=0,∴,∴,,∴==0,∴(4k2+3)(1+k2)﹣4k2(2k2+m)+(m2+4k2)(k2﹣3)=0,整理可得:k2(m2﹣4m﹣5)+(3﹣3m2)=0,由,得:m=﹣1;∴当m=﹣1时,恒成立;②当直线l斜率不存在时,l:x=2,则A(2,3),B(2,﹣3),当M(﹣1,0)时,,,∴成立;综上所述:存在M(﹣1,0),使得以线段AB为直径的圆恒过M点.8.(2022秋•锦州期中)已知双曲线C:=1(a>0,b>0)与双曲线=1有相同的焦点;且C的一条渐近线与直线x﹣2y+2=0平行.(1)求双曲线C的方程;(2)若直线l与双曲线C右支相切(切点不为右顶点),且l分别交双曲线C的两条渐近线于A、B两点,O为坐标原点,试判断△AOB的面积是否为定值,若是,请求出;若不是,请说明理由.【答案】(1);(2)△AOB的面积为定值2,理由见解答.【解答】解:(1)∵双曲线C:=1(a>0,b>0)与双曲线=1有相同的焦点,∴c=,又C的一条渐近线与直线x﹣2y+2=0平行,∴=,又a2+b2=c2=5,解得a=2,b=1,∴双曲线C的方程为;(2)设直线l的方程为y=kx+m,联立,可得(4k2﹣1)x2+8kmx+4m2﹣4=0,∴Δ=64k2m﹣16(4k2﹣1)(m2+1)=0,∴4k2=m2+1,设直线l与x轴交点为D,则OD=||,=S△OAD+S△OBD==,∴S△AOB又双曲线的渐近线方程为y=±x,联立直线l:y=kx+m,可得A(,),B(,),===,∴S△AOB又4k2=m2+1,=2,∴△AOB的面积为定值.∴S△AOB9.(2022秋•湖北期中)在△ABC中,已知A(﹣1,0),B(﹣2,0),且sin B=sin A.(1)求顶点C的轨迹E的方程;(2)曲线E与y轴交于P,Q两点,T是直线y=2上一点,连TP,TQ分别与E交于M,N两点(异于P,Q两点),试探究直线MN是否过定点,若是求定点,若不是说明理由.【答案】(1)x2+y2=2(y≠0);(2)直线MN恒过点(0,).【解答】解:(1)A(﹣1,0),B(﹣2,0),由sin B=sin A,得,即,设C(x,y),则,整理得x2+y2=2(y≠0);(2)曲线E:x2+y2=2(y≠0),由题意不妨设P(0,),Q(0,﹣),T(m,)(m≠0),TP:y=,TQ:y=,联立,得(m2+2)x2+4mx=0,得M(,);联立,得(m2+18)x2﹣12mx=0,得N(,).当m≠±3时,直线MN方程为y=.∴直线MN恒过点(0,).10.(2022秋•南阳期中)已知动点P到两个定点的距离之和为4,记点P的轨迹为Γ.(1)求Γ的方程;(2)若点Q(0,﹣3),过点T(0,1)的直线l与Γ交于M,N两点,求△QMN面积的最大值.【答案】(1);(2).【解答】解:(1)由题意可知,P点轨迹为Γ是以,为焦点,长轴长为4的椭圆,即2a=4,,所以a=2,b=1,所以Γ的方程为:;(2)因为直线l的斜率存在,设直线l的方程:y=kx+1,设M(x1,y1),N(x2,y2),,消去y,整理得:(k2+4)x2+2kx﹣3=0,Δ=(2k)2+4(k2+4)×3=16(k2+3)>0,所以,,所以,所以△QMN面积,设,所以在上单调递减,故当,即k=0时,△BMN面积取得最大值,最大值为,所以△QMN面积的最大值.11.(2022•临澧县校级开学)已知椭圆C的方程为+=1(a>0),斜率为k(k≠0)的直线与C交于M,N两点.(1)若G为MN的中点,O为坐标原点,且直线OG的斜率为﹣,求椭圆C的方程;(2)在(1)的条件下,若P是椭圆C的左顶点,直线PM的斜率为k PM,直线PN的斜率为k PN,k PM•k PN=﹣,F是椭圆的左焦点,要使F在以MN为直径的圆内,求k 的取值范围.【答案】(1);(2).【解答】解:(1)设M,N两点坐标分别为M(x1,y1),N(x2,y2),G(x0,y0),代入椭圆方程,得,则,可得,因为,所以,所以a2=4,椭圆C的方程为.(2)设MN方程为y=kx+m,则,所以(3+4k2)x2+8kmx+4m2﹣12=0,所以,,所以,所以=,所以=,解得m=2k(舍)或m=﹣k,若F在以MN为直径的圆内,则,即,,即4k2﹣12+8k2+3k2﹣12k2+3+4k2=0,即7k2﹣9<0,且k≠0,解得且k≠0,所以k的取值范围为.12.(2022秋•辽宁期中)如图所示:已知椭圆C:的长轴长为4,离心率.A是椭圆的右顶点,直线l过点M(﹣1,0)交椭圆于C,D两点,记△ACD的面积为S.(1)求椭圆C的标准方程;(2)求S的最大值.【答案】(1);(2).【解答】解:(1)令椭圆E的半焦距为c,依题意,a=2,=,解得c=,则b2=a2﹣c2=1,所以椭圆E的标准方程为.(2)依题意,设直线l:x=ty﹣1,设C(x1,y1),D(x2,y2),由,消去x并整理得:(t2+4)y2﹣2ty﹣3=0,则y1+y2=,y1y2=﹣,|y1﹣y2|===,由(1)知A(2,0),|AM|=3,则有S===,令u=,显然函数y=在[,+∞)上单调递增,,当且仅当,即=±1时取等号.显然取等号情况不成立,故当=时S取得最大值,即S≤,所以S的最大值为.13.(2022•烟台三模)已知椭圆C:+=1(a>b>0)的离心率为,(,1)为C与抛物线x2=2py的交点.(1)求椭圆C的方程;(2)设椭圆的上顶点为A,斜率为k的直线过抛物线的焦点F且与椭圆交于M,N两点,试探究直线AM,AN的斜率之积是否为定值?若是,求出此定值;若不是,说明理由.【答案】(1);(2)直线AM,AN的斜率之积为定值.【解答】解:(1)由题意可知,,可得a2=2c2,又a2=b2+c2,可得a2=2b2,所以椭圆方程为,将代入方程得:,解得b2=4,所以a2=8,所以椭圆C的方程:;(2)直线AM,AN的斜率之积为定值,且定值为.由(1)可得A(0,2),将代入抛物线可得6=2p,p=3,所以抛物线方程为x2=6y,所以,则设直线MN的方程为,设M(x1,y1),N(x2,y2),联立直线MN的方程,,消去y,整理得(2+4k2)x2+12kx﹣7=0,所以,,,所以=,所以,直线AM,AN的斜率之积为定值.14.(2022•雨花区校级模拟)如图,已知椭圆,其左、右焦点分别为F1,F2,过右焦点F2且垂直于x轴的直线交椭圆于第一象限的点P,且.(1)求椭圆C的方程;(2)过点且斜率为k的动直线l交椭圆于A,B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,说明理由.【答案】(1),(2)(0,1).【解答】解:(1)∵,∴,∵,∴,∵a2=c2+1,∴,∴椭圆方程为:.(2)动直线l的方程为:,由得,设A(x1,y1),B(x2,y2),则..由对称性可设存在定点M(0,m)满足题设,则,⇒6(m2﹣1)k2+(3m2+2m﹣5)=0,由题意知上式对∀k∈R成立,∴m2﹣1=0且3m2+2m﹣5=0,解得m=1.∴存在定点M,使得以AB为直径的适恒过这个点,且点M的坐标为(0,1).15.(2022•鞍山模拟)已知O为坐标原点,F1、F2为椭圆C的左、右焦点,|F1F2|=2,P 为椭圆C的上顶点,以P为圆心且过F1、F2的圆与直线相切.(1)求椭圆C的标准方程;(2)若过点F2作直线l,交椭圆C于M,N两点(l与x轴不重合),在x轴上是否存在一点T,使得直线TM与TN的斜率之积为定值?若存在,请求出所有满足条件的点T的坐标;若不存在,请说明理由.【答案】(1);(2)存在;.【解答】解:(1)依题意,F1(﹣1,0),F2(1,0),,由椭圆定义知:椭圆长轴长,即,而半焦距c=1,即有短半轴长b=1,所以椭圆C的标准方程为:.(2)依题意,设直线l方程为x=my+1,由消去x并整理得(m2+2)y2+2my﹣1=0,设M(x1,y1),N(x2,y2),则,,假定存在点T(t,0),直线TM与TN的斜率分别为,,=,要使k TM⋅k TN为定值,必有﹣1﹣2(1﹣t)+(1﹣t)2=0,即,当时,∀m∈R,,当时,∀m∈R,,所以存在点,使得直线TM与TN的斜率之积为定值.16.(2022•洛阳模拟)已知抛物线C:y2=2px(p>0),A是C上位于第一象限内的动点,它到点B(3,0)距离的最小值为.直线AB与C交于另一点D,线段AD的垂直平分线交C于E,F两点.(1)求p的值;(2)若中,证明A,D,E,F四点共圆,并求该圆的方程.【答案】(1)2;(2)(x﹣9)2+(y﹣2)2=64.【解答】解:(1)设A(2py2,2py),则,令t=y2∈[0,+∞),则,对于二次函数m=4p2t2+(4p2﹣12p)t+9,其对称轴为,当p≥3时,在[0,+∞)上单调递增,其最小值为9,即|AB|的最小值为3,不满足题意,当0<p<3时,,所以当时m=4p2t2+(4p2﹣12p)t+9取得最小值,即所以,解得p=2或p=4(舍),所以p=2;(2)由(1)可得,当时,,点A(1,2),所以,直线AB的方程为y=﹣x+3,由可得x2﹣10x+9=0,解得x=1或x=9,所以D(9,﹣6),所以AD的中点为N(5,﹣2),所以直线EF的方程为y+2=1⋅(x﹣5),即y=x﹣7,设E(x1,y1),F(x2,y2),由可得y2﹣4y﹣28=0,所以y1+y2=4,y1y2=﹣28,所以线段EF的中点为,因为,所以d,D,E,F四点共圆,圆心为M(9,2),半径为8,所以该圆的方程为(x﹣9)2+(y﹣2)2=64.17.(2022•德州二模)已知△ABC的两个顶点A,B的坐标分别为(﹣,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,,动点C的轨迹为曲线G.(1)求曲线G的方程;(2)设直线l与曲线G交于M、N两点,点D在曲线G上,O是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.【答案】;(2)四边形OMDN的面积是定值,其定值为.【解答】解:(1)因为圆E为△ABC的内切圆,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|,所以点C的轨迹为以点A和点B为焦点的椭圆,所以,a=2,则b=1,所以曲线G的方程为.(2)由y≠0可知直线l的斜率存在,设直线l方程是y=kx+m,由平面图形OMDN是四边形,可知m≠0,代入到,得(1+4k2)x2+8kmx+4m2﹣4=0,所以Δ=16(4k2+1﹣m2)>0,,.所以,所以,又点O到直线MN的距离,由,得,,因为点D在曲线G上,所以将D点坐标代入椭圆方程得1+4k2=4m2.由题意四边形OMDN为平行四边形,所以OMDN的面积为,由1+4k2=4m2,代入得,故四边形OMDN的面积是定值,其定值为.18.(2022•襄城区校级四模)已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点到F点的距离为.(1)求抛物线的方程及点A坐标;(2)设斜率为k的直线l过点B(2,0)且与抛物线交于不同的两点M、N,若且,求斜率k的取值范围.【答案】(1),(2).【解答】解:(1)由抛物线定义可知:,得p=2,∴抛物线方程为x2=4y,将点坐标代入抛物线方程得:∴点A坐标为,(2)直线l的方程为y=k(x﹣2),设M、N两点的坐标分别为(x1,y1),(x2,y2).联立消去y,整理得:x2﹣4kx+8k=0,由Δ>0⇒16k2﹣32k>0⇒k<0或k>2.且x1+x2=4k,x1x2=8k,又即(x1﹣2,y1)=λ(x2﹣2,y2)∴,∵,∴,又,令,∴,又:k<0或k>2.∴k的取值范围是.19.(2021秋•淄博期末)已知O为坐标原点,A(x1,y1),B(x2,y2)是直线l与抛物线C:y2=4x的两个交点,满足.试求y1y2的值,并证明直线l恒过定点.【答案】y1y2=﹣8,证明见解析.【解答】证明:设l:x=my+n,A(x1,y1),B(x2,y2).由得y2﹣4my﹣4n=0.∴y1+y2=4m,y1y2=﹣4n,∴x1+x2=4m2+2n,x1x2=n2.又•=﹣4,∴x1x2+y1y2=n2−4n=−4,解得n=2,∴y1y2=﹣8.∴直线l方程为x=my+2,∴直线l恒过点(2,0).20.(2021秋•十堰期末)已知抛物线,,点M(x0,y0)在C2上,且不与坐标原点O重合,过点M作C1的两条切线,切点分别为A,B.记直线MA,MB,MO的斜率分别为k1,k2,k3.(1)当x0=1时,求k1+k2的值;(2)当点M在C2上运动时,求的取值范围.【答案】(1)k1+k2=4.(2)(﹣∞,﹣4]∪[4,+∞).【解答】解:(1)因为x0=1,所以y0=﹣1.设过点M并与C1相切的直线方程为y=k(x﹣1)﹣1.联立方程组整理得x2﹣kx+k+1=0,则Δ=(﹣k)2﹣4(k+1)=k2﹣4k﹣4=0.由题可知,k1,k2即方程k2﹣4k﹣4=0的两根,故k1+k2=4.(2)因为,所以可设过点M并与C1相切的直线的方程为.联立方程组整理得,则.由题可知,k1+k2=4x0,.又,所以.当x0>0时,,所以,当且仅当时,等号成立.当x0<0时,,所以,当且仅当时,等号成立.故的取值范围为(﹣∞,﹣4]∪[4,+∞).21.(2021秋•武汉期末)已知双曲线的左、右焦点分别为,动点M满足|MF2|﹣|MF1|=2.(1)求动点M的轨迹方程;(2)若动点M在双曲线C上,设双曲线C的左支上有两个不同的点P,Q,点N(4,0),且∠ONP=∠ONQ,直线NQ与双曲线C交于另一点B.证明:动直线PB经过定点.【答案】(1)x2﹣=1(x≤﹣1);(2)证明过程见详解,定点(,0).【解答】解:(1)动点M满足|MF2|﹣|MF1|=2<|F1F2|,所以动点M的轨迹为双曲线的左支,且2a=2,c=,所以可得a=1,b2=c2﹣a2=10﹣1=9,所以双曲线的方程为:x2﹣=1(x≤﹣1);(2)证明:由题意可得P,Q关于x轴对称,设直线PB的方程为:y=kx+t,设P(x1,y1),B(x2,y2),则Q(x1,﹣y1),联立,整理可得:(9﹣k2)x2﹣2ktx﹣t2﹣9=0,则x1+x2=,x1x2=,则直线BQ的方程为:y=(x﹣x2)+y2,因为直线过N(4,0)点,所以0=(4﹣x2)+y2,整理可得:(x2﹣4)(y2+y1)=y2(x2﹣x1),即2kx1x2+(t﹣4k)(x1+x2)﹣8t=0,所以+﹣8t=0,整理可得:﹣2kt2﹣18k+2kt2﹣8k2t﹣72t+8tk2=0,即k=﹣4t,所以直线PB的方程为:y=﹣4tx+t=﹣4t(x﹣),可证得:直线PB恒过定点(,0)22.(2021秋•菏泽期末)已知Rt△ABC中,A(﹣1,0),B(1,0),∠CAB=90°,,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变.(1)求曲线E的方程;(2)过点(1,0)的直线l与曲线E交于M,N两点,则在x轴上是否存在定点Q.使得的值为定值?若存在,求出点Q的坐标和该定值;若不存在,请说明理由.【答案】(1).(2)存在点.【解答】解:(1)由题意,可得,而,所以点P的轨迹为以A,B为焦点,长轴长为的椭圆,由,故,所以曲线E的方程为.(2)当直线l的斜率为不为0时,设直线l的方程为x=my+1,设定点Q(t,0),联立方程组消x可得(m2+2)y2+2my﹣1=0,设M(x1,y1),N(x2,y2),可得,所以=(my1+1﹣t)(my2+1﹣t)+y1y2==,要使上式为定值,则,解得,此时,当直线l的斜率为0时,,此时,也符合;所以,存在点,使得为定值.23.(2021秋•南京月考)已知双曲线E:﹣=1(a>0,b>0)过点D(3,1),且该双曲线的虚轴端点与两顶点A1,A2的张角为120°.(1)求双曲线E的方程;(2)过点B(0,4)的直线l与双曲线E左支相交于点M,N,直线DM,DN与y轴相交于P,Q两点,求|BP|+|BQ|的取值范围.【答案】(1).;(2)|BP|+|BQ|的取值范围是(,18﹣6).【解答】解:(1)由已知可得,结合a2+b2=c2,解得,故双曲线E的方程;.(2)设直线方程y=kx+4,M(x1,y1),N(x2,y2),直线DM的方程为y﹣1=(x﹣3),可得P(0,1﹣),直线DN的方程为y﹣1=(x﹣3),可得Q(0,1﹣),联立,消去y,整理可得(1﹣3k2)x2﹣24kx﹣54=0,则,可得,|BP|+||BQ|=4﹣y M+4﹣y N=6+=6+3×=6+3×=6+3×===8﹣,又,∴3k+5∴|BP|+|BQ|的取值范围是(,18﹣6).24.(2018秋•福田区校级期末)已知椭圆C的中心是坐标原点O,它的短轴长2,焦点F(c,0),点A(﹣c,0),且=2.(1)求椭圆C的标准方程;(2)是否存在过点A的直线与椭圆C相交于P、Q两点,且以线段PQ为直径的圆过坐标原点O,若存在,求出直线PQ的方程;不存在,说明理由.【答案】见试题解答内容【解答】解:(1)由题意知,b=,F(c,0),A(﹣c,0),则,,由=2,得c=,解得:c=2.∴a2=b2+c2=6,∴椭圆的方程为,离心率为;(2)A(3,0),设直线PQ的方程为y=k(x﹣3),联立,得(1+3k2)x2﹣18k2x+27k2﹣6=0,设P(x1,y1),Q(x2,y2),则,.∴=k2()=.由已知得OP⊥OQ,得x1x2+y1y2=0,即,解得:k=,符合Δ>0,∴直线PQ的方程为y=.25.(2021•辽宁模拟)已知抛物线C1:y2=2px(p>0),椭圆C2:=1(a>b>0),抛物线与椭圆有共同的焦点F(4,0),且椭圆C2的离心率e=.(Ⅰ)求椭圆与抛物线的方程;(Ⅱ)直线l1的方程为x=﹣4,若不经过点P(4,8)的直线l2与抛物线交于A,B(A,B分别在x轴两侧),与直线l1交于点M,与椭圆交于点C,D,设PA,PM,PB的斜率分别为k1,k2,k3,若k1+k3=2k2.(ⅰ)证明:直线l2恒过定点;(ⅱ)点D关于x轴的对称点为D′,试问△CFD′的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.【答案】(Ⅰ)椭圆C2的方程为,抛物线C1的方程为y2=16x;(Ⅱ)(i)证明见解析;(ii)△CFD'的面积存在最大值,最大值为.【解答】(Ⅰ)解:设椭圆的半焦距为c,因为抛物线与椭圆有共同的焦点F(4,0),则y2=16x且c=4,因为椭圆C2的离心率为e=,解得a=5,所以b2=a2﹣c2=9,故椭圆C2的方程为,抛物线C1的方程为y2=16x;(Ⅱ)(i)证明:当直线l2的斜率k=0时,不符合题意;当直线l2的存在且不为0时,设直线l2:y=kx+b,令x=﹣4,可得y=﹣4k+b,则点M(﹣4,﹣4k+b),设A(x1,y1),B(x2,y2),联立,可得ky2﹣16y+16b=0,则Δ>0,所以,直线PA的斜率,同理可得直线PB的斜率为,直线PM的斜率为,因为k1+k3=2k2,所以,即,整理可得,,所以b=4k或b=﹣4k,当b=4k时,y1y2=64,与A,B在x轴两侧矛盾;当b=﹣4k时,直线l2的方程为y=kx﹣4k,即直线l2恒过定点(4,0);(ii)解:设C(x3,y3),D(x4,y4),D'(x4,﹣y4),设直线CD的方程为x=ty+4(t≠0),代入椭圆C2的方程可得,(9t2+25)y2+72ty﹣81=0,。
高中数学解析几何练习题赵玉苗一、选择题1.椭圆x 29+y 24+k =1旳离心率为45,则k 旳值为( )A .-21B .21C .-1925或21D.1925或21 2.圆心在抛物线y 2=2x 上且与x 轴和该抛物线旳准线都相切旳一个圆旳方程是( )A .x 2+y2-x -2y -14=0B .x 2+y 2+x -2y +1=0C .x2+y 2-x -2y +1=0 D .x 2+y2-x -2y +14=03.已知P 是椭圆22143x y +=上旳一点,F 1、F 2是该椭圆旳两个焦点,若△PF 1F 2旳内切圆半径为12,则21PF PF ⋅旳值为( )A .32 B .94C .94-D .04.已知12F 、F 分别是双曲线()222210,0x y a b a b-=>>旳左、右焦点,过1F 作垂直于x 轴旳直线交双曲线于A 、B 两点,若2ABF ∆为锐角三角形,则双曲线旳离心率旳范围是( )A .(1,1+B .()1+∞ C.(1D .)15.抛物线2(0)x ay a =>旳准线l 与y 轴交于点P ,若l 绕点P 以每秒12π弧度旳角速度按逆时针方向旋转t 秒钟后,恰与抛物线第一次相切,则t 等于 ( )A .1B .2C .3D .46.从双曲线31532222=+=-y x F y x 引圆的左焦点旳切线FP 交双曲线右支于点P ,T 为切点,M 为线段FP旳中点,O 为坐标原点,则|MO|—|MT|等于( )A .3B .5C .35-D .35+7.已知椭圆x 2a 2+y 2b2=1(a >b >0)上一点P ,F 1、F 2为椭圆旳焦点,若∠F 1PF 2=θ,则△PF 1F 2旳面积等于( )A .a 2tanθ2B .a 2cotθ2C .b 2tanθ2D .b 2cotθ28.椭圆x 25+y 24=1旳右焦点为F ,设A (-52,3),P 为椭圆上旳动点,则|AP |+5|PF |取得最小值时P点旳坐标是( ) A .(52,3) B .(5,0)C .(0,2)D .(0,-2)或(0,2)10.椭圆x 2m+y 2n=1(m >n >0)与双曲线x 2a-y 2b=1(a >0,b >0)有相同旳焦点F 1、F 2,P 是两曲线旳一个交点,则|PF 1|·|PF 2|旳值为( )A .m -a B.12(m -a ) C .m 2-a 2 D.m -a11.如果双曲线x 213-y 212=1上一点P 到右焦点旳距离等于13,那么点P 到右准线旳距离是( ) A.135B .13C .5D.51312.已知点F 1(-2,0)、F 2(2,0),动点P 满足|PF 2|-|PF 1|=2,当点P 旳纵坐标是12时,点P 到坐标原点旳距离是( ) A.62 B.32C.3 D .213.“方程ax 2+by 2=c 表示双曲线”是“ab <0”旳( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件14.某圆锥曲线C 是椭圆或双曲线,若其中心为坐标原点,对称轴为坐标轴,且过点A (-2,23),B (32,-5),则( )A .曲线C 可为椭圆也可为双曲线B .曲线C 一定是双曲线 C .曲线C 一定是椭圆D .这样旳曲线C 不存在二.填空题15.若直线y =x +k 与曲线x =1-y 2恰有一个公共点,则k 旳取值范围是______.16.如果曲线C :⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ,(θ为参数)与直线x +y +a =0有公共点,那么实数a 旳取值范围是______.17.过直线y =4上任一点作圆x 2+y 2=4旳切线,则切线长旳最小值为________.18.已知点P 是以F 1、F 2为焦点旳椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,若PF 1⊥PF 2, tan ∠PF 1F 2=12,则此椭圆旳离心率是________.19.在平面直角坐标系xOy 中,A 1、A 2、B 1、B 2为椭圆x 2a 2+y 2b 2=1(a >b >0)旳四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆旳交点M 恰为线段OT 旳中点,则该椭圆旳离心率为________.20.已知椭圆x 23+y 2=1旳左、右两个焦点分别为F 1和F 2,点P 为椭圆上任意一点,点E 在椭圆旳右准线上.给出下列命题:则其中所有正确命题旳序号为________. 21.对于顶点在原点旳抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1旳点到焦点旳距离等于6;④抛物线通径旳长为5;⑤由原点向过焦点旳某条直线作垂线,垂足坐标为(2,1).能使抛物线方程为y 2=10x 旳条件是________.(要求填写合适条件旳序号)22.双曲线x 29-y 216=1旳两个焦点为F 1、F 2,点P 在双曲线上,若PF 1⊥PF 2,则点P 到x 轴旳距离为________.23.设圆过双曲线x 29-y 216=1旳一个顶点和一个焦点,圆心在此双曲线上,则此圆心到双曲线中心旳距离为________.24.已知F 为双曲线x 24-y 212=1旳左焦点,A (1,4),P 是双曲线右支点上旳动点,则|PF |+|PA |旳最小值为________. 三、解答题25.如右图所示,已知圆C 1:x 2+y 2-2mx -2ny +m 2-1=0和圆C 2:x 2+y 2+2x +2y -2=0交于A 、B 两点且这两点平分圆C 2旳圆周.求圆C 1旳圆心C 1旳轨迹方程,并求出当圆C 1旳半径最小时圆C 1旳方程.26.P 是椭圆x 2a2+y 2=1(a >1)短轴旳一个端点,Q 为椭圆上旳一个动点,求|PQ |旳最大值.27.椭圆旳中心是原点O ,它旳短轴长为22,相应于焦点F (c ,0)(c >0)旳准线l 与x 轴相交于点A ,|OF |=2|FA |,过点A 旳直线与椭圆相交于P 、Q 两点. (1)求椭圆旳方程及离心率; (2)若,求直线PQ 旳方程;28.已知抛物线y x 62=旳焦点为F ,椭圆C :)0(12222>>=+b a b y a x 旳离心率为23=e ,P 是它们旳一个交点,且2||=PF .(I )求椭圆C 旳方程;(II )若直线)0,0(>≠+=m k m kx y 与椭圆C 交于两点A 、B ,点D 满足BD AD +=0,直线FD 旳斜率为1k ,试证明411->⋅k k .29.如图,已知直线与抛物线y 2=2px (p >0)相交于A 、B 两点,且OA ⊥OB ,OD ⊥AB 交AB 于D ,且点D 旳坐标为(3,3).(1)求p 旳值;(2)若F 为抛物线旳焦点,M 为抛物线上任一点,求|MD |+|MF |旳最小值.30.设椭圆22221(0)x y a b a b+=>>旳焦点分别为1(1,0)F -、2(1,0),F 直线2:l x a =交x 轴于点A ,且122.AF AF = (I )试求椭圆旳方程;(II )过F 1、F 2分别作互相垂直旳两直线与椭圆分别交于D 、E 、M 、N 四点(如图所示),试求四边形DMEN 面积旳最大值和最小值.31.圆C 1旳方程为532)1()4(22=-+-y x ,椭圆C 2为()222210x y a b a b+=>>,其离心率为23,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1旳直径. (Ⅰ)求直线AB 旳方程和椭圆C 2旳方程;(Ⅱ)如果椭圆C 2旳左右焦点分别是21F F 、,椭圆上存在点P ,使得12PF PF AB λ+=,求点P 旳坐标.第30题一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一。
解析几何解答题x2 y2 1(a b 0) 的两个焦点为 F1 2 12b 2a2F1、 F2、 B1、 B2四点共圆,且点N( 0,3)到椭圆上的点最远距离为 5 2.( 1)求此时椭圆G 的方程;( 2)设斜率为 k( k≠ 0)的直线 m 与椭圆 G 相交于不同的两点E、 F, Q 为 EF的中点,问过点 P(0,3)、 Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由.32 、已知双曲线x2 y2 1的左、右顶点分别为A、 A ,动直线l : y kx m 与圆 x2 y212线左、右两支的交点分别为P (x , y ), P ( x , y2 ) .1 1 12 2 (Ⅰ)求 k 的取值范围,并求x2 x1的最小值;E、F 两点能否关于1相切,且与双曲(Ⅱ)记直线P1 A1的斜率为 k1,直线 P2 A2的斜率为 k2,那么, k1 k2是定值吗?证明你的结论.3、已知抛物线C : y2 ax 的焦点为F K ( 1,0)为直线l与抛物线C准线的交点,直线l与抛物线C相交于A、,点B 两点,点A关于x轴的对称点为 D .(1)求抛物线C的方程。
(2)证明:点F在直线BD上;uuur uuur 8,求BDK 的面积。
.( 3)设FA ? FB94、已知椭圆的中心在坐标原点O ,焦点在x轴上,离心率为1,点P(2,3)、A、B在该椭圆上,线段AB的2中点 T 在直线 OP 上,且 A、O、B 三点不共线.(I)求椭圆的方程及直线 AB 的斜率;( Ⅱ) 求PAB面积的最大值.5、设椭圆x 2y 2F 1 ( 1,0) 、 F 2 (1,0) ,直线 lx a222 1( a b 0) 的焦点分别为 : a b uuur uuuur交 x 轴于点 A ,且 AF 12AF 2 .(Ⅰ)试求椭圆的方程; (Ⅱ)过 1 2分别作互相垂直的两直线与椭圆分别交于 D EM N 四点(如图所示),若四边形 DMENF 、F 、 、 、的面积为27,求 DE 的直线方程.76、已知抛物线 P :x 2=2py (p>0).(Ⅰ)若抛物线上点M (m, 2) 到焦点 F 的距离为 3 .(ⅰ)求抛物线P 的方程;(ⅱ)设抛物线 P 的准线与 y 轴的交点为 E ,过 E 作抛物线 P 的切线,求此切线方程;(Ⅱ)设过焦点 F 的动直线 l 交抛物线于 A , B 两点,连接 AO , BO 并延长分别交抛物线的准线于C , D两点,求证:以 CD 为直径的圆过焦点F .7、在平面直角坐标系xOy 中,设点 P( x, y), M ( x, 4) ,以线段PM为直径的圆经过原点O .(Ⅰ)求动点P 的轨迹 W 的方程;(Ⅱ)过点E(0, 4) 的直线l与轨迹W交于两点A, B ,点A关于y轴的对称点为A' ,试判断直线 A 'B 是否恒过一定点,并证明你的结论.8、已知椭圆M :x2y2 1 ( a b 0) 的离心率为2 2,且椭圆上一点与椭圆的两个焦点构成的三角形a 2 b2 3周长为 6 4 2 .(Ⅰ)求椭圆M 的方程;(Ⅱ)设直线l 与椭圆 M 交于A, B两点,且以AB 为直径的圆过椭圆的右顶点 C ,求ABC 面积的最大值.9、过抛物线 C: y 22 px( p 0) 上一点 M ( 2p , p) 作倾斜角互补的两条直线 ,分别与抛物线交于 A 、 B 两点。
平面解析几何1.【2021·北京高考真题】已知椭圆2222:1(0)x y E a b a b+=>>过点(0,2)A -,以四个顶点围成的四边形面积为(1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M 、N ,直线AC 交y =-3于点N ,若|PM |+|PN |≤15,求k 的取值范围.2.【2021·全国高考真题】在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.3.【2021·浙江高考真题】如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RN PN QN =⋅,求直线l 在x 轴上截距的范围.4.【2021·全国高考真题(理)】在直角坐标系xOy 中,C 的圆心为()2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点()4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.5.【2021·全国高考真题(理)】已知抛物线()2:20C x py p =>的焦点为F ,且F与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.6.【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.7.【2020年高考全国Ⅱ卷理数】已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且43CD AB =.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.8.【2020年高考全国Ⅲ卷理数】已知椭圆222:1(05)25x y C m m +=<<A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.9.【2020年高考北京】已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.10.【2020年高考浙江】如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ).(Ⅰ)若116p =,求抛物线2C 的焦点坐标;(Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.11.【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.12.【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.13.【2020年新高考全国Ⅱ卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.14.【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若3AP PB =,求|AB |.15.【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形;(ii )求PQG △面积的最大值.16.【2019年高考全国Ⅲ卷理数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.17.【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.18.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55.(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.19.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程;(2)求点E 的坐标.20.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S .(1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G的坐标.。
1.12F F 、是椭圆2214x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ⋅的最大值是 .2.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 满足的关系式为____________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆72x +32y =1的公共点有_______个.3.P 是抛物线y 2=x 上的动点,Q 是圆(x —3)2+y 2=1的动点,则|PQ |的最小值为 . 4.若圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点。
则实数a 的范围为 。
5.若曲线y =(2)y k x =-+3有两个不同的公共点,则实数 k 的取值范围是 . 6.圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A(0,-4)、B (0,-2),则圆C 的方程为____________。
7.经过两圆(x+3)2+y 2=13和x+2(y+3)2=37的交点,且圆心在直线x -y -4=0上的圆的方程为____________8.双曲线x 2-y 2=1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点),则直线PF 的斜率的变化范围是___________.9.已知A (0,7)、B (0,-7)、C(12,2),以C 为一个焦点作过A 、B 的椭圆,椭圆的另一个焦点F 的轨迹方程是___________。
10.设P 1(2,2)、P 2(-2,-2),M 是双曲线y =x1上位于第一象限的点,对于命题①|MP 2|-|MP 1|=22;②以线段MP 1为直径的圆与圆x 2+y 2=2相切;③存在常数b ,使得M 到直线y =-x +b 的距离等于22|MP 1|.其中所有正确命题的序号是____________。
11.到两定点A (0,0),B (3,4)距离之和为5的点的轨迹是( ) A.椭圆 B.AB 所在直线 C.线段ABD 。
解析几何解答题1、椭圆G :)0(12222>>=+b a by a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25(1)求此时椭圆G 的方程;(2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于过点P (0,33)、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由.2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆221x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y .(Ⅰ)求k 的取值范围,并求21x x -的最小值;(Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ⋅是定值吗?证明你的结论.3、已知抛物线2:C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(1)求抛物线C 的方程。
(2)证明:点F 在直线BD 上; (3)设89FA FB •=u u u r u u u r ,求BDK ∆的面积。
.4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为12,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线.(I)求椭圆的方程及直线AB 的斜率;(Ⅱ)求PAB ∆面积的最大值.5、设椭圆)0(12222>>=+b a b y a x 的焦点分别为1(1,0)F -、2(1,0)F ,直线l :2a x = 交x 轴于点A ,且122AF AF =u u u r u u u u r .(Ⅰ)试求椭圆的方程;(Ⅱ)过1F 、2F 分别作互相垂直的两直线与椭圆分别交于D 、E 、M 、N 四点(如图所示),若四边形DMEN的面积为277,求DE 的直线方程.6、已知抛物线P :x 2=2py (p >0).(Ⅰ)若抛物线上点(,2)M m 到焦点F 的距离为3.(ⅰ)求抛物线P 的方程;(ⅱ)设抛物线P 的准线与y 轴的交点为E ,过E 作抛物线P 的切线,求此切线方程;(Ⅱ)设过焦点F 的动直线l 交抛物线于A ,B 两点,连接AO ,BO 并延长分别交抛物线的准线于C ,D两点,求证:以CD 为直径的圆过焦点F .7、在平面直角坐标系xOy 中,设点(,),(,4)P x y M x -,以线段PM 为直径的圆经过原点O .(Ⅰ)求动点P 的轨迹W 的方程;(Ⅱ)过点(0,4)E -的直线l 与轨迹W 交于两点,A B ,点A 关于y 轴的对称点为'A ,试判断直线'A B 是否恒过一定点,并证明你的结论.8、已知椭圆2222:1x y M a b+=(0)a b >>的离心率为3,且椭圆上一点与椭圆的两个焦点构成的三角形周长为246+.(Ⅰ)求椭圆M 的方程;(Ⅱ)设直线l 与椭圆M 交于,A B 两点,且以AB 为直径的圆过椭圆的右顶点C ,求ABC ∆面积的最大值.9、过抛物线C:22(0)y px p =>上一点2(,)pM p 作倾斜角互补的两条直线,分别与抛物线交于A 、B 两点。
(1)求证:直线AB 的斜率为定值;(2)已知,A B 两点均在抛物线C :()220y px y =≤上,若△MAB 的面积的最大值为6,求抛物线的方程。
10、已知椭圆22221(0)x y a b a b+=>>的左焦点(,0)F c -是长轴的一个四等分点,点A 、B 分别为椭圆的左、右顶点,过点F 且不与y 轴垂直的直线l 交椭圆于C 、D 两点,记直线AD 、BC 的斜率分别为12,.k k(1)当点D 到两焦点的距离之和为4,直线l x ⊥轴时,求12:k k 的值;(2)求12:k k 的值。
11、在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(a >b >0),其焦点在圆x 2+y 2=1上. (1)求椭圆的方程;(2)设A ,B ,M 是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使cos sin OM OA OB θθ=+u u u u r u u u r u u u r .(i)求证:直线OA 与OB 的斜率之积为定值;(ii)求OA 2+OB 2.12、已知圆22222251:(,:(1616M x y M N x y ++=+=的圆心为圆的圆心为N ,一动圆与圆M 内切,与圆N 外切。
(Ⅰ)求动圆圆心P 的轨迹方程;(Ⅱ)(Ⅰ)中轨迹上是否存在一点Q ,使得MQN ∠为钝角?若存在,求出Q 点横坐标的取值范围;若不存在,说明理由.13、已知点F 是椭圆)0(11222>=++a y ax 的右焦点,点(,0)M m 、(0,)N n 分别是x 轴、y 轴上的动点,且满足0=⋅.若点P 满足OM +=2.(Ⅰ)求点P 的轨迹C 的方程;(Ⅱ)设过点F 任作一直线与点P 的轨迹交于A 、B 两点,直线OA 、OB 与直线a x -=分别交于点S 、T (O为坐标原点),试判断FS FT ⋅u u u r u u u r 是否为定值?若是,求出这个定值;若不是,请说明理由.14、在平面直角坐标系xOy 中,已知圆B :22(1)16x y -+=与点(1,0)A -,P 为圆B 上的动点,线段PA 的垂直平分线交直线PB 于点R ,点R 的轨迹记为曲线C 。
(1)求曲线C 的方程;(2)曲线C 与x 轴正半轴交点记为Q ,过原点O 且不与x 轴重合的直线与曲线C 的交点记为M ,N ,连结QM ,QN ,分别交直线(x t t =为常数,且2x ≠)于点E ,F ,设E ,F 的纵坐标分别为12,y y ,求12y y ⋅的值(用t 表示)。
答案:1、解:(1)根据椭圆的几何性质,线段F 1F 2与线段B 1B 2互相垂直平分,故椭圆中心即为该四点外接圆的圆心…………………1分故该椭圆中,22c b a ==即椭圆方程可为22222b y x =+ ………3分设H (x,y )为椭圆上一点,则b y b b y y x HN ≤≤-+++-=-+=其中,182)3()3(||22222…………… 4分若30<<b ,则2||,HN b y 时-=有最大值962++b b …………………5分 由25350962±-==++b b b 得(舍去)(或b 2+3b+9<27,故无解)…………… 6分 若182||,3,322+-=≥b HN y b 有最大值时当…………………7分 由165018222==+b b 得∴所求椭圆方程为1163222=+y x ………………… 8分 (1) 设),(),,(),,(002211y x Q y x F y x E ,则由 ⎪⎪⎩⎪⎪⎨⎧=+=+116321163222222121y x y x 两式相减得 0200=+ky x ……③又直线PQ ⊥直线m ∴直线PQ 方程为331+=x k y 将点Q (00,y x )代入上式得,33100+-=x k y ……④…………………11分 由③④得Q (33,332-k )…………………12分 而Q 点必在椭圆内部116322020<+∴y x , 由此得29400294,0,2472<<<<-∴≠<k k k k 或又,故当 )294,0()0,294(⋃-∈k 时,E 、F 两点关于点P 、Q 的直线对称 14分2、解:(Ⅰ)l Q 与圆相切,1∴=221m k ∴=+ ……① 由221y kx m x y =+⎧⎨-=⎩ , 得 222(1)2(1)0k x mkx m ---+=,222222*********(1)(1)4(1)80101k m k k m m k m x x k ⎧⎪-≠⎪⎪∴∆=+-+=+-=>⎨⎪+⎪⋅=<⎪-⎩, 21,k ∴<11k ∴-<<,故k 的取值范围为(1,1)-.由于1221221mk x x x x k +=∴-===- 201k ≤<Q ∴当20k =时,21x x -取最小值. 6分(Ⅱ)由已知可得12,A A 的坐标分别为(1,0),(1,0)-, 121212,11y y k k x x ∴==+-, 121212(1)(1)y y k k x x ∴⋅=+-1212()()(1)(1)kx m kx m x x ++=+- 2212121221()()1k x x mk x x m x x x x +++=+--2222212m mk k mk m +⋅-⋅+=22222222=22= 由①,得 221m k -=,12(3k k ∴⋅==-+为定值. 12分 3、解:(1) 24y x =设11(,)A x y ,22(,)B x y ,11(,)D x y -,l 的方程为1(0)x my m =-≠.(2)将1x my =-代人24y x =并整理得2440y my -+=,从而 12124, 4.y y m y y +== 直线BD 的方程为 212221()y y y y x x x x +-=⋅--, 即 222214()4y y y x y y -=⋅--令120, 1.4y y y x ===得所以点(1,0)F 在直线BD 上(3)由①知,21212(1)(1)42x x my my m +=-+-=-1212(1)(1) 1.x x my my =--=因为 11(1,),FA x y =-uu r 22(1,)FB x y =-uu r ,212121212(1)(1)()1484FA FB x x y y x x x x m ⋅=--+=-+++=-u u r u u r 故 28849m -=,解得 43m =± 所以l 的方程为3430,3430x y x y ++=-+=又由①知 121643y y m +== 故1211161622233S KF y y ∆=•+=••= 4、解:(I )设椭圆的方程为22221(0)x y a b a b+=>>,则2212491a b =⎨⎪+=⎪⎩,得216a =,212b =. 所以椭圆的方程为2211612x y +=.…………………3分 设直线AB 的方程为y kx t =+(依题意可知直线的斜率存在),设1122(,),(,)A x y B x y ,则由2211612x y y kx t ⎧+=⎪⎨⎪=+⎩,得()2223484480k x ktx t +++-=,由0∆>,得221216b k <+,122212283444834kt x x k t x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,设()00,T x y 002243,3434kt t x y k k =-=++,易知00x ≠,由OT 与OP 斜率相等可得0032y x =,即12k =-, 所以椭圆的方程为2211612x y +=,直线AB 的斜率为12-.……………………6分 (II )设直线AB 的方程为12y x t =-+,即220x y t +-=,由2212 1.1612y x t x y ⎧=-+⎪⎪⎨⎪+=⎪⎩, 得22120x tx t -+-=,224(12)0t t ∆=-->,44t -<<.………………8分12212,12.x x t x x t +=⎧⎨⋅=-⎩.||AB === 点P 到直线AB的距离为d =于是PAB ∆的面积为122PAB S ∆==10分 设3()(4)(123)f t t t =-+,2'()12(4)(2)f t t t =--+,其中44t -<<.在区间(2,4)-内,'()0f t <,()f t 是减函数;在区间(4,2)--内,'()0f t >,()f t 是增函数.所以()f t 的最大值为4(2)6f -=.于是PAB S ∆的最大值为18.…………………12分5、解:(Ⅰ)由题意,212||22,(,0)F F c A a ==∴u u u u r -------1分1222 AF AF F =∴u u u r u u u u rQ 为1AF 的中点------------2分2,322==∴b a即:椭圆方程为.12322=+y x ------------3分 (Ⅱ)当直线DE 与x 轴垂直时,342||2==a b DE ,此时322||==a MN , 四边形DMEN 的面积||||42DE MN S ⋅==不符合题意故舍掉;------------4分同理当MN 与x 轴垂直时,也有四边形DMEN 的面积不符合题意故舍掉;------------5分当直线,MN 均与x 轴不垂直时,设DE :)1(+=x k y ,代入消去y 得:.0)63(6)32(2222=-+++k x k x k ------------6分设⎪⎪⎩⎪⎪⎨⎧+-=+-=+,3263,326),,(),,(222122212211k k x x k k x x y x E y x D 则 ------------7分所以 231344)(||222122121++⋅=-+=-k k x x x x x x , ------------8分所以 2221232)1(34||1||kk x x k DE ++=-+=, ------------9分同理222211)1]3(1)||.1323()2k k MN k k -++==+-+ ------------11分所以四边形的面积222232)11(3432)1(34212||||k k k k MN DE S ++⋅++⋅=⋅=13)1(6)21(242222++++=k k k k由22727S k k =⇒=⇒=, ------------12分所以直线0DE l y -=或0DE l y +=或20DE l y -=或20DE l y += ---------13分6、解:(Ⅰ)(ⅰ)由抛物线定义可知,抛物线上点(,2)M m 到焦点F 的距离与到准线距离相等,即(,2)M m 到2py =-的距离为3; ∴ 232p-+=,解得2p =. ∴ 抛物线P 的方程为24x y =. 4分 (ⅱ)抛物线焦点(0,1)F ,抛物线准线与y 轴交点为(0,1)E -,显然过点E 的抛物线的切线斜率存在,设为k ,切线方程为1y kx =-.由241x y y kx ⎧=⎨=-⎩, 消y 得2440x kx -+=, 6分 216160k ∆=-=,解得1k =±. 7分∴切线方程为1y x =±-. 8分(Ⅱ)直线l 的斜率显然存在,设l :2p y kx =+, 设11(,)A x y ,22(,)B x y ,由222x py p y kx ⎧=⎪⎨=+⎪⎩ 消y 得 2220x pkx p --=. 且0∆>. ∴ 122x x pk +=,212x x p ⋅=-;∵ 11(,)A x y , ∴ 直线OA :11y y x x =, 与2py =-联立可得11(,)22px p C y --, 同理得22(,)22px p D y --. 10分∵ 焦点(0,)2pF , ∴ 11(,)2px FC p y =--u u u r ,22(,)2pxFD p y =--u u u r , 12分 ∴ 1212(,)(,)22px px FC FD p p y y ⋅=--⋅--u u u r u u u r 22212121212224px px p x x p p y y y y =+=+ 2442221222212120422p x x p p p p p x x x x p p p=+=+=+=- ∴ 以CD 为直径的圆过焦点F . 14分7、解:(I )由题意可得OP OM ⊥, 2分所以0OP OM ⋅=u u u r u u u u r,即(,)(,4)0x y x -= 4分即240x y -=,即动点P 的轨迹W 的方程为24x y = 5分 (II )设直线l 的方程为4y kx =-,1122(,),(,)A x y B x y ,则11'(,)A x y -.由244y kx x y=-⎧⎨=⎩消y 整理得24160x kx -+=, 6分 则216640k ∆=->,即||2k >. 7分12124,16x x k x x +==. 9分直线212221':()y y A B y y x x x x --=-+212221222212212222121222112()1()4()41444 y 44y y y x x y x x x x y x x x x x x x x x x y x x x x x x x -∴=-++-∴=-++--∴=-+-∴=+12分即2144x x y x -=+ 所以,直线'A B 恒过定点(0,4). 13分8、解:(Ⅰ)因为椭圆M 上一点和它的两个焦点构成的三角形周长为246+,所以24622+=+c a , 1分,即c a =,所以c =, 2分 所以3a =,c =分所以1b =,椭圆M 的方程为1922=+y x . 5分 (Ⅱ)方法一:不妨设BC 的方程(3),(0)y n x n =->,则AC 的方程为)3(1--=x ny . 由22(3),19y n x x y =-⎧⎪⎨+=⎪⎩得0196)91(2222=-+-+n x n x n , 6分 设),(11y x A ,),(22y x B ,因为222819391n x n -=+,所以19327222+-=n n x , 7分同理可得2219327n n x +-=, 8分 所以1961||22++=n n BC ,222961||n n n n AC ++=, 10分 964)1()1(2||||212+++==∆n n n n AC BC S ABC , 12分设21≥+=n n t ,则22236464899t S t t t==≤++, 13分当且仅当38=t 时取等号,所以ABC ∆面积的最大值为83. 14分方法二:不妨设直线AB 的方程x ky m =+.由22,1,9x ky m x y =+⎧⎪⎨+=⎪⎩ 消去x 得222(9)290k y kmy m +++-=, 6分 设),(11y x A ,),(22y x B ,则有12229kmy y k +=-+,212299m y y k -=+. ① 7分因为以AB 为直径的圆过点C ,所以 0CA CB ⋅=u u u r u u u r.由 1122(3,),(3,)CA x y CB x y =-=-u u u r u u u r,得 1212(3)(3)0x x y y --+=. 8分 将1122,x ky m x ky m =+=+代入上式,得 221212(1)(3)()(3)0k y y k m y y m ++-++-=.将 ① 代入上式,解得 125m =或3m =(舍). 10分 所以125m =(此时直线AB 经过定点12(,0)5D ,与椭圆有两个交点),所以121||||2ABC S DC y y ∆=-12==分 设211,099t t k =<≤+,则ABC S ∆=所以当251(0,]2889t =∈时,ABC S ∆取得最大值83. 14分9、解:(1)不妨设221212,),(,)22y y A y B y p p(211222212,122MA MB AB y y k k y y p k y y p p-=-⇒+=-∴==--…………………………………5分 (2)AB 的直线方程为:221111y-y (),022y y x x y y p p=--+--=即 点M 到AB的距离d =。