第五章机械加工表面质量
- 格式:ppt
- 大小:1.37 MB
- 文档页数:50
机械制造工艺学习题解答第五章:机械加工表面质量及其控制第3版P2675-1机械加工表面质量包括哪些具体内容答:P229机械加工表面质量,其含义包括两个方面的内容:A.加工表面层的几何形貌,主要由以下几部分组成:⑴表面粗糙度;⑵波纹度;⑶纹理方向;⑷表面缺陷;B.表面层材料的力学物理性能和化学性能,主要反映在以下三个方面:⑴表面层金属冷作硬化;⑵表面层金属的金相组织变化;⑶表面层金属的残余应力;5-2为什么机器零件一般总是从表面层开始破坏的加工表面质量对机器使用性能有哪些影响答:P2311由于表面是零件材料的边界,常常承受工作负荷所引起的最大应力和外界介质的侵蚀,表面上有着引起应力集中而导致破坏的微小缺陷,所以这些表面直接与机器零件的使用性能有关;2加工表面质量对机器的耐磨性、耐疲劳性、耐蚀性、零件配合质量都有影响;5-3车削一铸铁零件的外圆表面,若进给量f=r,车刀刀尖圆弧半径re=3mm,试估算车削后的表面粗糙度;5-6为什么提高砂轮速度能减小磨削表面的粗糙度数值,而提高工件速度却得到相反的结果答:P224砂轮速度越高,单位时间内通过被磨表面的磨粒数就越多,工件材料来不及变形,因而工件表面粗糙度值越小;而工件速度增大,单位时间内通过被磨表面的磨粒数减少,塑性变形增加,表面粗糙度值将增大;5-7为什么在切削加工中一般都会产生冷作硬化现象答:P240机械加工过程中产生的塑性变形,使晶格扭曲、畸变,晶粒间产生滑移,晶粒被拉长,进一步变形受到阻碍,这些都会使表面层金属的硬度增加,统称为冷作硬化或称为强化; 5-8为什么切削速度越大,硬化现象越小而进给量增大,硬化现象增大答:P240-241增大切削速度,1刀具与工件的作用时间减少,使塑性变形的扩展深度减小,因而冷硬层深度减小;2温度增高,弱化倾向增大,冷硬程度降低;而进给量增大时,硬化现象增大的原因是随着进给量的增大,切削力也增大,表层金属的塑性变形加剧,冷硬程度增大;但是,这种情况只是在进给量比较大时才是正确的;5-11什么是回火烧伤、淬火烧伤和退火烧伤答:P243磨削淬火钢时,在工件表面形成的瞬时高温将使表层金属产生以下三种金相组织变化:1如果磨削区的温度未超过淬火钢的相变温度碳钢的相变温度为720℃,但已超过马氏体的转变温度中碳钢为300℃,工件表面金属的马氏体将转化为硬度较低的回火组织索氏体或托氏体,这称为回火烧伤; 2如果磨削区温度超过了相变温度,再加上冷却液的急冷作用,表层金属会出现二次淬火马氏体织织,硬度比原来的回火马氏体高;在它的下层,因冷却较慢,出现了硬度比原来的回火马氏体低的回火组织索氏体或托氏体,这称为淬火烧伤; 3如果磨削区温度超过了相变温度,而磨削过程又没有冷却液,组织,表层金属的硬度将急剧下降,这称为退火烧伤;5-12为什么磨削容易产生烧伤如果工件材料和磨削用量无法改变,减轻烧伤现象的最佳途径是什么答P243-244:磨削容易产生烧伤的原因是:磨削速度高、消耗功率大;砂轮磨粒导热性差,为天然负前角、磨削力大,磨削温度高; 如果工件材料和磨削用量无法改变,减轻烧伤最有效的方法是改善冷却条件,如选择内冷却砂轮或者开槽砂轮,使冷却液能够进入磨削区域;还需要合理选择砂轮硬度、结合剂和组织等;5-14磨削外圆表面时,如果同时提高工件和砂轮的速度,为什么能够减轻烧伤且又不会增大表面粗糙度答:P243-244增大工件的回转速度Vw,磨削表面的温度会升高,但其增长速度与磨削背吃刀量ap的影响相比小得多;且Vw越大,热量越不容易传入工件内层,具有减小烧伤层深度的作用;增大工件速度Vw当然会使表面粗糙度增大,为了弥补这一缺陷,可以相应提高砂轮速度Vs,实践证明,同时提高砂轮速度Vs和工件速度Vw,可以避免产生烧伤;5-16机械加工中,为什么工件表层金属会产生残余应力答:教材P245-247工件表层产生残余应力的原因是:(1)冷态塑性变形:机械加工时,工件表面受到挤压与摩擦,表层产生伸长塑变,基体仍处于弹性变形状态;切削后,表层产生残余压应力,而在里层产生残余拉伸应力;(2)热态塑性变形:机械加工时,切削或磨削热使工件表面局部温升过高,引起高温塑性变形;表层产生残余拉应力,里层产生产生残余压应力;(3)金相组织变化:切削时产生的高温会引起表面的相变;比容大的组织→比容小的组织→体积收缩,产生拉应力,反之,产生压应力;5-17试述加工表面产生压缩残余应力的原因,试述表面产生拉伸残余应力的原因;答:P245-246A.加工表面产生压缩残余应力的原因:1机械加工时加工表面的金属层内产生塑性变形,使表层金属的比容增大;由于塑性变形只在表面层中产生,这样就在表面层内产生了压缩残余应力;2当刀具从被加工表面上切除金属时,表层的纤维被拉长,刀具后刀面与已加工表面的摩擦又加大了这种拉伸作用;刀具切离后,弹性变形将逐渐恢复,而塑性变形不能恢复,表面层金属拉伸塑性变形,受到与它相连的里层未发生塑性变形金属的阻碍,因此就在表层金属中产生了压缩残余应力;B.表面产生拉伸残余应力的原因:1在机械加工中,切削区会产生大量的切削热,工件表面的温度往往很高;工件受热膨胀时,表层金属处于没有残余应力作用的完全塑性状态中,冷却时表层金属收缩受到里层金属阻碍,这样就在表面层内产生了拉伸残余应力;2比容减小,表面层金属由于相变而产生的收缩受到基体金属的阻碍,因而在表层金属产生拉伸残余应力;5-20什么是强迫振动它有哪些主要特征答:P252-253强迫振动——由外界周期性的干扰力的作用而引起的振动; 其主要特征是:其振动频率与干扰力的频率相同,或者是干扰力频率的整倍数;其振幅既与干扰力幅值有关,又与工艺系统的动态特性有关;若干扰力频率接近或者等于工艺系统的某一固有频率时,振幅将明显增大或者引起共振;5-22什么是自激振动它与强迫振动、自由振动相比,有哪些主要特征答:P253-255机械加工过程中,在没有周期性外力相对于切削过程而言作用下,由系统内部激发反馈产生的周期性振动,称为自激振动,简称为颤振; 与强迫振动相比,自激振动具有以下特征:机械加工中的自激振动是在没有外力相对于切削过程而言干扰下所产生的振动运动,这与强迫振动有本质的区别;自激振动的频率接近于系统的固有频率,这就是说颤振频率取决振动系统的固有特性;这与自由振动相似但不相同,而与强迫振动根本不同;自由振动受阻尼作用将迅速衰减,而自激振动却不因有阻尼存在而迅速衰减;。
第5章 机械加工表面质量
习 题
5-1 在车床上精车一工件外圆表面,采用的车刀主偏角︒=45r κ,副偏角︒='20r
κ,加工表面粗糙度要求为残留面积最大高度m R H μ2.3)(max =,问:
⑴ 计算需要采用的走刀量。
⑵ 实际加工出来的粗糙度和计算出来的粗糙度是否能完全相同?
⑶ 是否走刀量越小,实际加工的表面粗糙度就越低。
5-2 用硬质合金车刀切削20号钢工件,若工件表面光洁度达不到要求,能采用哪些措施来加以改善;并且简述改善的原因?
5-3 题图所示板型工件,最后工序为在其上钻孔、要求与面平行。
试设计保证尺寸和的定位方案。
5-4 题图为连杆小端孔精镗工序的定位简图。
选择大端孔及其端面和小端孔为定位基准,分别用带台肩定位销和可插拔的削边定位销定位。
试分析各定位元件限制工件的哪些不定度。
5-5 在圆柱工件上铣缺口的定位如图所示。
试分析定位方案能否满足工序要求?若不能满足,试提出改进方法。
复 习 思 考 题
5-1 加工表面质量包括哪几个方面的内容?
5-2 影响表面粗糙度的因素有哪些?
5-3 磨削加工时为什么会产生表面拉应力?。
机械加工表面质量机械零件的破坏,一般总是从表面层开始的。
产品的性能,尤其是它的可靠性和耐久性,在很大程度上取决于零件表面层的质量。
研究机械加工表面质量的目的就是为了掌握机械加工中各种工艺因素对加工表面质量影响的规律,以便运用这些规律来控制加工过程,最终达到改善表面质量、提高产品使用性能的目的。
一、机械加工表面质量对机器使用性能的影响(一)表面质量对耐磨性的影响1. 表面粗糙度对耐磨性的影响一个刚加工好的摩擦副的两个接触表面之间,最初阶段只在表面粗糙的的峰部接触,实际接触面积远小于理论接触面积,在相互接触的峰部有非常大的单位应力,使实际接触面积处产生塑性变形、弹性变形和峰部之间的剪切破坏,引起严重磨损。
零件磨损一般可分为三个阶段,初期磨损阶段、正常磨损阶段和剧烈磨损阶段。
表面粗糙度对零件表面磨损的影响很大。
一般说表面粗糙度值愈小,其磨损性愈好。
但表面粗糙度值太小,润滑油不易储存,接触面之间容易发生分子粘接,磨损反而增加。
因此,接触面的粗糙度有一个最佳值,其值与零件的工作情况有关,工作载荷加大时,初期磨损量增大,表面粗糙度最佳值也加大。
2. 表面冷作硬化对耐磨性的影响加工表面的冷作硬化使摩擦副表面层金属的显微硬度提高,故一般可使耐磨性提高。
但也不是冷作硬化程度愈高,耐磨性就愈高,这是因为过分的冷作硬化将引起金属组织过度疏松,甚至出现裂纹和表层金属的剥落,使耐磨性下降。
(二)表面质量对疲劳强度的影响金属受交变载荷作用后产生的疲劳破坏往往发生在零件表面和表面冷硬层下面,因此零件的表面质量对疲劳强度影响很大。
1. 表面粗糙度对疲劳强度的影响在交变载荷作用下,表面粗糙度的凹谷部位容易引起应力集中,产生疲劳裂纹。
表面粗糙度值愈大,表面的纹痕愈深,纹底半径愈小,抗疲劳破坏底能力就愈差。
2. 残余应力、冷作硬化对疲劳强度的影响余应力对零件疲劳强度的影响很大。
表面层残余拉应力将使疲劳裂纹扩大,加速疲劳破坏;而表面层残余应力能够阻止疲劳裂纹的扩展,延缓疲劳破坏的产生表面冷硬一般伴有残余应力的产生,可以防止裂纹产生并阻止已有裂纹的扩展,对提高疲劳强度有利。