数学建模案例分析回归分析
- 格式:pptx
- 大小:685.87 KB
- 文档页数:52
多项式回归数学建模实验报告一、引言多项式回归是一种常用的数学建模方法,它可以通过拟合多项式函数来描述不同变量之间的关系。
多项式回归在实际问题中广泛应用,例如经济学、生物学、工程学等领域。
本实验旨在通过对一组实验数据进行多项式回归分析,探索多项式回归在模型建立和预测中的应用。
二、数据收集与预处理在实验中,我们收集了一个关于汽车油耗与发动机排量之间关系的数据集。
数据集中包含了不同车型的汽车的油耗和发动机排量的数据。
为了进行多项式回归分析,我们首先对数据进行了预处理,包括数据清洗、去除异常值和缺失值处理等。
三、多项式回归模型建立在多项式回归分析中,我们可以选择不同次数的多项式函数来拟合数据。
在本实验中,我们选择了3次多项式函数来建立模型。
通过最小二乘法将多项式函数拟合到数据上,得到了模型的系数。
四、模型评估与优化为了评估多项式回归模型的拟合效果,我们计算了模型的均方误差(MSE)和决定系数(R-squared)。
通过观察这些指标的数值,我们可以评估模型的拟合效果,并根据需要进行模型优化。
五、模型预测与应用在模型建立和优化之后,我们可以使用多项式回归模型来进行预测和应用。
通过输入不同的发动机排量,我们可以预测相应的汽车油耗。
这对于汽车制造商和消费者来说都具有重要的实际意义,可以帮助他们做出更好的决策。
六、实验结果与讨论通过对实验数据的多项式回归分析,我们得到了一个拟合效果较好的模型。
模型的MSE较小,R-squared较大,说明模型对数据的拟合效果较好。
通过模型预测,我们可以得到不同发动机排量下的汽车油耗预测值,可以帮助汽车制造商和消费者做出更准确的预测和决策。
七、结论与展望本实验通过对多项式回归模型的建立和应用,探索了多项式回归在数学建模中的实际应用。
实验结果表明多项式回归模型在描述汽车油耗和发动机排量之间关系方面具有较好的效果。
未来的研究可以继续优化模型,探索更高次数的多项式函数或其他回归方法,以提高模型的精确度和预测能力。
数学建模案例分析数学建模是将现实问题转化为数学模型,并利用数学方法对模型进行求解的过程。
它是数学与实际问题结合的重要手段,能够帮助人们深入理解问题的本质,提供科学的决策依据。
以下是一个数学建模案例分析。
市有4个城区,现准备改造城市供水系统,以满足未来的供水需求。
根据过往的数据分析,每个城区的用水量与其人口数量、平均收入以及大型工厂的数量有关。
现在的问题是如何设计供水系统,使得满足各城区的用水需求,并且降低总成本。
为了解决这个问题,我们需要进行数学建模。
首先,我们需要确定影响用水量的因素。
1.人口数量:根据过往数据,我们可以得到人口数量与用水量之间的关系。
假设每增加1个人口,用水量增加A升,其中A为一个常数。
2.平均收入:平均收入的提高可能会促使人们增加用水量。
假设平均收入每提高1个单位,用水量增加B升,其中B为一个常数。
3.大型工厂数量:大型工厂对水的需求较大,可能对城区的用水量产生较大的影响。
假设每增加1个大型工厂,用水量增加C升,其中C为一个常数。
通过对过往数据的分析和回归分析,我们可以得到A、B和C的具体数值。
然后,我们可以建立供水系统的数学模型:设城区1、城区2、城区3和城区4的人口分别为x1、x2、x3和x4,平均收入分别为y1、y2、y3和y4,大型工厂数量分别为z1、z2、z3和z4设城区1、城区2、城区3和城区4的用水量分别为w1、w2、w3和w4根据前述的假设,我们可以得到数学模型:w1=A*x1+B*y1+C*z1w2=A*x2+B*y2+C*z2w3=A*x3+B*y3+C*z3w4=A*x4+B*y4+C*z4此外,由于我们希望降低总成本,我们还需要引入成本模型。
假设供水系统的建设成本与每个城区的用水量成正比,并且平均每增加1升用水量,建设成本增加D元,其中D为一个常数。
设城区1、城区2、城区3和城区4的建设成本分别为cost1、cost2、cost3和cost4根据成本因素,我们可以得到成本模型:cost1 = D * w1cost2 = D * w2cost3 = D * w3cost4 = D * w4接下来,我们需要优化这个数学模型。
广东财经大学华商学院HUASHANG COLLEGEGUANGDONG UNIVERSITY OF FINANCE&ECONOMICS论文题目:子女身高对父母身高的再回归分析姓名:李涛学号:413240126班级: 13市场营销5班姓名:赖伟成学号:413060219 班级: 13市场营销5班姓名:黄超学号:413060212 班级:13市场营销5班目录一、摘要 (1)二、问题的提出 (1)三、问题的重述 (2)四、问题的假设....................................................................五、定义与符号说明......................................................六、模型的建立与求解....................................................................七、模型的检验......................................................八、模型的评价与改进........................................................九、参考文献..................................................................子女身高对父母身高的再回归分析摘要在现实生活中, 人们都知道父母身高对子女身高是有影响的, 但是以分析为背景提出了三个问题,本文运用几何知识、非线再回归分析模型等方法成功解决了这三个问题,通过这个方程分析出, 子女身高有回归平均身高的倾向, 人们利用“回归”的思想和方法在自然科学和社会科学的许多领域通过建立回归模型, 揭示了一个又一个问题的内在规律, 并使其得到了深入广泛的应用, 从而也推动了科学和社会的进步。
什么就是回归分析回归分析(regression analysis)就是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。
运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析与多元回归分析;按照自变量与因变量之间的关系类型,可分为线性回归分析与非线性回归分析。
如果在回归分析中,只包括一个自变量与一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量与自变量之间就是线性关系,则称为多元线性回归分析。
回归分析之一多元线性回归模型案例解析多元线性回归,主要就是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:毫无疑问,多元线性回归方程应该为:上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:那么,多元线性回归方程矩阵形式为:其中:代表随机误差, 其中随机误差分为:可解释的误差与不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须就是服成正太分别的随机变量。
2:无偏性假设,即指:期望值为03:同共方差性假设,即指,所有的随机误差变量方差都相等4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。
今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。
通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。
数据如下图所示:(数据可以先用excel建立再通过spss打开)点击“分析”——回归——线性——进入如下图所示的界面:将“销售量”作为“因变量”拖入因变量框内, 将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,您也可以选择其它的方式,如果您选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)如果您选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该就是跟“因变量”关系最为密切,贡献最大的,如下图可以瞧出,车的价格与车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0、05,当概率值大于等于0、1时将会被剔除)“选择变量(E)" 框内,我并没有输入数据,如果您需要对某个“自变量”进行条件筛选,可以将那个自变量,移入“选择变量框”内,有一个前提就就是:该变量从未在另一个目标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:点击“统计量”弹出如下所示的框,如下所示:在“回归系数”下面勾选“估计,在右侧勾选”模型拟合度“与”共线性诊断“两个选项,再勾选“个案诊断”再点击“离群值”一般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值) 点击继续。
多元线性回归黄冈职业技术学院数学建模协会胡敏作业:在农作物害虫发生趋势的预报研究中,所涉及的5个自变量及因变量的10组观测数据如下,试建立y对x1-x5的回归模型,指出那些变量对y有显著的线性贡献,贡献大小顺序。
x1 x2 x3 x4 x5 y9.200 2.732 1.471 0.332 1.138 1.1559.100 3.732 1.820 0.112 0.828 1.1468.600 4.882 1.872 0.383 2.131 1.84110.233 3.968 1.587 0.181 1.349 1.3565.600 3.732 1.841 0.297 1.815 0.8635.367 4.236 1.873 0.063 1.352 0.9036.133 3.146 1.987 0.280 1.647 0.1148.200 4.646 1.615 0.379 4.565 0.8988.800 4.378 1.543 0.744 2.073 1.9307.600 3.864 1.599 0.342 2.423 1.104编写程序如下:data ex;input x1-x5 y@@;cards;9.200 2.732 1.471 0.332 1.138 1.155 9.100 3.732 1.820 0.112 0.828 1.146 8.600 4.882 1.872 0.383 2.131 1.841 10.233 3.968 1.587 0.181 1.349 1.356 5.600 3.732 1.841 0.297 1.815 0.8635.367 4.236 1.873 0.063 1.352 0.9036.133 3.146 1.987 0.280 1.647 0.114 8.200 4.646 1.615 0.379 4.565 0.898 8.800 4.378 1.543 0.744 2.073 1.9307.600 3.864 1.599 0.342 2.423 1.104 ;proc reg;model y=x1 x2 x3 x4 x5/cli;run;运行结果如下:(1)回归方程显著性检验.Analysis of VarianceSum of MeanSource DF Squares S quare F Value Pr > FModel 5 2.252070.45041 11.63 0.0170Error 4 0.154970.03874Corrected Total 9 2.40704Root MSE 0.19683 R-Square 0.9356Dependent Mean 1.13100 Adj R-Sq 0.8551Coeff Var 17.40333由Analysis of Variance表可知,其F Value=11.63,Pr > F的值0.0170小于0.05,故拒绝原假设,接受备择假设,认为y与x1 x2 x3 x4 x5之间具有显著性相关系;由R-Square的值为0.9356可知该方程的拟合度高,样本观察值有93.6%的信息可以用回归方程进行解释,故拟合效果较好,认为y与x1 x2 x3 x4 x5之间具有显著性的相关关系。
2024年数学建模——线性回归分析实用精彩教案一、教学目标1.让学生理解线性回归分析的基本概念和方法。
2.培养学生运用线性回归分析解决实际问题的能力。
3.培养学生的团队协作精神和创新意识。
二、教学内容1.线性回归分析的基本概念2.线性回归方程的求解3.线性回归模型的检验4.实际案例分析与讨论三、教学过程1.导入同学们,大家好!今天我们要学习的是数学建模中的一种重要方法——线性回归分析。
在实际生活中,我们经常会遇到一些变量之间的关系,如何用数学的方法来描述这些关系呢?让我们一起学习线性回归分析的基本概念和方法。
2.线性回归分析的基本概念(1)线性回归模型:描述两个变量之间关系的数学模型,其中一个变量是自变量,另一个变量是因变量。
(2)线性回归方程:描述线性回归模型的数学方程,形式为y=a+bx,其中a是常数项,b是回归系数。
3.线性回归方程的求解(1)最小二乘法:求解线性回归方程的一种方法,通过使实际观测点到回归直线的距离平方和最小来确定回归系数。
(2)计算步骤:a.收集数据,绘制散点图。
b.根据散点图,初步判断变量之间是否存在线性关系。
c.利用最小二乘法求解回归系数。
d.写出线性回归方程。
4.线性回归模型的检验(1)拟合优度检验:通过计算判定系数R²来评估回归模型的拟合程度。
(2)假设检验:利用t检验和F检验来评估回归系数的显著性。
5.实际案例分析与讨论案例1:某地区房价与收入关系的研究(1)收集数据:收集某地区近年来的房价和收入数据。
(2)绘制散点图:观察房价和收入之间的关系。
(3)求解线性回归方程:利用最小二乘法求解回归系数。
(4)模型检验:计算判定系数R²,进行假设检验。
(5)结论:根据线性回归方程和模型检验结果,分析房价与收入之间的关系。
案例2:某企业产量与广告费用关系的研究(1)收集数据:收集某企业近年来的产量和广告费用数据。
(2)绘制散点图:观察产量和广告费用之间的关系。
11.1抗生素显著性检验问题摘要在已知抗生素效果情况服从正态分布,且方差相同条件下。
通过用SPSS13.0软件编写程序,进行单因素方差分析。
检验五种抗生素之间是否存在明显差异。
关键词:抗生素方差分析显著性检验一问题重述抗生素注入人体后会与人体血浆蛋白质结合,以致减少了药效。
现在将常用的抗生素注入到牛的体内,得到抗生素与血浆蛋白质结合的百分比。
在总体服从正态分布,且方差相同的条件下分析五种抗生素效果是否存在显著性差异。
二问题分析题目显示各类抗生素效果情况服从正态分布,为了进一步说明抗生素使用效果的差异,需要检查不同抗生素是否有显著性差异,即对数据进行显著性检验。
首先,应该提出抗生素之间没有显著性差异的假设。
然后通过SPSS13.0版本软件进行单因素方差检验[1]。
验证假设是否成立。
三模型假设四符号说明五模型建立与求解题目显示各类抗生素与血浆蛋白质结合的百分比情况属于正态总体,要对各类抗生素是否存在显著性差异。
应用软件SPSS13.0进行单因素方差检验。
其检验步骤如下:Step1. 提出假设:H:各类抗生素之间没有显著性差异;H:各类抗生素之间有显著性差异。
1α0.05。
Step2. 选定显著性水平=Step3. 用软件SPSS13.0进行单因素方差检验用SPSS13.0编写程序得到问题的解:即不同抗生素效果明显不同。
(各抗生素之间具体分析见附录一)六模型评价与改进参考文献[1]薛薇 ,《SPSS统计分析方法及应用》,出版地:电子工业出版社,2009。
[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
[编号] 作者,资源标题,网址,访问时间(年月日)。
附录附录一PSS13.0编写程序得到问题的解:11.2化肥与小麦种子的不同对小麦产量的影响问题摘要化肥与小麦的品种的差异将影响小麦的产量,进而影响农民的生活水平。
本文建立数学模型,就化肥的不同,小麦品种的不同这两种因素定量分析化肥与小麦品种对小麦实际产量的影响。
回归分析在数模竞赛中的应用§1 回归分析的基本思想在实际问题中,我们会遇到各种变量,在变量与变量之间,往往存在着各种关系。
有些变量之间的关系是确定性的函数关系,例如,圆的半径R 与圆面积S 之间的关系2R S π=,自由落体落下的时间t 与落下的距离h 之间的关系221gt h =,等等。
在这些关系中,只要自变量的值确定了,因变量的值也就随之确定了。
但是,有些变量之间的关系就不是这样,例如,农作物的施肥量x 与农作物的产量y 之间的关系,商品的价格x 与商品的销售量y 之间的关系,家庭的收入x 与家庭的支出y 之间的关系,父亲的身高x 与儿子的身高y 之间的关系,等等。
在这些关系中,自变量x 的值确定了,因变量y 的值并不完全随之确定,还是可能有上下起伏的变化。
同时,在这些关系中,自变量x 与因变量y 又不是完全无关的,通过大量的统计数据,可以发现,它们之间确实存在着某种关系。
我们把这样的关系,称为统计相关关系。
回归分析(Regression Analysis ),就是研究变量之间的统计相关关系的一种统计方法。
它从自变量和因变量的一组观测数据出发,寻找一个函数式,将变量之间的统计相关关系近似地表达出来。
这个能够近似表达自变量与因变量之间关系的函数式,称为回归方程或回归函数。
§2 回归分析问题的一般形式设有m 个自变量 m x x x ,,,21 和1个因变量 y ,它们之间有下列关系:ε+=),,,;,,,(2121p m a a a x x x F y ,其中,F 是函数形式已知的 m 元函数,p a a a ,,,21 是常数,是函数 F 中的未知参数,ε 是表示误差的随机变量,一般可认为 ε~),0(2σN ,0>σ 。
对 m x x x ,,,21 ,y 进行 n 次观测,得到观测值:),,,,(21i m i i i y x x x ,n i ,,2,1 = 。