《认识一元一次方程 第1课时 一元一次方程有关概念》练习题
- 格式:ppt
- 大小:1.36 MB
- 文档页数:9
3.1.1 一元一次方程练习题考点一.方程的概念1、含有的等式叫方程。
考点二.一元一次方程的概念1.只含有个未知数,未知数的次数都是次的方程,叫做一元一次方程。
考点三.列方程遇到实际问题时,要先设字母表示 ,然后根据问题中的 ,最后写出含有未知数的 ,就能列出方程.归纳:列方程解实际问题的步骤:第一步: ,第二步: ,第三步: .考点四.解方程及方程的解的含义解方程就是求出使方程中等号左右两边的的值,这个值就是方程的 .问题1:判断下列数学式子X+1, 0.5x-x, 2x-3=7, 3x+2=2x-5 , 2x2+3x-8=0,x+2y=7.是方程有_______________________________________ ,是一元一次方程有_______________________________【同步测控】1.自己编造两个方程: , .2.自己编造两个一元一次方程:, .问题2.根据问题列方程:1.用一根长24cm的铁丝未成一个正方形,正方形的变长是多少?2.一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间他到规定的检修时间2450小时?3.某校女生占全体学生数的52%,比男生多80人,这个学校有多少人?【同步测控】根据下列问题,设未知数,列出方程1.环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?2.甲种铅笔每只0.3元,乙种铅笔铅笔每只0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?【同步测控】1.一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上底.2.x的2倍于10的和等于18;3.比b的一半小7的数等于a与b的和;4.把1400元奖学金按照两种奖项将给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生多少人?问题三、判断方程的根1.判断下列各数X=1,x=2,x=-1,x=0.5.那个是方程2x+3=5x-3的解?2.当x=?时,方程3x-5=1 两边相等?3.1.2 等式的性质练习考点一.等式的基本性质11.等式两边 (或减)同一个数(或式子),结果仍 ;2.可以用数学语言表述为:如果a=b ,那么a b= ;2.用数字验证等式的基本性质1:如① ,② 。
第三章一元一次方程3.1.1一元一次方程(第1课时)1.判断下面所列的是不是方程:(1)25+2x=1;(2)2y-5=y+1;(3)2x-2x-3=0;(4)x-8;(5)x3x1--=2;(6)7+8=8+7.2.根据题意,用小学里学过的方法,列出式子:(1)扎西有零花钱10元,卓玛的零花钱是扎西的3倍少2元,求:扎西和卓玛一共有多少零花钱?(2)扎西和卓玛一共有22元零花钱,卓玛的零花钱是扎西的3倍少2元,求扎西有多少零花钱?3.判断正误:对的画“√”,错的画“×”.(1)方程x+2=0的解是2;()(2)方程2x-5=1的解是3;()(3)方程2x-1=x+1的解是1;()(4)方程2x-1=x+1的解是2. ()4.填空:(猜一猜,算一算)(1)方程x+3=0的解是x=;(2)方程4x=24的解是x=;(3)方程x+3=2x的解是x=.3.1.2等式的性质(第1课时)1.填空:(1)含有未知数的叫做方程;(2)使方程中等号左右两边相等的未知数的值,叫做;(3)只含有一个,的次数都是1,这样的方程叫做一元一次方程.2.判断下面所列的是不是方程,如果是方程,是不是一元一次方程:(1)1700+150x;(2)1700+150x=2450;(3)2+3=5;(4)2x2+3x=5.3.选择题:方程3x-7=5的解是()(A)x=2 (B)x=3(C)x=4 (D)x=54.填空:(1)等式的性质1可以表示成:如果a=b,那么a+c=;如果a=b,那么a-c=.(2)等式的性质2可以表示成:如果a=b,那么ac=;如果a=b(c≠0),那么ac=.5.利用等式的性质解下列方程:(1)x-5=6;(2)0.3x=45;(3)5x+4=0.6.利用等式的性质求方程2-14x=3的解,并检验.3.2解一元一次方程(一)(第1课时)1.完成下面的解题过程:用等式的性质求方程-3x+2=8的解,并检验.解:两边减2,得.化简,得.两边同除-3,得.化简,得x=.检验:把x=代入方程的左边,得左边===左边=右边所以x=是方程的解.2.填空:(1)根据等式的性质2,方程3x=6两边除以3,得x=;(2)根据等式的性质2,方程-3x=6两边除以-3,得x=;(3)根据等式的性质2,方程13x=6两边除以13,得x=;(4)根据等式的性质2,方程-13x=6两边除以-13,得x=;3.完成下面的解题过程:(1)解方程4x=12;解:系数化为1,得x=÷,即x=.(2)解方程-6x=-36;解:系数化为1,得x=÷,即x=.(3)解方程-23x=2;解:系数化为1,得x=÷,即x=.(4)解方程56x=0;解:系数化为1,得x=÷,即x=.4.完成下面的解题过程:解方程-3x+0.5x=10.解:合并同类项,得.系数化为1,得.5.解下列方程:(1)x2+3x2=7;(2)7x-4.5x=2.5×3-5.6.填框图:3.2解一元一次方程(一)(第2课时)1.填空:(1)方程3y=2的解是y=;(2)方程-x=5的解是x=;(3)方程-8t=-72的解是t=;(4)方程7x=0的解是x=;(5)方程34x=-12的解是x=;(6)方程-13x=3的解是x=.2.完成下面的解题过程:解方程3x-4x=-25-20.解:合并同类项,得.系数化为1,得.3.填空:等式的性质1:.4.填空:(1)根据等式的性质1,方程x-7=5的两边加7,得x=5+;(2)根据等式的性质1,方程7x=6x-4的两边减6x,得7x-=-4.5.完成下面的解题过程:解方程6x-7=4x-5.解:移项,得.合并同类项,得.系数化为1,得.6.将上题的解题过程填入框图:7.解方程:12x-6=34x.8.填空:(1)x+7=13移项得;(2)x-7=13移项得;(3)5+x=-7移项得;(4)-5+x=-7移项得;(5)4x=3x-2移项得;(6)4x=2+3x移项得;(7)-2x=-3x+2移项得;(8)-2x=-2-3x移项得;(9)4x+3=0移项得;(10)0=4x+3移项得.3.3解一元一次方程(二)(第1课时)1.填空:(1) x+6=1移项得;(2) -3x=-4x+2移项得;(3) 5x-4=4x-7移项得;(4) 5x+2=7x-8移项得.2.完成下面的解题过程:解方程2x+5=25-8x.解:移项,得.合并同类项,得.系数化为1,得.3.解方程x2+6=x.4.填空:(1)式子(x-2)+(4x-1)去括号,得;(2)式子(x-2)-(4x-1)去括号,得;(3)式子(x-2)+3(4x-1)去括号,得;(4)式子(x-2)-3(4x-1)去括号,得.5.完成下面的解题过程:解方程4x+3(2x-3)=12-(x+4).解:去括号,得.移项,得.合并同类项,得.系数化为1,得.6.解方程6(12x-4)+2x=7-(13x-1).3.3解一元一次方程(二)(第2课时)1.完成下列解题过程:解方程5x-4(2x+5)=7(x-5)+4(2x+1).解:去括号,得.移项,得.合并同类项,得.系数化为1,得.2.填空:(1)6与3的最小公倍数是;(2)2与3的最小公倍数是;(3)6与4的最小公倍数是;(4)6与8的最小公倍数是.3.完成下面的解题过程:解方程7x54=38.解:去分母(方程两边同乘)得.去括号,得.移项,得.合并同类项,得. 系数化为1,得.4.解方程3x2-=x43-.5.完成下面的解题过程:解方程-7x54-=38.解:去分母(方程两边同乘)得.去括号,得.移项,得.合并同类项,得.系数化为1,得.6.解方程3x2-=-x43-.7.填空:(1)x16-=14去分母,得;(2) -x16-=14去分母,得;(3)x6=2x18+去分母,得;(4)x6=-2x18+去分母,得.3.3解一元一次方程(二)(第3课时)1. 填空:(1)x12-=x13+去分母,得;(2)x12-=x14+去分母,得;(3)x12-=-x14+去分母,得;(4)x16-=x14+去分母,得.2. 完成下面的解题过程:解方程x12-=-x14+.解:去分母(方程两边同乘)得.去括号,得.移项,得.合并同类项,得.系数化为1,得.3.填空:(1)2,10,5的最小公倍数是;(2)4,2,3的最小公倍数是;(3)2,4,5的最小公倍数是;(4)3,6,4的最小公倍数是.4.填空:(1)x13-=2-x16+去分母,得;(2)x13-+x=x16+去分母,得;(3)x13-+x=2-x16+去分母,得. 5.填空: (1)5x 14-=3x 12+-2x3-去分母,得 ; (2)2x 16+-x 14+=2-1x 3-去分母,得 ; (3) 3x 22+-1=2x 14--2x 15+去分母,得 . 6.完成下面的解题过程: 解方程 3x 12+-2=3x 210--2x 35+.解:去分母(方程两边同乘 )得: . 去括号,得 . 移项,得 . 合并同类项,得 . 系数化为1,得 . 解一元一次方程复习(第1课时) 1.填空:(以下空你最好直接填,实在想不起来,你可以在教材中找,这些内容是需要你认真理解并记住的;先用铅笔填,订正时用其它笔填) (1)含有未知数的 叫做方程. (2)只含有一个未知数,未知数的次数都是1,这样的方程叫做 . (3)使方程中等号左右两边相等的未知数的值,叫做 . (4)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍 ;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍 . (5)把等式一边的某项变号后移到另一边,叫做 . (6)解一元一次方程的一般步骤是: 、 、 、 、 . 2.不解方程,判断x =-2是下面哪个一元一次方程的解:(1)2(x +8)=3(x -1); (2)5x +(2-4x)=0. 3.完成下面的解题过程: 解方程12x 3-=x -3x 12+,并检验. 解:去分母,得.去括号,得 .移项,得 . 合并同类项,得 ;系数化为1,得 . 检验:将x = 代入方程的左边,得左边= = . 将x = 代入方程的右边,得 右边= = . 左边=右边,所以x = 是方程的解. 4.把上题的解方程过程填入框图:3.4实际问题与一元一次方程(第1课时) 1.完成下面的解题过程: 卓玛种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高15厘米,几周后树苗长高到100厘米? 解:设x 周后树苗长高到100厘米.根据题意,得 . 解方程,得 . 答: 周后树苗长高到100厘米. 2.列一元一次方程解应用题:汽车上共有1500千克苹果,卸下600千克,还有30箱,每箱苹果重多少?3.根据题意,列出方程:(1)某数的3倍加上5等于它的4倍减3,求某数.设某数为x,根据题意,得,.(2)某数减去14等于它的13,求某数.设某数为x,根据题意,得,.(3)用一根长24厘米的铁丝围成一个正方形,正方形的边长是多少?设正方形的边长为x厘米,根据题意,得,.(4)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?设经过x个月这台计算机的使用时间达到规定的检修时间2450小时,根据题意,得,.(5)用12元钱买了3个笔记本,找回1.2元,每个笔记本多少钱?设每个笔记本x 元,根据题意,得,.3.4实际问题与一元一次方程(第2课时)1.根据题意,列出方程:(1)某数的5倍比它的2倍多6,求某数.设某数为x,根据题意,得.(2)某数的34比它的67少1,求某数.设某数为x,根据题意,得. (3)扎西家今年底的存款将达到21000元,是去年底的2倍少3000元,求扎西家去年底的存款数.设扎西家去年底的存款为x 元,根据题意,得. (4)某商店对电脑购买者提供分期付款服务,顾客可以先付3000元,以后每月付1500元.单增叔叔想用分期付款的形式购买价值19500元的电脑,他需要多少个月才能付清全部贷款?设他需x个月才能付清全部贷款,根据题意,得. 2.完成下面的解题过程:洗衣机厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1﹕2﹕7,Ⅰ型洗衣机计划生产多少台?解:设Ⅰ型洗衣机计划生产x台,则Ⅱ型洗衣机计划生产台,Ⅲ型洗衣机计划生产台.根据题意,得.解方程,得.答:Ⅰ型洗衣机计划生台.3.填空:某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度.这个工厂去年上半年每月平均用电多少度?(1)设上半年每月平均用电x度,则下半年每月平均用电度;上半年共用电度,下半年共用电度.(2)根据全年用电15万度,列出方程:.3.4实际问题与一元一次方程(第3课时)1.根据题意,列出方程:(1)在一卷公元前1600年左右遗留下来的古埃及草卷中,记载着一些数学问题.其中一个问题翻译过来是:“啊哈,它的全部,它的17,其和等于19.”你能求出问题中的“它”吗?设问题中的“它”为x,根据题意,列方程得.(2)地球上的海洋面积为陆地面积的 2.4倍,地球的表面积为5.1亿平方公里,求地球上的陆地面积.设地球上陆地面积为x平方公里,根据题意,列方程得.(3)某中学初一年级,一班人数是全年级人数的16,二班人数50人,两个班级人数的和是98人.求该校初一年级的人数.设该校初一年级的人数为x,根据题意,列方程得.2.完成下面的解题过程:某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?(1)解:设这个足球场的长为x米,则宽为米.根据题意,列方程得.解方程得.这个足球场的宽==(米)答:这个足球场的长为米,宽为米.(2)解:设这个足球场的宽为x米,则长为米.根据题意,列方程得.解方程得.这个足球场的长==(米)答:这个足球场的宽为米,长为米.3.甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?(1)请你静下心来,仔仔细细把这道题默读几遍,弄清题目告诉了我们什么,要求的是什么.(2)如果设甲种铅笔买了x枝,那么乙种铅笔买了枝,买甲种铅笔用了元,买乙种铅笔用了元.(3)把这道题完整解一遍:解:设甲种铅笔买了x枝,则乙种铅笔买了枝.根据题意,列方程得.解方程得.乙种铅笔买的枝数==.答:甲种铅笔买了枝,乙种铅笔买了枝. 3.4实际问题与一元一次方程(第4课时)1.根据题意,列出方程:(1)卓玛是4月出生的,卓玛的年龄的2倍加上8,正好是卓玛出生那一月的总天数,求卓玛有多少岁.设卓玛有x岁,根据题意,列方程得.(2)蜘蛛有8条腿,蜻蜓有6条腿.现有一些蜘蛛和蜻蜓,它们共有120条腿,并且蜻蜓的只数是蜘蛛的2倍.蜘蛛、蜻蜓各有多少只?设蜘蛛有x只,则蜻蜓有只.根据题意,列方程得.(3)某校图书室用172元钱买了两种书,共10本,一种书每本的价格为18元,另一种书每本的价格为10元.每种书各买了多少本?设价格为18元的书买了x本,则价格为10元的书买了本.根据题意,列方程得.2.完成下面的解题过程:一家人分一些苹果,每人3个剩3个,每人4个差2个.全家有几口人?共有多少个苹果?(1)解:设全家有x口人.可以用两个式子来表示苹果总数,由此可得方程.解方程得.共有苹果个数== .答:全家有口人,共有个苹果.(2)思考题:(供学有余力的同学做)解:设共有x个苹果.可以用两个式子来表示全家的人口数,由此可得方程.解方程得.全家人口数== .答:共有个苹果,全家有口人.3.4实际问题与一元一次方程(第5课时)1.根据题意,列出方程:一个学生带钱到文具店买笔记本,若买3本就剩下1元,若买4本则差2元.笔记本每本多少元?这个学生共带了多少钱?(1)如果设笔记本每本x元,则这个学生所带的钱数可以用两个式子来表示,由此可列出方程.(2)思考题:如果设这个学生带了x元,则笔记本每本的钱数也可以用两个式子来表示,由此可列出方程.2.完成下面的思考和解题过程:卓玛骑自行车从A村到B村,用了0.5小时;扎西走路从A村到B村,用了1.5小时.已知卓玛的速度比扎西的速度每小时快10千米,求扎西走路的速度.(1)设扎西走路的速度为每小时x千米,根据题意,在下面的图中填空:B村A(2) 解:设扎西走路的速度为每小时x千米,则卓玛骑自行车的速度为每小时千米.根据卓玛骑自行车的路程与扎西走路的路程相等,列方程得.解方程得.答:扎西走路的速度为每小时千米.3.根据题意,列出方程:(1)墙上钉着用一根彩绳围成的梯形的装饰物,如下图实线所示.德吉将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如右图虚线所示.德吉所钉长方形的长为多少厘米?设德吉所钉长方形的长为x,根据梯形周长与长方形周长相等,列方程得s.(2)思考题:如下图,汽车匀速行驶,从A县城开到C县城用了3小时;从A县城开到B县城用了2小时.已知B县城距C县城60千米,A县城到B县城有多远?设A县城到B县城有x千米,则A县城到C县城有千米.根据:汽车从A县城开到C县城的速度=汽车从A县城开到B县城的速度列方程得.3.4实际问题与一元一次方程(第6课时)1.根据题意,列出方程:(1)如图,用长为10米,宽为8米的长方形铁丝围成一个正方形,此时正方形的边长是多少米?设此时正方形的边长是x 米,根据长方形与正方形的周长相等,列方程得.(2)思考题:将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?设高变成了x厘米,根据锻压前后的体积相等,列方程得.(提示:圆柱体积=底面积×高)2.完成下面的思考和解题过程:甲组有10人,乙组有14人.现在另增调12人加入到甲组或乙组,要使甲组人数是乙组人数的12,甲组和乙组各应增调多少人?6 610101010C县城B县城A县城8米10米(1)请你用摆学具的方法解出这道题.(2)设甲组应增调x人,则乙组应增调12,列方程得.(4)通过上面的思考,将本题完整地解一遍.解:设甲组应增调x人,则乙组应增调人.根据题意,得.解方程得.乙组应增调的人数== .答:甲组应增调人,乙组应增调人.3.4实际问题与一元一次方程(第7课时)1.填空:我们已经学习的三个基本相等关系是:(1)总量=的和;(2)表示的两个不同式子相等;(3)一个量=另一个量的或几分之几.2.根据题意,列出方程:小巴桑今年6岁,他的波啦72岁.几年后,小巴桑的年龄是他波啦的14?设x年后,小巴桑的年龄是他波啦年龄的14.根据题意,得.3.探究题:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?(为了帮助学生理解题意,教师可以在学生探究前,边读题边演示螺钉和螺母)(1)请你默读题目,一直读到可以不看题目说出题目的意思.(2)不看题目,同桌之间互相说一说这道题目的意思.(3)如果设分配x名工人生产螺钉,则有名工人生产螺母,这个车间每天生产螺钉个,每天生产螺母个.(4)一个螺钉要配两个螺母,为了使这个车间每天的产品刚好配套,应使生产的螺母数量恰好是螺钉数量的,根据这一相等关系,列方程得.(5)这道题完整的解答过程是:解:设分配x名工人生产螺钉,则有名工人生产螺母.根据螺母数量与螺钉数量关系,列方程得.解方程得.生产螺母的人数==.答:应分配名工人生产螺钉,名工人生产螺母.4.按下面的设法解探究题:解:设分配x名工人生产螺母,则有名工人生产螺钉.根据螺母数量与螺钉数量关系,列方程得.解方程得.生产螺钉的人数==.答:应分配名工人生产螺母,名工人生产螺钉.作业:某中学发起“献爱心希望工程”捐款活动.该校共有师生2200人,教师每人捐100元,学生每人捐5元,结果学生捐款数只有教师的一半.这个中学师生各有多少人?该校师生共捐了多少钱?选做题:P108习题3.3.4实际问题与一元一次方程(第8课时) 1.利用“路程=速度×时间”列整式: (1)扎西骑自行车,每分钟骑500米,x 分钟骑了 米; (2)扎西骑自行车,每分钟骑500米,先骑了3分钟,后又骑了x 分钟,他一共骑了 米; (3)扎西骑自行车,每分钟骑500米,边巴骑摩托车,每分钟骑1000米,x 分钟两人一共骑了 米.4.完成下面的思考和解题过程: 扎西家与边巴家相距6000米,扎西要尽快把一件重要的东西交给边巴,扎西先骑自行车从家里出发,3分钟后边巴骑摩托车也从家里出发.扎西每分钟骑500米,边巴每分钟骑1000米.边巴出发几分钟后他们在路上相遇?(1) 反复仔细读这道题,你发现本题与例1的区别在什么地方?(2) 如果设边巴出发x 分钟后他们在路上相遇,根据题意,填图.骑了 分钟 骑了 分钟相遇扎西家边巴家 (3)从上图,你发现了什么相等关系,根据这一相等关系,你列出的方程是 . (4)根据上面的审题和分析,请你完成下面的解题过程: 解:设边巴出发x 分钟后他们在路上相遇. 根据题意,列方程得 . 解方程得 . 答:边巴出发 分钟后他们在路上相遇. 3.4实际问题与一元一次方程(第9课时) 1.扎西家与边巴家相距6000米,扎西要尽快把一件重要的东西交给边巴,扎西先骑自行车从家里出发,扎西骑了1500米后边巴骑摩托车也从家出发.扎西每分钟骑500米,边巴每分钟骑1000米.边巴出发几分钟后他们在路上相遇?(1)设边巴出发x 分钟后他们在路上相遇,根据题意填图.骑了分钟骑了分钟 相遇 家边巴家(2)根据扎西的路程+边巴的路程=全程,你列出的方程是. 2.完成下面的思考和解题过程: 一天早上,扎西以每分钟80米的速度从家里出发上学去,5分钟后,扎西的巴啦发现扎西忘了带藏语书,于是巴啦以每分钟180米的速度去追扎西.巴啦追上扎西用了多长时间?(3) 设巴啦追上扎西用了x 分钟,根据题意填下图.家追上处(2) 解:设巴啦追上扎西用了x 分钟.根据题意,列方程得 . 解方程得 .答:巴啦追上扎西用了 分钟. 3.思考题:如果扎西家离学校只有700米,巴啦能否在路上追上扎西?为什么?3.4实际问题与一元一次方程(第10课时) 1.填空: (1)加工60个零件,甲单独做20小时完成,甲每小时加工零件 个;(2)加工60个零件,甲单独做20小时完成,甲4小时加工零件 个; (3)加工60个零件,甲单独做20小时完成,甲x 小时加工零件 个;(4)一件工作,甲单独做20小时完成,甲每小时完成工作的 ;(用分数表示)(5) 一件工作,甲单独做20小时完成,甲4小时完成工作的;(6) 一件工作,甲单独做20小时完成,甲x小时完成工作的.2.完成下面的思考和解题过程:一件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙一起做.剩下的部分需要几小时完成?(1)甲的工作效率=,乙的工作效率=.(2)如果设剩下的部分需要x小时完成,那么乙做了小时,甲共做了小时.(3)根据题意填图:甲工作 小时乙工作 小时(4)根据甲的工作量+乙的工作量=1列出方程.(5)解:设剩下的部分需要x小时完成.根据题意,列方程得.解方程得.答:剩下的部分需要小时完成.3.4实际问题与一元一次方程(第11课时)1.百分数与小数互化:(1)73%= (2)70%=(3)73.6%= (4)0.58=(5)0.5= (6)0.582=2.列整式填空:(1)全校学生人数为x,女生占全校学生数的52%,则女生人数是,男生人数是,女生人数比男生人数多;(2)电视机原价每台x元,现打“八折”销售,降价后每台卖元,降价后每台售价比原价少了元.3.根据题意,列出方程:(1)某校有女生480人,女生占全校学生48%.全校学生有多少人?设全校学生有x 人,根据题意,列方程得.(2)某校有男生520人,女生占全校学生48%.全校学生有多少人?设全校学生有x 人,根据题意,列方程得.(3)雪域商场为了促销决定对电视机打“八折”销售,降价后每台电视机售价比原价少了300元.打折后电视机售价多少元?设打折后电视机售价x元,根据题意,列方程得.3.4实际问题与一元一次方程(第12课时)1.填空:(1)某厂去年的产值是100万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元;(2)某厂去年的产值是200万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元;(3)某厂去年的产值是x万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元.2.选择题:某公司去年的产值是400万元,今年的产值是500万元,则今年比去年增长().(A)20% (B)25% (C)80% (D)125%3.辨析题:已知今年的产值比去年增长10%,扎西认为:今年比去年提高的产值=今年的产值×10%;卓玛不同意,她认为:今年比去年提高的产值=去年的产值×10%.你同意谁的观点,为什么?4.根据题意,列出方程:(1)某公司今年的产值是500万元,今年比去年增长25%.这个公司去年的产值是多少万元?设这个公司去年的产值是x万元,根据题意,列方程得.(2)把青稞磨成糌粑,重量要减轻6%.要得到8千克糌粑,需要青稞多少千克?(提示:青稞重量-减轻重量=糌粑重量)设需要青稞x千克,根据题意,列方程得.(3)一家商店将某种服装按成本价提高40%后标价,每件标价为175元.这种服装每件成本价是多少元?设这种服装每件的成本价是x元,根据题意,列方程得.5.思考题:一家商店将某种服装按成本价提高40%后标价,又以8折(也就是按标价的80%)卖出,结果每件仍获得利润15元,这种服装每件的成本价是多少元?(提示:每件服装的利润=每件服装的售价-每件服装的成本价)如果设每件服装的成本价为x 元,那么每件服装的标价为;每件服装的实际售价为;每件服装的利润为;由此,列出方程.解方程得.因此每件服装的成本价是元.第三章一元一次方程复习(第1、2、3课时)1.填空:(以下内容是需要你认真理解并记住的;先用铅笔填,订正时用其它笔填)(1)含有的等式叫做方程.(2)只含有未知数,未知数的次数都是,这样的方程叫做一元一次方程.(3)使方程中等号左右两边的未知数的值,叫做方程的解.(4)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍.(5)把等式一边的某项后移到另一边,叫做移项.(6)解一元一次方程的一般步骤是:去分母、、、、.(7)列方程解应用题的步骤是:审题、、、、.(8)三个基本的相等关系是:总量=各部分量的,表示的两个不同式子相等,一个量=另一个量的几倍或.(9)路程=×时间,工作量=×工作时间,增长的量=×原来的量.2.选择题:不解方程,指出下列方程中解为x=5的是().(A)12x3x1532-+=-(B)12x3x1532-+=-(C)12x3x1532-+=+(D)3x112x523+-=+3.填空:(1)方程x+ax-1=0的解为x=14,则a=.(2)当x=时,2x+3的值与5x+6的值相等.4.完成下面的解题过程:解方程x22x3146+--=.解:去分母,得.去括号,得.移项,得.合并同类项,得;系数化为1,得.5.根据题意,列出方程:(1)一个数的17与3的差等于最大的一位数,求这个数.设这个数为x,根据题意,列方程得.(2)第一块实验田的面积比第二块实验田的3倍还多100平方米,这两块实验田共2900平方米,第一块实验田是多少平方米?设第一块实验田的面积是x平方米,根据题意,列方程得.(3)用一根长为10米的铁丝围成一个长方形,使得该长方形的长比宽多1.4米,长方形的长为多少米?设长方形的长为x 米,根据题意,列方程得.(4)儿子今年13岁,父亲今年40岁,几年前父亲的年龄是儿子的4倍?设x年前父亲的年龄是儿子的4倍,根据题意,列方程得. (5)教室里的课桌每行8张就多3张,每行9张就差3张,教室里有几行课桌?设教室里有x张课桌,根据题意,列方程得. (6)香巴拉果汁店中的A种果汁比B种果汁贵1元,扎桑和同学要了3杯B种果汁、2杯A种果汁,一共花了16元.B种果汁的单价是多少元?设B种果汁的单价是x元,根据题意,列方程得. (7)某文件需要打印,尼玛独立做需要6小时完成,米玛独立做需要8小时完成.如果他们俩共同做,需几小时完成?设需要x小时完成,根据题意,列方程得. (8)冲吉到鞋店花了188元买了一双皮鞋,这双皮鞋是按标价打8折后售出的,这双鞋的标价是多少元?设这双鞋的标价是x 元,根据题意,列方程得.(9)平措存了一个一年期的储蓄,年利率为3%,(也就是一年增长3%)一年后能取5150元,他开始存了多少元?设他开始存入x 元,根据题意,列方程得.(10)一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少元?设这种商品的成本价是x元,根据题意,列方程得.6.有一列数,按一定规律排列成1,3,5,7,9,…,其中某三个相邻数的和是177,这三个各是多少?7.探究题:扎西的手机,每月按这样的标准交费:每月月租费30元,每分钟通话费0.3元;卓玛的手机,每月按这样的标准交费:没有月租费,每分钟通话费0.4元.(1)你认为扎西合算还是卓玛合算,说说你的理由.(2)在一个月内,扎西通话200分钟,这个月扎西需交话费元,卓玛也通话200分钟,这个月卓玛需交话费元,请你比较这个月谁的话费交得少.(3)在一个月内,扎西通话350分钟,这个月扎西需交话费元,卓玛也通话350分钟,这个月卓玛需交话费元,请你比较这个月谁的话费交得少.(4)在一个月内通话多少分钟,这个月扎西和卓玛需交的话费一样多?解:设在一个月内通话x分钟,根据这个月扎西和卓玛需交的话费一样多,列方程得.解方程得.答:在一个月内通话分钟,这个月扎西和卓玛需交的话费一样多.(5)通过上面的讨论和探究,关于扎西合算还是卓玛合算,你得出了什么结论?与其他同学交流你的结论.。
人教版七年级数学上册《一元一次方程》练习题-带答案学校:___________班级:___________姓名:___________考号:___________1.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=∣∣,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及A ,B 之间的距离. (2)若点A 向右运动,速度为 10 单位长度/秒,点B 向左运动,速度为 20 单位长度/秒,点A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位长度/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 t (0t 10<<),在运动过程中①OA PB MN - 的值不变;② OA PBMN+ 的值不变,可以证明,只有一个结论是正确的,请你找出正确的结论并求值.2.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及 A ,B 之间的距离.(2)若点 A 向右运动,速度为 10 单位长度/秒,点 B 向左运动,速度为 20 单位长度/秒,点 A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点 A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点 P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 ()010t t <<,请证明在运动过程中OA PB MN + 的值不变,并求出OA PBMN+值. 3.在数轴上,点A B 、分别表示数a b 、,且6100a b ++-=,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动,点M 始终为线段AP 的中点,设点P 运动的时间为x 秒.则:()1在点P 运动过程中,用含x 的式子表示点P 在数轴上所表示的数.()2当2PB AM =时,点P 在数轴上对应的数是什么?()3设点N 始终为线段BP 的中点,某同学发现,当点P 运动到点B 右侧时,线段MN 长度始终不变.请你判断该同学的说法是否正确,并加以证明.4.我们可以将任意三位数表示为abc =(其中a 、b 、c 分别表示百位上的数字,十位上的数字和个位上的数字,且0a ≠).显然,10010abc a b c =++;我们把形如xyz 和zyx 的两个三位数称为一对“姊妹数”(其中x 、y 、z 是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”.(1)写出任意三对“姊妹数”,并判断2331是否是一对“姊妹数”的和; (2)如果用x 表示百位数字,求证:任意一对“姊妹数”的和能被37整除. 5.已知关于x 的方程2233x x +=+的两个解是1223,3x x ==; 又已知关于x 的方程2244x x +=+的两个解是1224,4x x ==; 又已知关于x 的方程2255x x +=+的两个解是1225,5x x ==;⋯小王认真分析和研究上述方程的特征,提出了如下的猜想. 关于x 的方程22x c x c +=+的两个解是122,x c x c==;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题. (1)关于x 的方程221111x x+=+的两个解是1x = 和2x = ;(2)已知关于x 的方程2212111x x +=+-,则x 的两个解是多少? 6.如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…都是“妙数”. (1)若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为 .(2)证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除.(3)在某个三位“妙数”的左侧放置一个一位自然数m 作为千位上的数字,从而得到一新的四位自然数A ,且m 大于自然数A 百位上的数字,否存在一个一位自然数n ,使得自然数(9A+n )各数位上的数字全都相同?若存在请求出m 和n 的值;若不存在,请说明理由. 7.如图,已知数轴上点A 表示的数为a ,B 表示的数为b ,满足16120a b -++=.动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.(1)写出数轴上点A 表示的数是 ,点B 表示的数是 ;(2)若点P 从A 点出发向左运动,点Q 为AP 的中点,在点P 到达点B 之前,求证BA BPBQ+为定值;(3)现有动点M ,若点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,当点P 到达原点O 后M 立即以每秒2个单位长度的速度沿数轴向左运动,求:当3OP OM =时,则P 点运动时间t 的值为 .8.【阅读理解】点A 、B 在数轴上对应的数分别是a ,b ,且()2280a b ++-=.A 、B 两点的中点表示的数为2a b+;当b a >时,A 、B 两点间的距离为AB b a =-. (1)求AB 的长.(2)点C 在数轴上对应的数为x ,且x 是方程282x x +=-的解,在数轴上是否存在点P ,使图1 图2(1)a可以用含e的代数式表示为____________;(2)若42++=时,求出图2中c所表示的日期;a e i(3)在这个月的日历中,求证:e f h i+++的值能被4整除.参考答案:1.【答案】(1)点A,B 两点在数轴上对应的数分别为-100,200,A,B 之间的距离为300(2)点 P 移动的路程为270或330个单位长度 (3)②正确2OA PBMN+= 2.【答案】(1)解:()21002000x y ++-=1000x ∴+= 2000y -=解得100x =- 200y =即点A ,B 两点在数轴上对应的数分别为-100,200,A ,B 之间的距离为300; (2)解: 设点P 运动时间为x 秒时,A ,B 两点相距30个单位长度. 由题意得102030030x x +=- 102030030x x +=+ 解得:9x =,或11x = 则此时点P 移动的路程为309270⨯=,或 3011330⨯=即P 走的路程为 270 或 330;(3)解:运动t 秒后A ,P ,B 三点所表示的数为10010t -+ 30t 20020t +010t <<20010PB t ∴=- 10010OA t =- 301001020100PA t t t =+-=+ 20020OB t =+M ,N 分别是AP ,OB 的中点∴N 表示的数为10010t +,M 表示的数为2050t -15010MN t ∴=-30020OA PB t +=- 2OA PBMN+∴=. 3.【答案】(1)62x -+;(2)P 点在数轴上表示的数为2;(3)正确,MN 的长度不变,为定值84.【答案】解:(1)根据题意得:234与432,345与543,567与765均是一对姊妹数; 设这对“姊妹数”的一个三位数的十位数为b ,则个位数为(b -1),百位数为(b +1),其中位“妙数”,再将四位“妙数”减去任意一个两位“妙数”之差再加上1的结果除以11判断结果是否为整数即可;(3)设三位“妙数”的个位为z ,可知A=1000m+111z+210,继而可得9A+n=9000m+999z+1890+n=1000(9m+z+1)+800+90+n ﹣z ,由﹣8≤n﹣z≤9、1000(9m+z+1)≤1000(9×9+9+1)=91000知其百位数一定是8,且该数为5位数,若存在则该数为88888,从而得出1000(91)88000{9088m z n z ++=+-=,即9m+z=87、n ﹣z=﹣2,由m >z+2知z <m ﹣2,而z=87﹣9m <m ﹣2,解之可得m >8.9,即可得m 值,进一步即可得答案. 7.【答案】(1)解:∵16120a b -++= ∴160-=a 120b += ∴16a = 12b =-∴点A 表示的数是16,点B 表示的数是12-. 故答案为:16;-12.(2)证明:∵点A 表示的数是16,点B 表示的数是12- ∴161228AB () 12OB = 16OA =∵动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,运动时间为t 秒 ∴4AP t = 284BP AB AP t =-=- ∵点Q 为AP 的中点 ∴114222AQ AP t t ==⨯= ∴282BQ AB AQ t =-=-在点P 到达点B 之前,即0<t <7时282845642282282BA BP t tBQ t t++--===-- ∴BA BPBQ+为定值. (3)∵点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,运动时间为()1643125t t解得:2011t=当点M在原点O的右侧,点512OM t=-16OP=()1643512t t解得:5219t=当点P到达原点O时,运动时间为这时点M在原点O的右侧,22)3(82t 解得:2125t=1212 45t t+=+=②当点M在原点∴228OM t =- 24OP t = ∵3OP OM = ∴22)43(28t t解得:212t =∴1241216t t t =+=+= (秒)综上所述,当3OP OM =时,则P 点运动时间t 的值为2011秒或5219秒或325秒或16秒.故答案为:2011秒或5219秒或325秒或16秒.8.【答案】(1)解:22(8)0a b ++-=∴2,8a b =-= ∴10AB =(2)解:282x x +=-∴10x =-∴点C 表示的数为10-设点P 对应的数为y ,由题可知,点P 不可能位于点A 的左侧,所以 ①当点P 在点B 右侧∴(8)[(2)](10)y y y -+--=-- ∴16y =②当点P 在A B 、之间 ∴(8)[(2)](10)y y y -+--=-- ∴0y =综上所述,点P 对应的数为16或0(3)证明:设运动时间为t ,则点E 对应的数是t ,点M 对应的数是28t -- 点N 对应的数是85t +P 是ME 的中点又Q)解:2,=-a c=+6,e c ia42c++=614)解:1,=+f e+=++i e ee+能被4整除4(4)∴e f i+++能被410.【答案】(1)证明:设则其“添彩数”与“减压数”分别为:第 11 页 共 11 页 =110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y -6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9, 则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数 ∴N 的值为17.。
第1讲一元一次方程初步一、基本概念(1)字母乘字母,字母乘数字,字母乘括号,数字乘括号时,乘号“×”可以用“·”代替,也可以省略不写。
如,a×b可以写作a·b或ab。
如,a×13可以写作a·13或13a,不能写作a13。
这就是说,字母乘数字省略乘号时,数字只能写在字母的前面。
如,(x+y)×a可以写作(x+y)·a或(x+y)a,也可以写作a(x+y)。
如,(x+y)×4可以写作(x+y)·4或4(x+y)。
这就是说,数字乘括号省略乘号时,数字只能写在括号的前面。
注意:①数字乘数字时,乘号不能使用“·”,也不可以省略。
②加号、减号和除号不能省略。
a中,a叫做底数,n (2)乘方的定义:求n个相同因数的积的运算叫作乘方。
乘方的结果叫作幂。
在na也可以读作a的n次幂。
叫作指数(次数)。
n等式的概念(3)等式的定义:表示相等关系的式子叫作等式。
等式由以下三部分组成:等式的左边、等式的右边和等号。
根据等式的组成,我们可以判断一个式子是否是等式。
以下式子都是等式:30+20=50 a+b=88 S=π2r80-8=72 100+x=980 a=0等式有如下两个性质:性质1:等式两边加(或减)同一个数(或式子),等式仍然成立。
性质2:等式两边乘同一个数,或除以同一个不为0的数,等式仍然成立。
(4)方程的定义:含有未知数的等式叫作方程。
在方程中,通常用字母x、y、z……表示未知数。
等式和方程的关系:等式包含方程,方程是等式的部分;也就是说,方程都是等式,但等式不一定都是方程。
注意:不管是等式还是方程,都含有等号。
如,80-8=72是等式,但不是方程,因为其中不含有未知数。
又如,100+x=980既是方程,又是等式,【例题1】判断下面各式是否是等式,是的画“√”,不是的画“×”。
① 13+8x=25 ( )② 7.9x=2.5 +21 ( )③ 5x+89-3x+10 ( )④x+2<3x ( )【练习1】判断下面各式是否是方程,是的画“√”,不是的画“×”。
小学一元一次方程练习题小学一元一次方程练习题一元一次方程是小学数学中的一个重要概念,它是解决实际问题的基础。
通过解一元一次方程,我们可以找到未知数的值,从而得出问题的答案。
下面,我将给大家提供一些小学一元一次方程的练习题,希望能够帮助大家更好地理解和掌握这个概念。
题目一:小明买了一些苹果,每个苹果的价格是3元。
他总共花了15元,请问他买了多少个苹果?解答:设小明买了x个苹果,根据题意可得方程3x=15。
我们可以通过解这个方程来求解x的值。
首先,我们将方程3x=15化简为x=15/3,得到x=5。
所以,小明买了5个苹果。
题目二:小华和小李一起去超市买水果。
小华买了一些苹果,每个苹果的价格是2元;小李买了一些橙子,每个橙子的价格是3元。
他们总共花了17元,请问小华买了多少个苹果,小李买了多少个橙子?解答:设小华买了x个苹果,小李买了y个橙子。
根据题意可得方程2x+3y=17。
我们可以通过解这个方程来求解x和y的值。
首先,我们将方程2x+3y=17化简为2x=17-3y,得到x=(17-3y)/2。
由于x和y都是整数,我们可以通过试探的方法来求解。
当y=1时,x=(17-3)/2=7。
当y=2时,x=(17-6)/2=5。
当y=3时,x=(17-9)/2=4.5,不符合题意。
所以,小华买了5个苹果,小李买了2个橙子。
题目三:小明和小红一起去商场买书包。
小明买了一个书包,价格是50元;小红买了一个书包,价格是x元。
他们总共花了90元,请问小红买书包花了多少钱?解答:设小红买书包花了y元。
根据题意可得方程50+y=90。
我们可以通过解这个方程来求解y的值。
首先,我们将方程50+y=90化简为y=90-50,得到y=40。
所以,小红买书包花了40元。
通过以上的练习题,我们可以看到一元一次方程在解决实际问题中的应用。
通过设定未知数和列方程,我们可以通过解方程来求解未知数的值,从而得到问题的答案。
掌握一元一次方程的解法对于小学生来说是非常重要的,它不仅可以帮助他们提高数学解题的能力,还可以培养他们的逻辑思维和问题解决能力。
一元一次方程练习题与答案一、选择题1,家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x元,以下方程正确的是()A. B. C.D.2. 今年“十.一”长假期间,我市磁器口古镇在10月1日接待游客约2.83万人,“2.83万”的有效数字和精确度为()A. 3个、十分位 B.3个、百位 C. 5个、十分位 D. 5个、百位3下列各组数中,不相等的一组是 ( )A.与 B.-与 C. -与 D.与4 .计算(-3)2+(-3)3-22+(-2)2的结果是( )A. 36B. -18C. -36D. 185.下列说法中正确的是()A. 0不是单项式B. 是整式C. -的系数是1D. -32的次数是36 。
某书店按标价的八折售出,仍可获利20﹪,若该书的进价为18元,则标价为( )A. 27元B. 28元C. 29元 D,30元7 、方程与方程的解相同,则a的值为()A. -5 B . -3 C. 3 D. 58 设a表示三位数, b表示两位数, 如果把a放在b的左边组成一个五位数, 可表示为( )A. abB. 1000 a + bC. a + bD. 100 a + b9. 甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m,设xs后甲可追上乙,则下列四个方程中不正确的是()A.7x=6.5x+5B.7x+5=6.5xC.(7-6.5)x=5D.6.5x=7x-510.某种手机卡的市话费上次已按原收费标准降低了b元/分钟,现在又下调20﹪,使收费标准为a元/分钟,那么原收费标准为()A. B. C. D.11.一项工程,甲单独做需天完成,乙单独做需天完成,两人合做这项工程所需天数为()A.B.C.D.12.小明把400元钱存入银行,年利率为1.8%,到期时小明得到利息36元,则她一共存了( ) A、6年 B、5年 C、4年 D、3年13,足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队进行了14场比赛,其中负5场,共得19分,那么这个队胜了()A.3场 B.4场 C.5场 D.6场14,我国股市交易中每买、卖一次需交千分之七点五的各种费用。
2020-2021 七年级上册习 卷教案一、选择题:(每题3分,共18分)1、下列等式变形正确的是 ( )A 、如果s =12ab,那么b = 2s a;B 、如果12x = 6,那么x = 3 C 、如果x - 3 = y - 3,那么x - y = 0; D 、如果mx = my,那么x = y2、方程12 x - 3 = 2 + 3x 的解是 ( ) A 、-2; B 、2; C 、-12; D 、123、关于x 的方程(2k -1)x 2-(2k + 1)x + 3 = 0是一元一次方程, 则k 值为( ) A 、0B 、1 C 、12D 、2 4、已知:当b = 1,c = -2时,代数式ab + bc + ca = 10, 则a 的值为( )A 、12B 、6 C 、-6D 、-12 5、下列解方程去分母正确的是( ) A 、由1132x x --=,得2x - 1 = 3 - 3x; B 、由232124x x ---=-,得2(x - 2) - 3x - 2 = - 4 C 、由131236y y y y +-=--,得3y+3 =2y -3y+1-6y; D 、由44153x y +-=,得12x -1=5y+20 6、某件商品连续两次9折降价销售,降价后每件商品售价为a 元,则该商品每件原价为( )A 、0.92aB 、1.12aC 、1.12aD 、0.81a7. 已知下列方程:①22x x-=; ②0.31x =; ③512x x =+; ④243x x -=;⑤6x =;⑥20x y +=.其中一元一次方程的个数是( ).A .2 B .3 C .4 D .58.已知x =-3是方程k (x +4)-2k -x =5的解,则k 的值是( )A.-2B.2C.3D.59.若代数式x -31x +的值是2,则x 的值是( )A .0.75B .1.75 C. 1.5 D .3.510.方程2x -6=0的解是( )A.3 B.-3 C.±3 D.3111. 一张试卷上有25道选择题:对一道题得4分,错一道得-1分,不做得-1分,某同学做完全部25题得70分,那么它做对题数为( ) A .17 B .18 C .19 D .2012. 甲数比乙数的41还多1,设甲数为x ,则乙数可表示为 ( ) A.141+x B.14-x C.)1(4-x D. )1(4+x 13.初一(一)班举行了一次集邮展览,展出的邮票比平均每人3张多24张,比平均每人4张少26张,这个班共展出邮票的张数是( ) A.164 B.178 C.168 D.174 A.40% B.20% C.25% D.15%16.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件赔25%,那么这两件衣服售出后商店是( ).A.不赚不赔 B. 赚8元 C.亏8元 D. 赚15元 17. (2008上海市)如果2x =是方程112x a +=-的根,那么a 的值是( )A .0B .2C .2-D .6- 18. 下列各式中,一元一次方程是( )(A )1+2t.(B )1-2x=0.(C )m 2+m=1.(D )x4+1=3. 19.下列变形中:①由方程125x -=2去分母,得x-12=10; ②由方程29x=92两边同除以29,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2-5362x x -+=两边同乘以6,得12-x-5=3(x+3).错误变形的个数是( )个. A .4 B .3 C .2 D .120.如果方程6x+3a=22与方程3x+5=11的解相同,那么a= ( )A. 103 B. 310 C. -103 D.- 31021.若式子5x-7与4x+9的值相等,则x 的值等于( ).A .2 B .16 C .29 D .16922.若x=2是k(2x-1)=kx+7的解,则k 的值为( )A .1 B .-1 C .7 D .-7 23.方程5174732+-=--x x 去分母得( ) A .2-5(3x-7)=-4(x+17) B .40-15x-35=-4x-68 C .40-5(3x-7)=-4x+68 D .40-5(3x-7)=-4(x+17) 24.若方程(a+2)x=b-1的解为21+-=a b x ,则下列结论中正确的是( ) A .a>b B .a<b C .a ≠-2且b ≠1 D .a ≠ -2且b 为任意实数25.方程2.0)25.0(3.003.025.0+=-+x x x 的解是( )A .179764-=x B .179764=x C .179765-=x D .179765=x 26.小明的爸爸买回两块地毯,他告诉小明小地毯的面积正好是大地毯面积的31,且两块地毯的面积和为20平方米,小明很快便得出了两块地毯的面积为(单位:平方米)( )A .340,320 B .30,10 C .15,5 D .12,827.在下列各式中,是方程的是( )A .0310>+y B .35=17+18C .881+xD .371=x 28.甲、乙二人去商店买东西,(他们所带钱数的比是7:6),甲用掉50元,乙用掉60元,则二人余下的钱数比为3:2,求二人余下的钱数分别是( )A .140元,120元B .60元,40元C .80元,80元D .90元,60元二、填空题:(每空3分,共36分)7、x = 3和x = - 6中,________是方程x - 3(x + 2) = 6的解.2020-2021七年级上册练习题 试卷教案2311、5与x 的差的13比x 的2倍大1的方程是__________.12、若4a -9与3a -5互为相反数, 则a 2- 2a + 1的值为_________.13、一次工程,甲独做m 天完成,乙独做比甲晚3天才能完成,甲、乙二人合作需要_______天完成. 14、解方程132x-=,则x=___.15、三个连续偶数的和为18,设最大的偶数为 x, 则可列方程_ _____. 16、甲水池有水31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,x 小时后, 乙池有水________吨 ,甲池有水_______吨 , ________小时后,甲池的水与乙池的水一样多. 11.若(1)60a x --=是关于x 的一元一次方程,则a 的值可为______. 12.当m =______ 时,式子273m -的值是-3. 13.关于x 的两个方程5x -3=4x 与ax -12=0的解相同,则a =_______.14.若a 、b 互为相反数,c 、d 互为倒数,p 的绝对值等于2,则关于x 的方程(a +b )x 2+3cd•x -p 2=0的解为________. 15.三个连续奇数的和是75,这三个数分别是__________________.16.某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是___________.17.已知|36|(3)0x y -++=,则32x y +的值是__________. 18.当x =______时,28x +的值等于-14的倒数. 19.商店进了一批服装,进价为320元,售价定为480元,为了使利润不低于20%,最多可以打_____折20.我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费. 如果某居民户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为________立方米21.在①21x -;②213x x +=;③π3π3-=-;④13t +=中,等式有__ __,方程有_______. 22.如果33-=-b a ,那么a =___其根据是_____________.23.方程434x x =-的解是x =_______. 24.当x =___时,代数式354-x 的值是1-. 25、已知等式0352=++m x是关于x 的一元一次方程,则m =____________.28.若23x =与3()5x a a x +=-有相同的解,那么1a -=_______. 29.关于方程543=+-x 的解为________. 30.若关于x 的方程a x x -=+332的解是2x =-,则代数式21aa -的值是_________. 31.代数式12+a 与a 21+互为相反数,则=a .32.已知三个连续奇数的和是51,则中间的那个数是_______. 33.某工厂引进了一批设备,使今年单位成品的成本较去年降低了20%.已知今年单位成品的成本为8元,则去年单位成品的成本为_______元.34.小李在解方程135=-x a (x 为未知数)时,误将x -看作x +,解得方程的解2-=x ,则原方程的解为___________ ____.35.假定每人的工作效率都相同,如果个人天做个玩具熊,那么个人做个玩具熊需要___天.36.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/小时,水速为2千米/时,则A 港和B 港相距______千米. 37. 请写出一个解为x=-4的一元一次方程: .38. 请用尝试、检验的方法解方程2x+3x=14,得x= . 39. 若x=2是方程9-2x=ax-3的解,则a= . 40.要使方程ax=a 的解为1,a 必须满足的条件 41.方程k x x x +=--2416的解是x=3,那么kk 12+的值等于_____________. 42.若方程b xa k=⋅-74是一元一次方程,那么k=______________. 43.当x=-1时,二次三项式12++mx x 的值等于0,那么当x=1时,12++mx x =___________. 44.已知三个数的比是5:7:9,若这三个数的和是252,则这三个数依次是_________.三、解方程:(每题5分,共20分)1、70%x+(30-x)×55%=30×65%2、511241263x x x +--=+;3、1122(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦;2020-2021 七年级上册练习题 试卷教案7、3x+5(138-x)=540 8、3[4(5y-1)-8]=6 9、138547=+--x x10、x x 524-=- 11、436521x x -=-- 12、)52(3)3(x x -=--13、)20(75)20(34x x x x --=-- 14、x x 2113834-=- 15、8231612+=--x x16、22)5(54-=--+x x x 17、5.23.014.02.03-=--+x x 18、2.15.023.01=+--x x19、13.02.03.05.09.04.0=+-+x x 20、()22132119---=+--x x x x 21、2423123441-=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-x x22、5.702.0202.05.601.064--=--x x 23、025.15.005.02.02.005.01.0=+--+x x 24、041216110312=+-+++-x x x25、 x x 3221221413223=-⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+ 26、70%x+(30-x)×55%=30×65% .四、解答题:(共46分) 1、(做一做,每题4分,共8分)(1)已知2y+ m = my - m.当 m = 4时,求y 的值; (2)当y = 4时,求m 的值。
一元一次方程练习题及答案一元一次方程练习题及答案一元一次方程是人教版七年级上册第三章的内容,它是初中数学的重要内容之一,一元一次方程练习题有哪些呢?下面是的一元一次方程练习题资料,欢迎阅读。
篇1:一元一次方程练习题一、选择题(每小题3分,共30分)1.下列方程中,属于一元一次方程的是()A. B. C D.2.已知ax=ay,下列等式中成立的是()A.x=yB.ax+1=ay-1C.ax=-ayD.3-ax=3-ay3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价()A.40%B.20%C25%D.15%4.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名用1分钟从队尾走到队头,这位同学走的路程是()A.a米B.(a+60)米C.60a米D.(60+2a)米5.解方程时,把分母化为整数,得()。
A、 B、 C、 D、6.把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是()A.10B.52C.54D.567.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x-1=5(1.5x)B.3x+1=50(1.5x)C.3x-1=(1.5x)D.180x+1=150(1.5x)8.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x为()A.约700元B.约773元C.约736元D.约865元9.下午2点x分,钟面上的时针与分针成110度的角,则有()A. B. C. D.10.某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为()A.15%B.17%C.22%D.80%二、填空题(每小题3分,共计30分)11.若x=-9是方程的解,则m=。
一元一次方程和它的解法练习时间60分钟,满分100分)1.判断题:(1′+4′=5′)(1)判断下列方程是否是一元一次方程:①-3x-6x 2=7;( ) ②;31=+x x( )③5x+1-2x=3x-2; ( ) ④3y-4=2y+1. ( ) (2)判断下列方程的解法是否正确: ①解方程3y-4=y+3解:3y-y=3+4,2y=7,y=72;( )②解方程:0.4x-3=0.1x+2解:0.4x+0.1x=2-3;0.5x=-1,x=-2;( )③解方程15123=--+x x解:5x+15-2x-2=10,3x=-3,x=-1;④解方程12.015.02-=-+-xx解:2x-4+5-5x=-1,-3x=-2,x=32.( )2.填空题:(2′×8=10′)(1)若2(3-a )x-4=5是关于x 的一元一次方程,则a ≠ . (2)关于x 的方程ax=3的解是自然数,则整数a 的值为: . (3)方程5x-2(x-1)=17 的解是 .(4)x=2是方程2x-3=m-x 21的解,则m= .(5)若-2x 2-5m +1=0 是关于x 的一元一次方程,则m= . (6)当y= 时,代数式5y+6与3y-2互为相反数.(7)当m= 时,方程65312215--=--x m x 的解为0.(8)已知a ≠0.则关于x 的方程3ab-(a+b)x=(a-b)x 的解为 . 3.选择题:(4′×5=20′) (1)方程ax=b 的解是( ).A .有一个解x=abB .有无数个解C .没有解D .当a ≠0时,x=ab(2)解方程43(34x-1)=3,下列变形中,较简捷的是( )A.方程两边都乘以4,得3(34x-1)=12B.去括号,得x-43=3C.两边同除以43,得34x-1=4 D.整理,得3434=-x(3)方程2-67342--=-x x 去分母得( ) A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7 C.12-2(2x-4)=-(x-7) D.以上答案均不对(4)若代数式21+x 比35x-大1,则x 的值是( ).A .13B .513C .8D .58(5)x=1是方程( )的解.A .-35.0815-=+x xB .03425233.16.049.0=-----x x xC .2{3[4(5x-1)-8]-2}=8D .4x+413=6x+454.解下列方程:(5′×7=35′)(1)7(2x-1)-3(4x-1)=4(3x+2)-1; (2)61(5y+1)+ 31(1-y)= 81(9y+1)+ 51(1-3y);(3)32[23(141-x )-421]=x+2; (4);1322213-=--+x x x(5);21644533313---+=+-y y y (6);214535.05.25.12.022.1=-----x x x(7);5.04314.0623.036--=-+-y y y (8)21{x-21[x-21(x-21)]}=1;5.解答下列各题:(6′×4=24′)(1)x 等于什么数时,代数式6323)1(221+-++x x x 与的值相等? (2)y 等于什么数时,代数式2439y y --的值比代数式 643--y y 的值少3? (3)当m 等于什么数时,代数式2m-315-m 的值与代数式327--m的值的和等于5?【素质优化训练】(1)若23234+x a 与43152+x a 是同类项,则x=.(2)已知2125=-a b a ,则a b=. (3)已知5243+=--+x y x y x ,用含x 的代数式表示,则y= .(4)当a= 时,方程14523-+=-ax a x 的解是x=0. (5)当m=时,方程mx 2+12x+8=0的一个根是x=-21.(6)方程4312-=-x x 的解为.(7)若(1-3x )2+mx -4=0,,则6+m 2= .(8)若a ≥0,且方程a+3x=10的解是自然数,则a= .(9)已知关于x 的方程21ax+5=237-x 的解x 与字母a 都是正整数,则a=.(10)已知方程2+-=-axb b a x 是关于x 的一元一次方程,则a,b 之间的关系是 .2.选择题(1)在梯形面积公式S=21(a+b )h 中,如果a=5cm,b=3cm,S=16cm 2,那么h=( )A .2cmB .5cmC .4cmD .1cm(2)若关于x 的方程3(x-1)+a=b(x+1)是一元一次方程,则( ). A .a,b 为任意有理数 B .a ≠0 C .b ≠0 D .b ≠3(3)方程12-x =4x+5的解是( ).A .x=-3或x=-32B .x=3或x=32C .x=-32D .x=-3(4)下列方程 ①313262-=+x x ②4532x x =+ ③2(x+1)+3=x1 ④3(2x+5)-2(x-1)=4x+6.一元一次方程共有( )个.A.1B.2C.3D.4(5)当x=2时,二次三项式3x 2+ax+8的值等于16,当x=-3时,这个二次三项式的值是( )A.29B.-13C.-27D.41 (6)方程x(x 2+x+1)-x(x 2-x-1)=2x 2-1的解是( ). A.21 B.- 21 C. 21或-21 D.无解 (7)若关于x 的方程10-4)2(35)3(--=+x k x x k 与方程8-2x=3x-2的解相同,则k 的值为( )A.0B.2C.3D.4 3.解下列方程我国邮政部门规定:国内平信100克以内(包括100克)每20克需贴邮票0.80元,不足20克重的以20克计算;超过100克的,超过部分每100克需加贴2.00元,不足100克的以100克计算.(1)寄一封重41克的国内平信,需贴邮票多少元?(2)某人寄一封国内平信贴了6.00元邮票,此信重约多少克?(3)有9人参加一次数学竞赛,每份答卷重14克,每个信封重5克,将这9份答卷分装两个信封寄出,怎样装才能使所贴邮票金额最少?参考答案【同步达纲练习】1.(1)×××√ (2) ×××√2.(1)3, (2)1或3, (3)x=5, (4)2, (5)51 (6)- 21; (7) 32; (8)x=23b.3.DBCBD4.(1)-1 (2)7; (3)-8; (4)13; (5)-3; (6);2315 (7);1916 (8)213.31 5.(1)54; (2)-1; (3)-25; (4)① 1;②-3516+m m 【素质优化训练】1.(1)6; (2)49;(3);35247+x (4)131; (5)-8; (6)3;(7)150;(8)1,4,7;(9)6;(10)b a -≠,且0ab ≠ 2.C D C A D B D3.(1)617; (2)-2.7; (3)144; (4)-;14123 (5);181051(6)3,-1.4.先求出x=6,再求出m=-165. 5.a ≥1.【生活实际运用】1.① 1.64 ② 200 ③一个信封装3份答卷,另一个信封装6份答卷,或一个装4份,另一个装5份。
2023-2024学年苏科版数学七年级上册章节知识讲练知识点01:一元一次方程的概念1.方程:叫做方程.2.一元一次方程:只含有(元),未知数的次数都是,这样的方程叫做一元一次方程.知识要点:判断是否为一元一次方程,应看是否满足:①只含有一个未知数的次数为;②未知数所在的式子是,即分母中不含未知数.3.方程的解:叫做这个方程的解.4.解方程:叫做解方程.知识点02:等式的性质与去括号法则1.等式的性质:等式的性质1:,结果仍相等.等式的性质2:,结果仍相等.2.合并法则:合并时,把系数 保持不变. 3.去括号法则:(1)括号外的因数是 ,去括号后各项的符号与原括号内相应各项的符号相同. (2)括号外的因数是 ,去括号后各项的符号与原括号内相应各项的符号相反.知识点03:一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的(2)去括号:依据 ,先去小括号,再去中括号,最后去大括号. (3)移项:把含有未知数的项移到方程一边, 移到方程另一边.(4)合并:逆用 ,分别合并含有未知数的项及常数项,把方程化为 (a ≠0)的形式.(5)系数化为1: 得到方程的解bx a=(a ≠0). (6)检验:把方程的解代入原方程,若 相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点04:用一元一次方程解决实际问题的常见类型1.行程问题:路程= ×时间2.和差倍分问题:增长量=原有量×3.利润问题:商品利润=商品售价-4.工程问题:工作量=工作效率× ,各部分劳动量之和=5.银行存贷款问题:本息和=本金+利息,利息=本金× ×6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•惠山区校级期末)关于x 的方程kx =2x +6与2x ﹣1=5的解相同,则k 的值为( ) A .4B .3C .5D .62.(2分)(2022秋•高新区期末)已知等式3a =2b +5,则下列等式中不一定成立的是( ) A .3a ﹣5=2bB .3a +1=2b +6C .D .3ac =2bc +53.(2分)(2022秋•玄武区校级期末)小明到某文具店购买铅笔和中性笔.设购买铅笔的金额为x元,根据表格,下列方程错误的是()商品单价(元/支)购买数量/支购买金额/元铅笔x中性笔总计/ 13 34 A.+=13 B.x+3.5(13﹣)=34C.1.2(13﹣)=x D.3.5(13﹣)=34﹣x4.(2分)(2022秋•江都区期末)某学校组织师生去中小学素质教育实践基地研学.已知此次共有n名师生乘坐m辆客车前往目的地,若每辆客车坐40人,则还有15人没有上车;若每辆客车坐45人,则刚好空出一辆客车.以下四个方程:①40m+15=45(m﹣1);②40m﹣15=45(m﹣1);③=﹣1;④+1.其中正确的是()A.①④B.①③C.②③D.②④5.(2分)(2022秋•连云港期末)明代的数学著作《算法统宗》中有这样一个问题“隔墙听得客分银,不知人数不知银,七两分之少四两,五两分之多半斤.”其大意为:有一群人分银子,如果每人分七两,则还差四两,如果每人分五两,则还多半斤(注:明代1斤=16两,故有“半斤八两”这个成语).设共有x 两银子,则可列方程为()A.7x﹣4=5x+8 B.C.7x+4=5x﹣8 D.6.(2分)(2022秋•惠山区校级期末)元旦期间,甲、乙两家水果店对刚到货的橙子搞促销,甲水果店连续两次降价,第一次降价10%,第二次降价20%,乙水果店一次性降价30%,小丽想要购买这种橙子,她应选择()A.甲水果店B.乙水果店C.甲、乙水果店的价格相同D.不确定7.(2分)(2022秋•南通期末)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x斤,则正确的是()A.依题意3×120=x﹣120B.依题意20x+3×120=(20+1)x+120C.该象的重量是5040斤D.每块条形石的重量是260斤8.(2分)(2022秋•泗洪县期末)《算学启蒙》中有一道题,原文是:良马日行二百四十里,驽马日行一百二十里.驽马先行一十二日,问良马几何追及之?译文为:跑得快的马每天走240里,跑的慢的马每天走120里.慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,可列方程()A.240(x+12)=120x B.240(x﹣12)=120xC.240x=120(x+12)D.240x=120(x﹣12)9.(2分)(2022秋•工业园区校级月考)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=2OA,点M以每秒1个单位长度的速度从点A向右运动,点N以每秒3个单位长度的速度从点B向左运动(点M、点N同时出发),经过几秒,点M、点N分别到原点O的距离相等()A.5秒B.5秒或者4秒C.5秒或者秒D.秒10.(2分)(2022秋•江都区月考)观察月历,用形如的框架框住月历表中的五个数,对于框架框住的五个数字之和,小明的计算结果有45,55,60,75,小华说有结果是错误的.通过计算,可知小明的计算结果中错误的是()A.45 B.55 C.60 D.75二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•亭湖区期末)若(2﹣a)x|a﹣1|﹣5=0是关于x的一元一次方程,则a=.12.(2分)(2022秋•泗阳县期末)如图,在数轴上,A、B两点同时从原点O出发,分别以每秒2个单位和4个单位的速度向右运动,运动的时间为t,若线段AB上(含线段端点)恰好有4个整数点,则时间t 的最小值是.13.(2分)(2022秋•海门市期末)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱.问人数、羊价各是多少?根据题意,可求得合伙买羊的是人.14.(2分)(2022秋•鼓楼区校级期末)防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500mL,需将其加入适量的水,使浓度稀释为75%.设加水量为xmL,可列方程为.15.(2分)(2022秋•江都区期末)一项工程甲单独做要20小时,乙单独做要12小时,现先由甲单独做5小时,然后乙加入进来合作.完成整个工程一共需要小时.16.(2分)(2022秋•江阴市期末)某种商品降价10%后的价格恰好比原价的一半多40元,该商品的原价是元.17.(2分)(2022秋•姑苏区校级期末)如图,在数轴上,O为原点,点A对应的数为2,点B对应的数为﹣12.在数轴上有两动点C和D,它们同时向右运动,点C从点A出发,速度为每秒4个单位长度,点D从点B出发,速度为每秒6个单位长度,设运动时间为t秒,当点O,C,D中,其中一点正好位于另外两点所确定线段的中点时,t的值为.18.(2分)(2022秋•大丰区期末)京张高铁是2022年北京冬奥会的重要交通基础设施,考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中,北京北站到清河段全长11千米,分为地下清华园隧道和地上区间两部分,运行速度分别设计为80千米/小时和120千米/小时,按此运行速度,地下隧道运行时间比地上大约多3分钟,求清华园隧道全长为多少千米.设清华园隧道全长为x千米,依题意,可列方程为.19.(2分)(2022秋•句容市校级期末)如图,正方形的边长为6,已知正方形覆盖了三角形面积的,而三角形覆盖了正方形面积的一半,那么三角形的面积是.20.(2分)(2021秋•射阳县校级期末)如图,在长方形ABCD中,AB=6cm,BC=8cm,点E是AB上的一点,且AE=2BE.点P从点C出发,以2cm/s的速度沿点C﹣D﹣A﹣E匀速运动,最终到达点E.设点P运动时间为ts,若三角形PCE的面积为18cm2,则t的值为.三.解答题(共8小题,满分60分)21.(6分)(2022秋•仪征市期末)解方程:(1)5(x﹣1)+3=3x﹣3;(2)+=1.、22.(6分)(2022秋•仪征市期末)某小组计划做一批“中国结”如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个.该小组共有多少人?计划做多少个“中国结”?小明和小红在认真思考后,根据题意分别列出了以下两个不同的方程:①5x﹣9=4x+15②=(1)①中的x表示;②中的y表示.(2)请选择其中一种方法,写出完整的解答过程.23.(8分)(2022秋•丹徒区期末)某商场用2730元购进甲、乙两种商品共60件,这两种商品的进价、标价如表所示:价格\类型甲乙进价(元/件)35 65标价(元/件)50 100(1)这两种商品各购进多少件?(2)若甲种商品按标价的9折出售,乙种商品按标价的8.5折出售,且在运输过程中有2件甲种、1件乙种商品不慎损坏,不能进行销售,请问这批商品全部售出后,该商场共获利多少元?24.(8分)(2022秋•惠山区校级期末)运动场环形跑道周长为300米,爷爷一直都在跑道上按逆时针方向匀速跑步,速度为3米/秒,与此同时小红在爷爷后面100米的地方也沿该环形跑道按逆时针方向运动,速度为a米/秒.(1)若a=1,求两人第一次相遇所用的时间;(2)若两人第一次相遇所用的时间为80秒,试求a的值.25.(8分)(2022秋•丹徒区期末)已知关于m的方程的解也是关于x的方程2(x﹣8)﹣n=6的解.(1)求m、n的值;(2)如图,数轴上,O为原点,点M对应的数为m,点N对应的数为n.①若点P为线段ON的中点,点Q为线段OM的中点,求线段PQ的长度;②若点P从点N出发以1个单位/秒的速度沿数轴正方向运动,点Q从点M出发以2个单位/秒的速度沿数轴负方向运动,经过秒,P、Q两点相距3个单位.26.(8分)(2022秋•玄武区校级期末)某市采用分段收费的方式按月计算每户家庭的水费,收费标准如表:户月用水量(m3)收费标准(元/m3)不超过18m3超过18m3,但不超过25m3的部分 5超过25m3的部分7(1)小明家3月份用水量为20m3,应缴纳水费元;(2)设某户某月的用水量为xm3,应缴纳水费多少元?(用含x的代数式表示)(3)小红家6月份和7月份的用水量共50m3,且7月份用水量比6月份多,这两个月共缴纳水费217元,则小红家6月份和7月份的用水量分别为m3,m3.27.(8分)(2022秋•太仓市期末)如图1,将一副三角板摆放在直线MN上,在三角板OAB和三角板OCD中,∠OAB=∠OCD=90°,∠AOB=45°,∠COD=30°.(1)保持三角板OCD不动,当三角板OAB旋转至图2位置时,∠BOD与∠AON有怎样的数量关系?请说明理由.(2)如图3,若三角板OAB开始绕点O以每秒6度的速度逆时针旋转的同时、三角板OCD也绕点O以每秒3度的速度逆时针旋转,当OB旋转至射线OM上时,两块三角板同时停止转动.设旋转时间为t秒,则在此过程中,是否存在t,使得∠BOD+∠AON=60°?若存在,求出t的值;若不存在,请说明理由.28.(8分)(2022秋•广陵区校级期末)数轴是初中数学的一个重要工具,利用数轴可以将数与形进行完美地结合.研究数轴我们发现了很多重要的规律,例如;数轴上点M、点N表示的数分别为m、n,则M、N 两点之间的距离MN=|m﹣n|,线段MN的中点表示的数为.如图,数轴上点M表示的数为﹣1,点N 表示的数为3.(1)直接写出:线段MN的长度是,线段MN的中点表示的数为;(2)x表示数轴上任意一个有理数,利用数轴探究下列问题,直接回答:|x+1|+|x﹣3|有最小值是,|x+1|﹣|x﹣3|有最大值是;(3)点S在数轴上对应的数为x,且x是方程2x﹣1=x+4的解,动点P在数轴上运动,若存在某个位置,使得PM+PN=PS,则称点P是关于点M、N、S的“麓山幸运点”,请问在数轴上是否存在“麓山幸运点”?若存在,则求出所有“麓山幸运点”对应的数;若不存在,则说明理由.。