计算机网络抓包实验报告
- 格式:doc
- 大小:2.72 MB
- 文档页数:25
第⼀次实验报告:我的第⼀个抓包实验姓名:王璐璐学号:201821121037班级:计算18120.摘要这篇博客记录的是我的第⼀个抓包实验,是我对计算机⽹络了解的初始。
在下⾯的实验报告中,我将阐述我第⼀次使⽤Packet Tracer⼯具来抓取HTTP数据包的过程,并对抓取到的数据包中的信息进⾏解析,通过这样的实验来加深⽹络协议在⽹络信息传输中起到的作⽤的理解。
1.实验⽬的熟练使⽤Packet Tracer⼯具。
分析抓到的HTTP数据包,深⼊理解:HTTP协议,包括语法、语义、时序。
2.实验内容客户端向服务器发送请求报⽂,服务器向客户端发送响应报⽂。
具体包含:建⽴⽹络拓扑结构配置参数抓包分析数据包3.实验报告3.1概念梳理(1)什么是抓包?由于不同主机之间的数据通信是通过⽹络来进⾏传输,⽽我们对那些在⽹络上传输的数据(发送、请求的数据)进⾏截获、编辑、转存等操作就是抓包。
抓包可以是抓取电脑端请求的数据,还可以抓取移动端的数据包。
(2)我们为什么要抓包呢?当我们发现⼀个⽹络在传输数据的过程中出现了问题后,想要对这个问题进⾏修复,我们可以怎么做呢?⾸先想到的便是要去分析⽹络传输过程信息,通过该信息去进⼀步查找问题出在哪个部分。
⽽通过抓包操作,我们可以对抓取到的数据包进⾏解析,以便找出⽹络传输中的Debug。
当然我们也可以通过抓取⽤户发送的涉及⽤户名和密码的数据包来获取⽤户的密码。
(3)HTTP协议是什么?HTTP协议是应⽤层协议,同其他应⽤层协议⼀样,是为了实现某⼀类具体应⽤的协议,并由某⼀运⾏在⽤户空间的应⽤程序来实现其功能。
HTTP是⼀种协议规范,这种规范记录在⽂档上,为真正通过HTTP协议进⾏通信的HTTP的实现程序。
3.2实验操作过程整个实验的操作流程:先构建⽹络拓扑结构,对客户端与服务器进⾏参数的配置,将要抓取的包限定为HTTP,在客户端中输⼊服务器的IP地址,对获取到的数据包进⾏分析。
(1)建⽴⽹络拓扑结构上图为本次实验的⽹络拓扑结构。
计算机通信与网络实验报告实验题目:抓包并进行分析班级:..姓名:..学号:..Wireshark抓包分析Wireshark是世界上最流行的网络分析工具。
这个强大的工具可以捕捉网络中的数据,并为用户提供关于网络和上层协议的各种信息,与很多其他网络工具一样,Wireshark也使用pcap network library来进行封包捕捉。
一、安装软件并抓包1:安装并运行wireshark并打开捕获界面。
2、捕获选项图1捕获选项的设置3、开始抓包点击上图中的“Start”开始抓包几分钟后就捕获到许多的数据包了,主界面如图所示:图2 主界面显示如上图所示,可看到很多捕获的数据。
第一列是捕获数据的编号;第二列是捕获数据的相对时间,从开始捕获算为0.000秒;第三列是源地址,第四列是目的地址;第五列是数据包的信息。
选中第8个数据帧,然后从整体上看看Wireshark的窗口,主要被分成三部分。
上面部分是所有数据帧的列表;中间部分是数据帧的描述信息;下面部分是帧里面的数据。
二、分析UDP、TCP、 ICMP协议1、UDP协议UDP 是User Datagram Protocol的简称,中文名是用户数据包协议,是 OSI 参考模型中一种无连接的传输层协议,提供面向事务的简单不可靠信息传送服务。
它是IETF RFC 768是UDP的正式规范。
(1) UDP是一个无连接协议,传输数据之前源端和终端不建立连接,当它想传送时就简单地去抓取来自应用程序的数据,并尽可能快地把它扔到网络上。
在发送端,UDP传送数据的速度仅仅是受应用程序生成数据的速度、计算机的能力和传输带宽的限制;在接收端,UDP把每个消息段放在队列中,应用程序每次从队列中读一个消息段。
(2)由于传输数据不建立连接,因此也就不需要维护连接状态,包括收发状态等,因此一台服务机可同时向多个客户机传输相同的消息。
(3) UDP信息包的标题很短,只有8个字节,相对于TCP的20个字节信息包的额外开销很小。
arp,ip,icmp协议数据包捕获分析实验报告数据篇一:网络协议分析实验报告实验报告课程名称计算机网络实验名称网络协议分析系别专业班级指导教师学号姓名实验成绩一、实验目的掌握常用的抓包软件,了解ARP、ICMP、IP、TCP、UDP 协议的结构。
二、实验环境1.虚拟机(VMWare或Microsoft Virtual PC)、Windows XX Server。
客户机A客户机B2.实验室局域网,WindowsXP三、实验学时2学时,必做实验。
四、实验内容注意:若是实验环境1,则配置客户机A的IP地址:/24,X为学生座号;另一台客户机B的IP地址:(X+100)。
在客户机A上安装EtherPeek(或者sniffer pro)协议分析软件。
若是实验环境2则根据当前主机A的地址,找一台当前在线主机B完成。
1、从客户机A ping客户机B ,利用EtherPeek(或者sniffer pro)协议分析软件抓包,分析ARP 协议;2、从客户机A ping客户机B,利用EtherPeek(或者sniffer pro)协议分析软件抓包,分析icmp协议和ip协议;3、客户机A上访问,利用E(转载于: 小龙文档网:arp,ip,icmp协议数据包捕获分析实验报告数据)therPeek(或者sniffer pro)协议分析软件抓包,分析TCP和UDP 协议;五、实验步骤和截图(并填表)1、分析arp协议,填写下表12、分析icmp协议和ip协议,分别填写下表表一:ICMP报文分析233、分析TCP和UDP 协议,分别填写下表4表二: UDP 协议 5篇二:网络层协议数据的捕获实验报告篇三:实验报告4-网络层协议数据的捕获实验报告。
西安邮电大学计算机网络wireshark 抓包分析实验报告西安邮电大学《计算机网络技术与应用》课内实验报告书院系名称: 管理工程学院实验题目: Wireshark 抓包工具实验报告学生姓名: 易霜霜专业名称: 信息管理与信息系统班级: 信管1101 学号: 02115021 时间: 2013 年06 月26 日实验报告实验名称Wireshark 抓包工具一、实验目的了解Wireshark 的使用方法,利用wireshark 对数据报进行分析。
二、实验内容用wireshark抓包,然后对数据进行分析,抓UDF和FTP的包。
然后对它们进行分析。
三、设计与实现过程(1) 安装wireshark 软件,并熟悉wireshark 软件的使用。
(2) 完成物理机器的操作系统(host os) 与虚拟机中操作系统(guest os) ,在物理机上设置虚拟网卡,设置host os 和guest os 的IP 地址,分别为192.168.228.1 和192.168.228.2.(3) 在guest os 上配置各种网络服务,包括有:Web、Email 、DNS、FTP。
(4)在host os 上启动wireshark 抓包,从host os 访问guest os 上的各种服务,完成抓包实验。
1. UDP 协议分析由于DNS 委托的是UDP 协议提供传输服务,所以我们以 DNS 查询中的UDP 数据 报为例,分析其首部的封装形式^=DvcfaKi. Oer 认i-IKirrj fert :请㈡.KTiKrTF 呼;叫册冷 戸和 fly&'i iTTpi ifcyt-: plywr 上和翼pr?;诗雷’ MlKFligi purl ;鼻导尸L 曲卑戶PKsvu m : flyXiHuis O^LiBClB pnz 血fl 鞋 iMau : M2SJ- LKllrut pirli. s 存占二归:* 空迂屯 m :辱显*杞摯 Ufflirrdfir sori MyQr:屈LX4 _ MZ14- L~ b "JC :X " . J < : A ; . f -Li ■九 _ K Pl"t E ,-..'! - -"LZ □ '"x .1T■*-■»■•■ jrv ■-■ > 1,■厂 jrr . m I ・ * i l« 尸 *■ * ' F IIL IlfCff! LKI f «■■ ■'・ I +4 b L" I" ■・ll* F ・"■:-P - 3User Datagram Procol(用户数据报协议):首部长度20字节;总长度164字节;协议为UDP 协议,协议号为17;首部校验和:0x07b4;源端口号 Source Port no.56254;目标端口号 Destination Port no.plysrv-https(6771);长度:144字节;数据部分:136字节;在计算检验和时,临时把“伪首部”和 UDP 用户数据报连接在一起。
电子商务应用开发技术实验报告实验报告二课程计算机网络开课实验室日期2013 年 4 月 22 日实验项目学号1040407105利用Wireshark进行抓包分析名称学院经济管理学院指导教师王斌成绩教师评语一:实验目的利用 Wireshark 二:实验内容:教师签名:年月日进行抓包分析,对以前学习过的内容进行进一步的理解和掌握1、安装Wireshark,简单描述安装步骤。
2、打开wireshark,选择接口选项列表。
或单击“Capture”,配置“option”选项。
3、设置完成后,点击“ start”开始抓包,显示结果。
4、选择某一行抓包结果,双击查看此数据包具体结构,并对其进行分析三.实验步骤实验项目学号1040407105利用Wireshark进行抓包分析名称上面的截图是抓取到的包,下面分别针对其中的一个TCP, UDP和 ICMP进行分析1. TCPTCP :Transmission Control Protocol 的、可靠的、基于字节流的运输层(传输控制协议TCP 是一种面向连接(连接导向)Transport layer)通信协议,由IETF 的 RFC 793说明( specified)。
在简化的计算机网络OSI模型中,它完成第四层传输层所指定的功能。
在因特网协议族(Internet protocol suite)中,TCP层是位于IP 层之上,应用层之下的中间层。
不同主机的应用层之间经常需要可靠的、像管道一样的连接,但是IP 层不提供这样的流机制,而是提供不可靠的包交换。
应用层向TCP 层发送用于网间传输的、用8 位字节表示的数据流,然后TCP 把数据流分割成适当长度的报文段(通常受该计算机连接的网络的数据链路层的最大传送单元(MTU) 的限制)。
之后 TCP 把结果包传给 IP 层,由它来通过网络将包传送给接收端实体的TCP 层。
TCP 为了保证不发生丢包,就给每个字节一个序号,同时序号也保证了传送到接收端实体的包的按序接收。
实验报告二课程计算机网络开课实验室日期2013年4月22日学号1040407105 实验项目名称利用Wireshark 进行抓包分析学院经济管理学院指导教师王斌成绩教师评语教师签名:年月日一:实验目的利用Wireshark进行抓包分析,对以前学习过的内容进行进一步的理解和掌握二:实验内容:1、安装Wireshark,简单描述安装步骤。
2、打开wireshark,选择接口选项列表。
或单击“Capture”,配置“option”选项。
3、设置完成后,点击“start”开始抓包,显示结果。
4、选择某一行抓包结果,双击查看此数据包具体结构,并对其进行分析三.实验步骤学号1040407105 实验项目名称利用Wireshark 进行抓包分析1.1抓到的数据链路层中的帧Frame 211:56bytes 即所抓到的帧的序号为211,大小是56字节1.2 IP层中的IP数据报Header Length:20bytes 即首部长度为20个字节;Differentiated Services Field:00x0 即区分服务;Total length:40 指首部长度和数据之和的长度为40字节;Identification:0x8a6e(35438) 标识;Flag:0x02 标识此处MF=0,DF=0;Fragment offset:0 指片偏移为0;表示本片是原分组中的第一片。
Time to live :57说明这个数据报还可以在路由器之间转发57次Protocal:TCP 指协议类型为TCP;Source:源地址:119.147.91.131Destination:目的地址180.118.215.1751.3运输层中的TCPSource port:http(80)即源端口号为80Destination port:50001(50001) 即目的端口为50001Sequence number:411 序号为411Acknowledgent number:2877 确认号为2877Header length:20bytes 首部长度为20个字节Flags:0x011 除了确认ACK为1,别的都为0学号1040407105 实验项目名称利用Wireshark 进行抓包分析Window size value:8316 窗口值为8316Checksum:0x18c5 检验和为0x18c52.UDPUDP,是一种无连接的协议。
Wireshark抓包⼯具计算机⽹络实验实验⼀ Wireshark 使⽤⼀、实验⽬的1、熟悉并掌握Wireshark 的基本使⽤;2、了解⽹络协议实体间进⾏交互以及报⽂交换的情况。
⼆、实验环境与因特⽹连接的计算机,操作系统为Windows ,安装有Wireshark 、IE 等软件。
三、预备知识要深⼊理解⽹络协议,需要观察它们的⼯作过程并使⽤它们,即观察两个协议实体之间交换的报⽂序列,探究协议操作的细节,使协议实体执⾏某些动作,观察这些动作及其影响。
这种观察可以在仿真环境下或在因特⽹这样的真实⽹络环境中完成。
Wireshark 是⼀种可以运⾏在Windows, UNIX, Linux 等操作系统上的分组嗅探器,是⼀个开源免费软件,可以从/doc/d2530113af45b307e871976b.html 下载。
运⾏Wireshark 程序时,其图形⽤户界⾯如图2所⽰。
最初,各窗⼝中并⽆数据显⽰。
Wireshark 的界⾯主要有五个组成部分:图1命令和菜单协议筛选框捕获分组列表选定分组⾸部明细分组内容左:⼗六进制右:ASCII 码●命令菜单(command menus):命令菜单位于窗⼝的最顶部,是标准的下拉式菜单。
●协议筛选框(display filter specification):在该处填写某种协议的名称,Wireshark 据此对分组列表窗⼝中的分组进⾏过滤,只显⽰你需要的分组。
●捕获分组列表(listing of captured packets):按⾏显⽰已被捕获的分组内容,其中包括:分组序号、捕获时间、源地址和⽬的地址、协议类型、协议信息说明。
单击某⼀列的列名,可以使分组列表按指定列排序。
其中,协议类型是发送或接收分组的最⾼层协议的类型。
●分组⾸部明细(details of selected packet header):显⽰捕获分组列表窗⼝中被选中分组的⾸部详细信息。
包括该分组的各个层次的⾸部信息,需要查看哪层信息,双击对应层次或单击该层最前⾯的“+”即可。
计算机网络实验 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】试验一利用wireshark抓包工具抓包一、实验名称使用网络协议分析仪 Wireshark二、实验目的1. 掌握安装和配置网络协议分析仪Wireshark的方法;2. 熟悉使用Wireshark工具分析网络协议的基本方法,加深对协议格式、协议层次和协议交互过程的理解。
三、实验内容和要求1. 安装和配置Wireshark的网络协议分析仪,下载地址。
2. 使用并熟悉Wireshark分析协议的部分功能。
四、实验环境1.Windows7 操作系统PC机器。
机器具有以太网卡一块,通过双绞线与局域网连接。
软件。
五、操作方法与实验步骤1:安装网络协议分析仪,从官网下载exe软件双击安装。
2:启用Wireshark进行试验。
:启动初始如下显示::分组捕获数据,并将捕获的数据保存为文件抓包实验数据.pcapng,当再次需要捕获时,可以打开文件在进行实验抓包。
:对数据进行协议分析。
在上部“俘获分组的列表”窗口中,有编号(No)、时间(Time)、源地址(Source)、目的地址(Destination)、协议(Protocol)、长度(Length)和信息(Info)等列(栏目),各列下方依次排列着俘获的分组。
中部“所选分组首部的细节信息”窗口给出选中帧的首部详细内容。
下部“分组内容”窗口中是对应所选分组以十六进制数和 ASCII 形式的内容。
无线网连接抓包实验数据如下图1本地连接网页抓包实验数据如下图2图 1图 2六、实验数据记录和结果分析1:网络抓包实验获取的数据如下图3图 32:使用过滤器过滤数据比如以下图4中的Time=4 作为过滤条件,可以将图2过滤为图三,如果你需要符合某些条件的数据,这种方案可以分组,减少数据量,因此可以提高效率。
图 4七、实验体会、质疑和建议1:通过使用抓包实验工具基本上掌握了有关网络的一些协议,然后接下来的实验依次对实验的数据进行分析,对协议进行分析,然后分析网络中的五层结构进行探究。
第三次课堂实践报告高国栋20同实验者韦纯韦方宇王尊严一、实践容11. 两台PC通过交换机或网线互相ping通。
2. 抓取1个ARP请求报文和1个ARP响应报文。
3. 抓取1个ICMP ECHO报文和1个ICMP ECHO REPLY报文。
Ping通目标主机192.168.0.150(对方也ping通192.168.0.100)在ping命令时抓取的arp与icmp数据包分别选择其中的任意一个ARP请求报文、ARP响应报文、ICMP ECHO报文、ICMP ECHO REPLY报文,并打开其数据包。
4. 要求:(1) 列出上述报文对应MAC帧原始数据,附上对应截图。
对应的帧原始数据为框中的容:ARP请求报文:ARP响应报文:IMP ECHO 报文ICMP ECHO REPLY报文:(2) 找出上述报文对应MAC帧的源MAC地址、目的MAC地址、类型、数据长度,附上与原始数据的对应图。
ARP请求报文ARP响应报文IMP ECHO 报文ICMP ECHO REPLY报文(3) 找出ICMP ECHO和ECHO REPLAY报文的首部长度、总长度、生存时间、协议、首部校验和、源IP地址、目的IP地址,计算单次成功ping的时间,附上与原始数据的对应图。
ICMP ECHO报文数据包如下:可看到时间标记为10:28:06.312741400ECHO REPLAY报文:时间标记为10:28:06.314322400单次成功ping的时间=10:28:06.314322400-10:28:06.312741400=0.002570000s 所以单次成功ping的时间0.00257秒(4) 找出ARP请求报文希望获得的MAC地址及其对应的IP地址,附上对应截图。
从图中可以知道ARP请求报文希望获得的MAC地址为50:7B:9D:07:D0:B2。
它对应的IP地址为:192.168.0.100。
因为此时是IP地址为192.168.0.150在ping 192.168.0.100,所以是192.168.0.150给192.168.0.100发送ARP请求报文,所以捕获到的目的IP地址为192.168.0.100。
(5) 举例说明MAC帧、IP包、ICMP报文的关系。
用我们抓取的ICMP Echo报文举例说明:从第0字节到第77字节是一个完整的首部(第0到13个字节)和尾部(FCS共4字节),保留的从第14字节到第73字节是一个完整的IP包。
再去掉IP包首部(第14到33字节),保留的为ICMP报文,即MAC 帧包含IP包,IP包包含ICMP报文。
二、实践容21.PC机的默认网关配置为192.168.0.x, x在250-254之间。
配置默认网关为192.168.0.251,如图所示:MAC 报文78字节IP包60字节ICMP报文20字节2. 两台PC通过交换机或网线互相ping通。
注:ping命令不带-t参数。
3.先执行arp –d命令,开始抓包,然后执行ping 192.168.0.255命令。
请根据抓包结果分析此ping命令执行过程中数据报文的传输情况,并附上相应截图。
在进行这一步实验时,我们组发现如果是两台电脑用网线相连,无论是哪台电脑执行ping 192.168.0.255命令,都会请求超时。
而当我们用交换机将全部4台电脑(IP地址分别为192.168.0.100,192.168.0.150,192.168.0.77,192.168.0.88)连在一起时,再执行ping 192.168.0.255命令,IP地址为192.168.0.150,192.168.0.77,192.168.0.88的三台主机均会有如下显示,而192.168.0.100的主机执行ping 192.168.0.255命令后依然为请求超时。
192.168.0.150执行ping 192.168.0.255命令后结果之后我们抓取ARP与ICMP报文进行分析,IP地址为192168.0.150的主机抓取的报文如下(只截取了一部分):将抓包结果与之前ping结果对照,可以发现每执行一次ping命令,会收到4次来自192.168.0.100的回复,从抓包结果中可以将每次回复的过程找出来如下所示:从中可以看出MAC地址为80:62:66:E4:E5:12的主机先向以太网广播发送了一条APR 请求报文,之后IP地址192.168.0.150向以太网广播的IP地址192.168.0.255发送了一条ICMP Echo报文,由IP地址为192.168.0.100的主机向192.168.0.150回复了一条ICMP Echo Reply报文;之后MAC地址为50:7B:9D:07:D0:B2主机连续向02:32:63:44:E5:12发送了5次ARP相应报文。
按常规来说如果主机都通过交换机连接,那么如果一个主机执行ping 192.168.0.255命令,那么他应该收到来自所有其它主机的回复,而在我们组的实验中只能收到同一主机(192.18.0.100)的回复,收不到其他两台主机的回复。
这个问题可能是由于我们另外三台主机的默认网关配置的一样,而与另一台不一样,在执行ping 192.168.0.255命令时会无视同为192.168.0.251相同默认网关的另外两台主机,只能收到默认网关为192.168.0.250的主机的回复。
还有一种可能性是交换机接口的配置不同,导致ping 192.168.0.255命令时的结果不同。
因为时间原因,我们组也没有对这个问题进行进一步探讨。
4.先执行arp –d命令,开始抓包,然后执行ping 202.115.32.36命令。
请根据抓包结果分析此ping命令执行过程中数据报文的传输情况,并附上相应截图。
我们四台主机连在交换机上执行ping202.115.32.36命令均请求超时。
所以可知此连接不通。
5. 主机A、B、C共同连在交换机上,主机C配置为主机A的网关。
主机A ping B,B抓取ARP Response 报文,ping通后主机A执行arp –a。
然后,主机B利用抓包工具软件修改抓取的ARP Response报文,仅修改ARP Response报文中B的MAC地址(注:不是MAC 帧首部的B的MAC地址),修改后发送(发送10次以上),在主机A上再执行arp –a。
对比两次的arp –a的结果,分析原因,附上相应截图。
B继续持续发送修改后的ARP Response 报文,在主机A上ping B,记录ping的情况,附上截图,并分析原因。
因为我们组没有交换机,所以整个实验是两台电脑用网线连接做的。
第一次Aping B的结果:A执行arp –a的结果:从图中可看到B的IP地址为192.168.0.150,MAC地址为50-7B-9D-07-D0-B2。
此时B抓取ARP Response 报文:修改抓取的ARP Response报文,仅修改ARP Response报文中B的MAC地址。
所以选择第14个数据包进行修改,将其设置为要发送的数据包,在工具栏中点击“编辑要发送的数据包”,把B的MAC地址改为52-22-22-22-22-22如下图:连续不断点击发送按钮,在主机A上再执行arp –a,结果如下:从途中可以看出IP地址192.168.0.150对应的MAC地址变为了52-22-22-22-22-22,即为修改后的值,再在主机A上ping B,结果如下:会看到主机A已经ping不通B(192.168.0.150)了,这是因为B将修改后的ARP响应报文发送给A后,主机A中默认的B的MAC地址发生了改变,执行ping192.168.0.150时,默认的192.168.0.150对应的MAC地址修改为52-22-22-22-22-22,而本身192.168.0.150对应的MAC地址为修改之前(50-7B-9D-07-D0-B2)的值,所以当然不会ping通。
三、实践容3访问因特网上的web站点,抓取TCP连接的三次握手和四次挥手过程,附上相应截图,并分析三次握手和四次握手的详细过程,包括源、目的IP,源、目的端口号,序号和确认序号的变化情况,标志位SYN、FIN和ACK的值等。
关闭无用软件后,用电脑访问.baidu.,同时用omnipeek软件抓取TCP数据包。
从中可以找到TCP连接的三次握手和四次挥手过程。
找到三次握手的数据包如下:四次握手的数据包如下:现进行具体分析。
1.第一次握手数据包容如下:第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SENT状态,等待服务器确认。
客户端向服务器发送连接请求包,标志位SYN(同步序号)置为1,序号为X=1812017573。
从数据包中可以看到:源IP地址:222.18.0.78目的IP地址:117.78.58.31源端口号:51835目的端口号:8089序号:1812017573确认序号:0标志位:SYN=1 ASK=0 FIN=02.第二次握手数据包容如下:服务器收到客户端发过来报文,由SYN=1知道客户端要求建立联机。
向客户端发送一个SYN和ACK都置为1的TCP报文,设置初始序号Y=0,将确认序号设置为客户的序列号加1,即X+1 。
从数据包中可以看到:源IP地址:117.78.58.31目的IP地址:222.18.0.78源端口号:8089目的端口号:51835序号:3698809199确认序号:1812017574 为第一次握手的序号+1标志位:SYN=1 ASK=1 FIN=03.第三次握手数据包容如下:客户端收到服务器发来的包后检查确认序号是否正确,即第一次发送的序号加1(X+1=1)。
以及标志位ACK是否为1。
若正确,服务器再次发送确认包,ACK标志位为1,SYN标志位为0。
确认序号=Y+1=0+1=1,发送序号为X+1=1。
客户端收到后确认序号值与ACK=1则连接建立成功,可以传送数据了。
从数据包中可以看到:源IP地址:222.18.0.78目的IP地址:117.78.58.31源端口号:51835目的端口号:8089序号:1812017574 为第一次握手的序号+1确认序号:3698809200 为第二次握手的序号+1标志位:SYN=0 ASK=1 FIN=0所谓的“三次握手”即对每次发送的数据量是怎样跟踪进行协商使数据段的发送和接收同步,根据所接收到的数据量而确定的数据确认数及数据发送、接收完毕后何时撤消联系,并建立虚连接。
为了提供可靠的传送,TCP在发送新的数据之前,以特定的顺序将数据包的序号,并需要这些包传送给目标机之后的确认消息。
TCP总是用来发送大批量的数据。
当应用程序在收到数据后要做出确认时也要用到TCP。