2016年普通高等学校招生全国统一考试(上海卷)数学试题 (理科)解析版
- 格式:docx
- 大小:790.37 KB
- 文档页数:16
2016年普通高等学校招生全国统一考试(上海卷)理科数学一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1、设x R ∈,则不等式13<-x 的解集为__________. 【答案】(2,4) 【解析】 试题分析:由题意得:131x -<-<,即24x <<,故解集为(2,4). 考点:绝对值不等式的基本解法.【名师点睛】解绝对值不等式,关键是去掉绝对值符号,进一步求解,本题也可利用两边平方的方法.本题较为容易. 2、设iiZ 23+=,期中i 为虚数单位,则Im z =_____________. 【答案】3- 【解析】 试题分析:i(32i)23i z =-+=-,故Im 3z =-考点:1.复数的运算;2.复数的概念.【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时运算与概念、复数的几何意义综合考查,也是考生必定得分的题目之一.3、已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离___________.【解析】试题分析:利用两平行线间距离公式得d 5===. 考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即,x y 的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.4、某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米). 【答案】1.76考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力. 5、已知点(3,9)在函数xa x f +=1)(的图像上,则________)()(1=-x f x f 的反函数.【答案】2log (x 1)- 【解析】 试题分析:将点39(,)带入函数()xf x 1a =+的解析式得a 2=,所以()xf x 12=+,用y 表示x 得2x log (y 1)=-,所以()12log (f x x 1)-=-.考点:1.反函数的概念;2.指数函数的图象和性质.【名师点睛】指数函数与对数函数互为反函数,求反函数的基本步骤是:一解、二换、三注.本题较为容易.6、如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________.【答案】【解析】 试题分析:由题意得11122tan 33DD DBD DD BD ∠==⇒=⇒=.考点:1.正四棱柱的几何特征;2.直线与平面所成的角.【名师点睛】涉及立体几何中的角的问题,往往要将空间问题转化成平面问题,做出角,构建三角形,在三角形中解决问题;也可以通过建立空间直角坐标系,利用空间向量方法求解,应根据具体情况选择不同方法,本题难度不大,能较好地考查考生的空间想象能力、基本计算能力等.7、方程3sin 1cos2x x =+在区间[]π2,0上的解为___________ 学优高考网 【答案】566ππ或 【解析】 试题分析:3sinx 1cos 2x =+,即23s i n x 22s i n x =-,所以22sin x 3sinx 20+-=,解得1sinx 2=或sinx 2=-(舍去),所以在区间[]π2,0上的解为566ππ或. 考点:1.二倍角公式;2.已知三角函数值求角.【名师点睛】已知三角函数值求角,基本思路是通过化简 ,得到角的某种三角函数值,结合角的范围求解.. 本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.8、在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________.【答案】112 【解析】 试题分析:因为二项式所有项的二项系数之和为n2,所以n2256=,所以n 8=,二项式展开式的通项为84r r 8rr r r 33r 1882T C ()(2)C x x --+=-=-,令84r 033-=,得r 2=,所以3T 112=.考点:1.二项式定理;2.二项展开式的系数.【名师点睛】根据二项式展开式的通项,确定二项式系数或确定二项展开式中的指定项,是二项式定理问题中的基本问题,往往要综合运用二项展开式的系数的性质、二项式展开式的通项求解. 本题能较好地考查考生的思维能力、基本计算能力等.9、已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.【答案】3【解析】 试题分析:由已知3,5,7a b c ===,∴2221cos 22a b c C ab +-==-,∴sin C =,∴2sin c R C ==考点:1.正弦定理;2.余弦定理.【名师点睛】此类题目是解三角形问题中的典型题目.解答本题,往往要利用三角公式化简三角恒等式,利用正弦定理实现边角转化,达到解题目的;三角形中的求角问题,往往要利用余弦定理用边表示角的函数.本题较易,主要考查考生的基本运算求解能力等. 10、设.0,0>>b a 若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩无解,则b a +的取值范围是_________.【答案】2+∞(,)考点:方程组的思想以及基本不等式的应用.【名师点睛】从解方程组入手,探讨得到方程组无解的条件,进一步应用基本不等式达到解题目的.易错点在于忽视得到a b ≠.本题能较好地考查考生的逻辑思维能力、基本运算求解能力等.11.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 【解析】 试题分析:要满足{}3,2∈n S ,说明n S 的最大值为3,最小值为2.所以涉及最多的项的数列可以为2,1,1,0,0,0,-⋅⋅⋅,所以最多由4个不同的数组成.考点:数列求和.【名师点睛】从分析条件入手,推断数列的构成特点,解题时应特别注意“数列{}n a 由k 个不同的数组成”的不同和“k 的最大值”.本题主要考查考生的逻辑推理能力、基本运算求解能力等.12.在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线21x y -=上一个动点,则⋅的取值范围是 .【答案】[0,1 【解析】 试题分析:由题意得知21x y -=表示以原点为圆心,半径为1的上半圆. 设(cos ,sin )P αα, [0,π]α∈,(1,1)BA =, (cos ,sin 1)BP αα=+所以πcos [0,1sin 1)14BP BA ααα⋅=+++∈+⋅BP BA 的范围为[0,1+.考点:1.平面向量的数量积;2.三角函数的图象和性质;3.数形结合的思想.【名师点睛】本题解答利用数形结合思想,将问题转化到单位圆中,从而转化成平面向量的坐标运算,利用三角函数的图象和性质,得到BA BP ⋅的取值范围.本题主要考查考生的逻辑推理能力、基本运算求解能力、数形结合思想、转化与化归思想等. 13.设[)π2,0,,∈∈c R b a ,若对任意实数x 都有()c bx a x +=⎪⎭⎫⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为 . 【答案】4 【解析】考点:1.三角函数的诱导公式;2.三角函数的图象和性质.【名师点睛】本题根据三角函数的图象和性质及三角函数的诱导公式,首先确定得到,a b 的可能取值,利用分类讨论的方法,进一步得到c 的值,从而根据具体的组合情况,使问题得解.本题主要考查考生的逻辑思维能力、基本运算求解能力、数形结合思想、分类讨论思想等.14.如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点j i A A ,,点P 满足0=++j i OA OA OP ,则点P 落在第一象限的概率是 .【答案】528【解析】试题分析:共有2828C =种基本事件,其中使点P 落在第一象限共有2325C +=种基本事件,故概率为528. 考点:1.排列组合;2.古典概型;3.平面向量的线性运算.【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好的考查考生数学应用意识、基本运算求解能力、数形结合思想等. 二、选择题(5×4=20)15.设R a ∈,则“1>a ”是“12>a ”的( )(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 【答案】A【解析】试题分析:2211,111a a a a a >⇒>>⇒><-或,所以是充分非必要条件,选A.考点:充要条件【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及不等关系,突出体现了高考试题的基础性,能较好的考查考生分析问题解决问题的能力、逻辑推理能力等.16.下列极坐标方程中,对应的曲线为右图的是( )(A )θρcos 56+= (B )θρin s 56+= (C )θρcos 56-= (D )θρin s 56-=考点:极坐标系【名师点睛】本题是极坐标系问题中的基本问题,从解法上看,一是可通过记忆比对,作出判断,二是利用特殊值代入检验的方法.本题突出体现了高考试题的基础性,能较好的考查考生基本运算能力、数形结合思想等.17.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()*∈<N n S S n 2恒成立的是( )(A )7.06.0,01<<>q a (B )6.07.0,01-<<-<q a (C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a 【答案】B【解析】试题分析:由题意得:11112,(0|q |1)11n q a a q q -<<<--对一切正整数恒成立,当10a >时12n q >不恒成立,舍去;当10a <时21122n q q <⇒<,因此选B. 考点:1.数列的极限;2.等比数列的求和.【名师点睛】本题解答中确定不等关系是基础,准确分类讨论是关键,易错点是在建立不等关系之后,不知所措或不能恰当地分类讨论.本题能较好的考查考生的逻辑思维能力、基本计算能力分类讨论思想等.18、设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( )A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题 学优高考网【解析】试题分析:①不成立,可举反例2,1)1(3,x x f x x x ≤-+>⎧=⎨⎩, 03,023,21()1,x x x x x x g x ≤-+<+⎧≥=<⎪⎨⎪⎩, 0(0)2,,x h x x x x -=≤>⎧⎨⎩②()()()()f x g x f x T g x T +=+++ ()()()()f x h x f x T h x T +=+++ ()()()()g x h x g x T h x T +=+++前两式作差,可得()()()()g x h x g x T h x T -=+-+ 结合第三式,可得()()g x g x T =+, ()()h x h x T =+ 也有()()f x f x T =+ ∴②正确 故选D.考点:1.抽象函数;2.函数的单调性;3.函数的周期性.【名师点睛】本题主要考查抽象函数下函数的单调性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于灵活选择方法,如结合选项应用“排除法”,通过举反例应用“排除法”等.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等. 三、解答题(74分)19. 将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为2π,11A B 长为π,其中1B 与C 在平面11AAO O 的同侧。
2016年 普 通 高 等 学 校 招 生 全 国 统 一 考 试上海 数学试卷(理工农医类)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、设x R ∈,则不等式13<-x 的解集为______________________2、设iiZ 23+=,期中i 为虚数单位,则Im z =______________________ 3、已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________4、某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米)5、已知点(3,9)在函数xa x f +=1)(的图像上,则________)()(1=-x fx f 的反函数6、如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________7、方程3sin 1cos2x x =+在区间[]π2,0上的解为___________8、在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________9、已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________ 10、设.0,0>>b a 若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩无解,则b a +的取值范围是____________11.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为.12.在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线21x y -=上一个动点,则BA BP ⋅的取值范围是.13.设[)π2,0,,∈∈c R b a ,若对任意实数x 都有()c bx a x +=⎪⎭⎫⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为.14.如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点j i A A ,,点P 满足0=++j i OA OA OP ,则点P落在第一象限的概率是.二、选择题(5×4=20)15.设R a ∈,则“1>a ”是“12>a ”的( )(A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分也非必要条件 16.下列极坐标方程中,对应的曲线为右图的是( ) (A )θρcos 56+= (B )θρin s 56+= (C )θρcos 56-= (D )θρin s 56-=17.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()*∈<N n S S n 2恒成立的是( )(A )7.06.0,01<<>q a (B )6.07.0,01-<<-<q a (C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a18、设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( )A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题三、解答题(74分)19.将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O 的同侧。
2016年上海市高考(理科)数学真题及答案(word版)2016年上海市高考(理科)数学真题及答案(word版)2016年上海市高考(理科)数学真题及答案和解析 ,,则3(a+bi)+a-bi=1+i4a=1且2b=Z【考点定位】复数相等,共轭复数3、若线性方程组的增广矩阵为、解为,则.【答案】16【解析】由题意得:c1=2x+3y=2x3+3x5=21,c2=0.x+y=5,c1-c2=21-5=16【考点定位】线性方程组的增广矩阵4、若正三棱柱的所有棱长均为a,且其体积为,则a=_____ .【答案】4【解析】【考点定位】正三棱柱的体积5、抛物线()上的动点到焦点的距离的最小值为1,则p=_________ .【答案】2【解析】因为抛物线上动点到焦点的距离为动点到准线的距离,因此抛物线上动点到焦点的最短距离为顶点到准线的距离,【考点定位】抛物线定义6、若圆锥的侧面积与过轴的截面面积之比为2 ,则其母线与轴的夹角的大小为_____ .【答案】【解析】由题意得:母线与轴的夹角为【考点定位】圆锥轴截面7、方程的解为____________ .【答案】2【考点定位】解指对数不等式8、在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为___________(结果用数值表示).【答案】120【解析】由题意得,去掉选5名女教师情况即可:【考点定位】排列组合9、已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q的轨迹分别为双曲线C1和C2.若C1的渐近线方程为,则C2的渐近线方程为【答案】【考点定位】双曲线渐近线10、设为,的反函数,则的最大值为.【答案】【解析】由题意得:在上单调递增,值域为,所以在上单调递增,因此在上单调递增,其最大值为【考点定位】反函数性质11、在的展开式中,项的系数为(结果用数值表示).【答案】【考点定位】二项展开式12、赌博有陷阱.某种赌博每局的规则是:赌客先在标记有,,,,的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的倍作为其奖金(单位:元).若随机变量和分别表示赌客在一局赌博中的赌金和奖金,则(元).【答案】该试题及答案加解析(Word版)完整。
2016年普通高等学校招生全国统一考试(上海卷)理科数学一.填空题:本大题共14小题,每小题4分,共计56分。
1.设R x ∈,则不等式1|3|<-x 的解集为_____________。
2.设()i z 23+=,其中i 为虚数单位,则=z Im _____________。
3.直线1l :012=-+y x ,2l :012=++y x ,则21,l l 的距离为_____________。
4.某次体检,6位同学的身高(单位:米)分别为77.1,69.1,80.1,75.1,78.1,72.1,则这组数据的中位数是_____________(米)。
5.已知点()9,3在函数()x a x f +=1的图像上,则()x f 的反函数()=-x f1_____________。
6.如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为2arctan3,则该正四棱柱的高等于_____________。
7.方程x x 2cos 1sin 3+=在区间[]π2,0上的解为_____________。
8.在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_______。
9.已知ABC ∆的三边长为7,5,3,则该三角形的外接圆半径等于_____________。
10.设0,0>>b a ,若关于y x ,的方程组⎩⎨⎧=+=+11by x y ax 无解,则b a +的取值范围是_____________。
11.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和,若对任意+∈N n ,{}3,2∈n S ,则k 的最大值为_____________。
12.在平面直角坐标系中,已知()0,1A ,()1,0-B ,P 是曲线21x y -=上一个动点,则BP BA ⋅的取值范围是_____________。
2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅰ,理1,5分】设集合{}2|430A x x x =-+<,{}|230B x x =->,则AB =( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D【解析】{|13}A x x =<<,3{|}2B x x =>,3{|3}2A B x x ∴=<<,故选D .【点评】考察集合运算和简单不等式解法,属于必考题型,难易程度:易. (2)【2016年全国Ⅰ,理2】设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( )(A )1 (B )2 (C )3 (D )2 【答案】B【解析】由题意知:1x y ==,i =1i 2x y ∴++=,故选B .【点评】察复数相等条件和复数的模,属于必考题型,难易程度:易. (3)【2016年全国Ⅰ,理3,5分】已知等差数列{}n a 前9项的和为27,108a =,则100a =( )(A )100 (B )99 (C )98 (D )97 【答案】C【解析】解法一:199599272a a S a +===,53a ∴= 1051105a a d -∴==-()100101001089098a a d ∴=+-=+=,选C . 解法二:91989272S a d ⨯=+=,即143a d +=,又10198a a d =+=,解得11,1a d =-=,()1001100119998a a d ∴=+-=-+=,故选C . 【点评】考察等差数列的基本性质、前n 项和公式和通项公式,属于必考题型,难易程度:易. (4)【2016年全国Ⅰ,理4,5分】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13(B )12 (C )23 (D )34【答案】B【解析】小明可以到达车站时长为40分钟,可以等到车的时长为20分钟,则他等车时间不超过10分钟的概率是201402P ==,故选B .【点评】考察几何概型的概率计算,第一次考察,难易程度:易.(5)【2016年全国Ⅰ,理5,5分】已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【答案】A【解析】由题意知:2234m n m n ++-=,解得21m =,1030n n +>⎧∴⎨->⎩,解得13n -<<,故选A .【点评】考察双曲线的简单几何性质,属于了解层次,必考题,难易程度:易. (6)【2016年全国Ⅰ,理6,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π 【答案】A【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=解得2r =,2271431784S r r πππ∴=⋅+⋅=,故选A .【点评】考察三视图还原,球的体积表面积计算,经常考察,难易程度:中等. (7)【2016年全国Ⅰ,理7,5分】函数22xy x e =-在[2,2]-的图像大致为( )(A )(B )(C ) (D )【答案】D【解析】解法1(排除法):2()2xf x x e =-为偶函数,且2(2)887.40.6f e =-≈-=,故选D .解法2:2()2xf x x e =-为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如图),故存在实数0(0,1)x ∈,使得'0()0f x =且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时, '0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】本题结合导数利用函数奇偶性,综合考察函数解析式与函数图像之间的关系,常规题型,属于必考题,难易程度:中等.这类题型的最佳解法应为结合函数的性质,选取特殊点进行排除.(8)【2016年全国Ⅰ,理8,5分】若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <【答案】C【解析】解法1(特殊值法):令14,22a b c ===,,易知C 正确.解法2:当0α>时,幂函数()f x x α=在(0,)+∞上递增,故A 选项错误;当1a >时,a 越大对数函数()log a f x x =的图像越靠近x 轴,当01c <<时,log log a b c c >,故D 选项错误;c c ab ba <可化为()c a ab b<,由指数函数知,当1a >时,()x f x a =在(0,)+∞上递增,故B 选项错误;log log b a a c b c <可化为11log log abb ac c <,1111abbb b a <<<,故选C .【点评】本题综合考察幂函数、指数函数、对数函数的性质和不等式的性质,属于常考题型,难易程度:中等. 结合函数性质证明不等式是比较麻烦的,最好采用特殊值法验证排除.(9)【2016年全国Ⅰ,理9,5分】执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x = 【答案】C【解析】011x y n ===,,时,框图运行如下: 1、012x y n ===,,;2、1232x y n ===,,;3、3632x y n ===,,,故选C .【点评】考察算法中的循环结构,必考题型,难易程度:易. (10)【2016年全国Ⅰ,理10,5分】以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C的标准线于D 、E 两点.已知42AB =,25DE =,则C 的焦点到准线的距离为( ) (A )2 (B )4 (C )6 (D )8【答案】B【解析】解法1排除法:当4p =时,不妨令抛物线方程为28y x =,当y =1x =,即A 点坐标为(,所以圆的半径为3r =,此时D 点坐标为(-,符合题意,故B 选项正确.解法2:不妨令抛物线方程为22y px =,D 点坐标为2P ⎛- ⎝,则圆的半径为r =,22834p r -=-,即A 点坐标为⎭,所以22=,解得4p =,故选B . 【点评】考察抛物线和圆的简单性质,必考题型,难易程度:中等. (11)【2016年全国Ⅰ,理11,5分】平面a 过正方体1111ABCD A B C D -的顶点A ,//a 平面11CB D ,a 平面ABCD m =,a 平面11ABA B n =,则m 、n 所成角的正弦值为( )(A (B )2 (C (D )13【答案】A【解析】令平面a 与平面11CB D 重合,则11m B D =,1n CD =,故直线m 、n 所成角为60o ,,故选A . 【点评】考察正方体中线面位置关系和两条直线夹角的计算,必考题型,难易程度:中等.(12)【2016年全国Ⅰ,理12,5分】已知函数()()sin 02f x x +πωϕωϕ⎛⎫=>≤ ⎪⎝⎭,,4x π=-为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为( )(A )11 (B )9 (C )7 (D )5 【答案】B【解析】解法1(特殊值验证法)令9ω=,则周期29T π=,区间[]44ππ-,刚为94T ,且在53636ππ⎡⎤⎢⎥⎣⎦,上递减,恰好符合题意,故选B .解法2:由题意知152()24369T πππ≥-=,所以29Tπω=≤,故选B .【点评】综合考察三角函数图像的单调性、对称性、零点、周期等性质,属于必考题型,难易程度:偏难.第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,理13,5分】设向量(),1m =a ,()1,2=b ,且222+=+a b a b ,则m = . 【答案】2-【解析】解法一(几何法)由向量加法的几何意义知a b ⊥,故20a b m ⋅=+=,所以2m =-;解法二(代数法)22(1)9114m m ++=+++,解得2m =-.【点评】考察向量运算,必考题型,难易程度:易.(14)【2016年全国Ⅰ,理14,5分】(52x +的展开式中,3x 的系数是 .(用数字填写答案) 【答案】10【解析】()555215522r rrrr rr T Cx C x---+==,令532r-=,解得4r =,454525210C -∴=⨯=. 【点评】考察二项式定理展开式中指定项问题,必考题型,难易程度:中等.(15)【2016年全国Ⅰ,理15,5分】设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 . 【答案】64【解析】由1310a a +=,245a a +=解得118,2a q ==,14118()()22n n n a --∴==,27321(4)21211()()22n nn n a a a ----+⋅⋅⋅+-∴⋅⋅⋅==,所以当3n =或4时,12n a a a ⋅⋅⋅有最大值64.【点评】考察等比数列的通项公式、等差数列求和及二次函数最值问题,必考题型,难易程度:中等. (16)【2016年全国Ⅰ,理16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
2016年上海高考数学(理科)试卷一、填空题(本大题共有14题,满分56分) 1.计算:ii+-13= (i 为虚数单位). 2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A = .3.函数1sin cos 2)(-=xx x f 的值域是 .4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).5.在6)2(xx -的二项展开式中,常数项等于 .6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V .7.已知函数||)(a x ex f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 .8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 . 9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g . 10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=.若将l 的极坐标方程写成)(θρf =的形式,则=)(θf .11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有 两人选择的项目完全相同的概率是 (结果用最简分数表示). 12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD ||||CD CN BC BM =,则⋅的取值范围是 . 13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0).函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为 .14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2.若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 .二、选择题(本大题共有4题,满分20分) 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )(A )3,2==c b . (B )3,2=-=c b . (C )1,2-=-=c b .(D )1,2-==c b . 16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )(A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定.17.设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的概率均为0.2,随机变量2ξ取值221x x +、232x x +、243x x +、254x x +、215x x +的概率也为0.2.若记1ξD 、2ξD 分别为1ξ、2ξ的方差,则( )(A )1ξD >2ξD . (B )1ξD =2ξD . (C )1ξD <2ξD . (D )1ξD 与2ξD 的大小关系与1x 、2x 、3x 、4x 的取值有关.18.设251sin πn n n a =,n na a a S +++= 21. 在10021,,,S S S 中,正数的个数是 ( ) (A )25. (B )50. (C )75.(D )100. 三、解答题(本大题共有5题,满分74分)19.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形, P A ⊥底面ABCD ,E 是PC 的中点.已知AB=2, AD=22,P A=2.求:(1)三角形PCD 的面积;(6分)(2)异面直线BC 与AE 所成的角的大小.(6分)20.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(6分)(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.(8分)ABCDABCPE21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴 正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海 里A 处,如图. 现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(822.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成 的三角形的面积;(4分)(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证: OP ⊥OQ ;(6分)(3)设椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON , 求证:O 到直线MN 的距离是定值.(6分)23.对于数集},,,,1{21n x x x X -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==. 若对于任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X具有性质P . 例如}2,1,1{-=X 具有性质P .(1)若x >2,且},2,1,1{x -,求x 的值;(4分)(2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(6分)(3)若X 具有性质P ,且x 1=1,x 2=q (q 为常数),求有穷数列n x x x ,,,21 的通 项公式.(8分)2016年上海高考数学(理科)试卷解答一、填空题(本大题共有14题,满分56分)1.计算:ii+-13= 1-2i (i 为虚数单位).2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A =)3,(21- . 3.函数1sin cos 2)(-=xx x f 的值域是],[2325-- .4.若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 arctan2 (结果用反三角函数值表示). 5.在6)2(xx -的二项展开式中,常数项等于 -160 .6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V 78 .7.已知函数||)(a x ex f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 (-∞, 1] .8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为π33 .9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g -1 .10.如图,在极坐标系中,过点)0,2(M 的直线l6πα=.若将l 的极坐标方程写成)(θρf =的形式,则=)(θf )sin(16θπ- . 11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有 两人选择的项目完全相同的概率是32(结果用最简分数表示). 12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD ||||CD CN BC BM =,则⋅的取值范围是 [2, 5] . 13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0).函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为45. 14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2.若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是12232--c a c . 二、选择题(本大题共有4题,满分20分) 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则 ( B ) (A )3,2==c b . (B )3,2=-=c b . (C )1,2-=-=c b .(D )1,2-==c b .16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是 ( C ) (A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定.ABCD17.设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的概率均为0.2,随机变量2ξ取值221x x +、232x x +、243x x +、254x x +、215x x +的概率也为0.2.若记1ξD 、2ξD 分别为1ξ、2ξ的方差,则( A )(A )1ξD >2ξD . (B )1ξD =2ξD . (C )1ξD <2ξD . (D )1ξD 与2ξD 的大小关系与1x 、2x 、3x 、4x 的取值有关.18.设251sin πn n n a =,n na a a S +++= 21. 在10021,,,S S S 中,正数的个数是 ( D ) (A )25. (B )50. (C )75. (D )100.三、解答题(本大题共有5题,满分74分)19.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形, P A ⊥底面ABCD ,E 是PC 的中点.已知AB=2, AD=22,P A=2.求: (1)三角形PCD 的面积;(6分)(2)异面直线BC 与AE 所成的角的大小.(6分) [解](1)因为P A ⊥底面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,所以CD ⊥平面P AD , 从而CD ⊥PD . ……3分 因为PD=32)22(222=+,CD =2,所以三角形PCD 的面积为3232221=⨯⨯. (2)[解法一]如图所示,建立空间直角坐标系, 则B (2, 0, 0),C (2, 22,0),E (1, 2, 1),)1,2,1(=AE ,)0,22,0(=BC . ……8 设AE 与的夹角为θ,则222224||||cos ===⨯⋅BC AE BC AE θ,θ=4π. 由此可知,异面直线BC 与AE 所成的角的大小是4π ……12分 [解法二]取PB 中点F ,连接EF 、AF ,则 EF ∥BC ,从而∠AEF (或其补角)是异面直线 BC 与AE 所成的角 ……8分在AEF ∆中,由EF =2、AF =2、AE =2知AEF ∆是等腰直角三角形, 所以∠AEF =4π.因此异面直线BC 与AE 所成的角的大小是4π ……12分20.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(6分)(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.(8分)[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x . ……3分因为01>+x ,所以1010221+<-<+x x x ,3132<<-x .由⎩⎨⎧<<-<<-313211x x 得3132<<-x . ……6分 (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==. ……10分AB CD PE yAB CDP EF由单调性可得]2lg ,0[∈y .因为y x 103-=,所以所求反函数是xy 103-=,]2lg ,0[∈x . ……14分21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴 正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海 里A 处,如图. 现假设:①失事船的移动路径可视为抛物线 24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救 援船出发t 小时后,失事船所在位置的横坐标为.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(8[解](1)5.0=t 时,P 的横坐标x P =277=t ,代入抛物线方程y =中,得P 的纵坐标y P =3. 由|AP |=2949,得救援船速度的大小为949海里/时. ……4分由tan ∠OAP =30712327=+,得∠OAP =arctan 307,故救援船速度的方向为北偏东arctan 307弧度. ……6分(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t . 由222)1212()7(++=t t vt ,整理得337)(1442122++=t t v .……10分 因为2212≥+t t ,当且仅当t =1时等号成立,所以22253372144=+⨯≥v ,即25≥v .因此,救援船的时速至少是25海里才能追上失事船. ……14分 22.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成 的三角形的面积;(4分) (2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证: OP ⊥OQ ;(6分) (3)设椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON , 求证:O 到直线MN 的距离是定值.(6分) [解](1)双曲线1:21212=-y C x ,左顶点)0,(22-A ,渐近线方程:x y 2±=.过点A 与渐近线x y 2=平行的直线方程为)(222+=x y ,即12+=x y .解方程组⎩⎨⎧+=-=122x y x y ,得⎪⎩⎪⎨⎧=-=2142y x . ……2分所以所求三角形的面积1为8221||||==y OA S . ……4分(2)设直线PQ 的方程是b x y +=.因直线与已知圆相切,故12||=b ,即22=b . ……6分由⎩⎨⎧=-+=1222y x b x y ,得01222=---b bx x . 设P (x 1, y 1)、Q (x 2, y 2),则⎩⎨⎧--==+1222121b x x bx x . 又2,所以221212121)(2b x x b x x y y x x OQ OP +++=+=⋅022)1(2222=-=+⋅+--=b b b b b ,故OP ⊥OQ . ……10分(3)当直线ON 垂直于x 轴时, |ON |=1,|OM |=22,则O 到直线MN 的距离为33.当直线ON 不垂直于x 轴时,设直线ON 的方程为kx y =(显然22||>k ),则直线OM 的方程为x y k1-=. 由⎩⎨⎧=+=1422y x kx y ,得⎪⎩⎪⎨⎧==++22242412k k k y x ,所以22412||k k ON ++=.同理121222||-+=k k OM . ……13分 设O 到直线MN 的距离为d ,因为22222||||)|||(|ON OM d ON OM =+, 所以3133||1||1122222==+=++k k ON OM d ,即d =33.综上,O 到直线MN 的距离是定值. ……16分 23.对于数集},,,,1{21n x x x X -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s Y ∈∈==. 若对于任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X 具有性质P . 例如}2,1,1{-=X 具有性质P . (1)若x >2,且},2,1,1{x -,求x 的值;(4分)(2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(6分) (3)若X 具有性质P ,且x 1=1,x 2=q (q 为常数),求有穷数列n x x x ,,,21 的通 项公式.(8分)[解](1)选取)2,(1x a =,Y 中与1a 垂直的元素必有形式),1(b -. ……2分 所以x =2b ,从而x =4. ……4分 (2)证明:取Y x x a ∈=),(111.设Y t s a ∈=),(2满足021=⋅a a .由0)(1=+x t s 得0=+t s ,所以s 、t 异号.因为-1是X 中唯一的负数,所以s 、t 中之一为-1,另一为1,故1∈X . ……7分 假设1=k x ,其中n k <<1,则n x x <<<101.选取Y x x a n ∈=),(11,并设Y t s a ∈=),(2满足021=⋅a a ,即01=+n tx sx , 则s 、t 异号,从而s 、t 之中恰有一个为-1. 若s =-1,则2,矛盾;若t =-1,则n n x s sx x ≤<=1,矛盾.所以x 1=1. ……10分(3)[解法一]猜测1-=i i q x ,i =1, 2, …, n . ……12分记},,,1,1{2k k x x A -=,k =2, 3, …, n . 先证明:若1+k A 具有性质P ,则k A 也具有性质P.任取),(1t s a =,s 、t ∈k A .当s 、t 中出现-1时,显然有2a 满足021=⋅a a ; 当1-≠s 且1-≠t 时,s 、t ≥1.因为1+k A 具有性质P ,所以有),(112t s a =,1s 、1t ∈1+k A ,使得021=⋅a a ,从而1s 和1t 中有一个是-1,不妨设1s =-1.假设1t ∈1+k A 且1t ∉k A ,则11+=k x t .由0),1(),(1=-⋅+k x t s ,得11++≥=k k x tx s ,与s ∈k A 矛盾.所以1t ∈k A .从而k A 也具有性质P. ……15分现用数学归纳法证明:1-=i i q x ,i =1, 2, …, n .当n =2时,结论显然成立;假设n=k 时,},,,1,1{2k k x x A -=有性质P ,则1-=i i q x ,i =1, 2, …, k ;当n=k +1时,若},,,,1,1{121++-=k k k x x x A 有性质P ,则},,,1,1{2k k x x A -=也有性质P ,所以},,,,1,1{111+-+-=k k k x q q A .取),(11q x a k +=,并设),(2t s a =满足021=⋅a a ,即01=++qt s x k .由此可得s 与t中有且只有一个为-1.若1-=t ,则1,不可能;所以1-=s ,k k k q q q qt x =⋅≤=-+11,又11-+>k k q x ,所以kk q x =+1. 综上所述,1-=i i q x 1-=i i q x ,i =1, 2, …, n . ……18分[解法二]设),(111t s a =,),(222t s a =,则021=⋅a a 等价于2211st t s -=.记|}|||,,|{t s X t X s B ts >∈∈=,则数集X 具有性质P 当且仅当数集B 关于 原点对称. ……14分注意到-1是X 中的唯一负数,},,,{)0,(32n x x x B ---=-∞ 共有n -1个数, 所以),0(∞+ B 也只有n -1个数. 由于1221x x x x x x x x n n n n n n <<<<-- ,已有n -1个数,对以下三角数阵1221x x x x x x x x n n n n n n <<<<--113121x x x x x x n n n n n -----<<<……12x x 注意到12111x x x x x x n n >>>- ,所以12211x x x x x x n n n n ===--- ,从而数列的通项公式为111)(12--==k k x xk q x x ,k =1, 2, …, n . ……18分。
2016年上海高考数学(理科)真题一、解答题(本大题共有14题,满分56分)1. 设x ∈R ,则不等式31x -<的解集为________________ 【答案】(2,4)【解析】131x -<-<,即24x <<,故解集为(2,4)2. 设32iiz +=,其中i 为虚数单位,则Im z =_________________【答案】3-【解析】i(32i)23i z =-+=-,故Im 3z =-3. 1l :210x y +-=, 2l :210x y ++=, 则12,l l 的距离为__________________25【解析】22112521d +==+4. 某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是___ (米) 【答案】1.765. 已知点(3,9)在函数()1x f x a =+的图像上,则()f x 的反函数1()f x -=____________ 【答案】2log (1)x -【解析】319a +=,故2a =,()12x f x =+∴2log (1)x y =-∴12()log (1)f x x -=-6. 如图,在正四棱柱1111ABCD A B C D -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为2arctan 3, 则该正四棱柱的高等于____________________ 【答案】2【解析】32BD =12223DD BD =⋅=7. 方程3sin 1cos2x x =+在区间[0,2π]上的解为________________【答案】π5π,66x =【解析】23sin 22sin x x =-,即22sin 3sin 20x x +-=∴(2sin 1)(sin 2)0x x -+=∴1sin 2x =∴π5π,66x =8. 在2nx ⎫⎪⎭的二项式中,所有项的二项式系数之和为256,则常数项等于_______________【答案】112【解析】2256n =, 8n =通项88433882()(2)r rr r r r C x C x x--⋅⋅-=-⋅取2r =常数项为228(2)112C -=9. 已知ABC 的三边长为3,5,7,则该三角形的外接圆半径等于________________【解析】3,5,7a b c ===,2221cos 22a b c C ab +-==-∴sin C∴2sin c R C ==10. 设0,0a b >>,若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩无解,则a b +的取值范围是_____________【答案】(2,)+∞【解析】由已知,1ab =,且a b ≠,∴2a b +>11. 无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和,若对任意*n ∈N ,{2,3}n S ∈,则k 的最大值为___________ 【答案】412. 在平面直角坐标系中,已知(1,0)A , (0,1)B -, P 是曲线y =则BP BA ⋅的取值范围 是____________【答案】[0,1+【解析】设(cos ,sin )P αα, [0,π]α∈,(1,1)BA =, (cos ,sin 1)BP αα=+πcos [0,12]sin 12)14BP BA ααα⋅=+++∈+13. 设,,a b ∈R , [0,2π)c ∈,若对任意实数x 都有π2sin(3)sin()3x a bx c -=+,则满足条件的有序实数组(,,)a b c 的组数为______________ 【答案】4【解析】(i)若2a =若3b =,则5π3c =; 若3b =-,则4π3c =(ii)若2a =-,若3b =-,则π3c =;若3b =,则2π3c =共4组14. 如图,在平面直角坐标系xOy 中,O 为正八边形128A A A 的中心,1(1,0)A ,任取不同的两点,i j A A ,点P 满足0i j OP OA OA ++=,则点P 落在第一象限的概率是_______________【答案】528 【解析】285528C =二、选择题(本大题共有4题,满分20分)15. 设a ∈R ,则“1a >”是“21a >”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件 【答案】A16. 下列极坐标方程中,对应的曲线为右图的是( )A. 65cos ρθ=+B. 65sin ρθ=+C. 65cos ρθ=-D. 65sin ρθ=- 【答案】D【解析】π2θ=-时,ρ达到最大17. 已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且lim n n S S →∞=,下列条件中,使得*2()n S S n <∈N 恒成立的是( )A. 10a >, 0.60.7q <<B. 10a <, 0.70.6q -<<-C. 10a >, 0.70.8q <<D. 10a <, 0.80.7q -<<- 【答案】B【解析】1(1)1n n a q S q-=-, 11a S q =-, 11q -<<2n S S <,即1(21)0n a q -> 若10a >,则12nq >,不可能成立若10a <,则12nq <,B 成立18. 设(),(),()f x g x h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +,()()f x h x +,()()g x h x +均为增函数,则(),(),()f x g x h x 中至少有一个为增函数;②若()()f x g x +,()()f x h x +,()()g x h x +均是以T 为周期的函数,则(),(),()f x g x h x 均是以T 为周期的函数,下列判断正确的是( ) A. ①和②均为真命题 B. ①和②均为假命题C. ①为真命题,②为假命题D. ①为假命题,②为真命题 【答案】D【解析】①不成立,可举反例2,1)1(3,x x f x x x ≤-+>⎧=⎨⎩, 03,023,21()1,x x x x x x g x ≤-+<+⎧≥=<⎪⎨⎪⎩, 0(0)2,,x h x x x x -=≤>⎧⎨⎩ ②()()()()f x g x f x T g x T +=+++()()()()f x h x f x T h x T +=+++ ()()()()g x h x g x T h x T +=+++前两式作差,可得()()()()g x h x g x T h x T -=+-+ 结合第三式,可得()()g x g x T =+, ()()h x h x T =+ 也有()()f x f x T =+ ∴②正确 故选D三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19. (本题满分12分)将边长为1的正方形11AA O O (及其内部)绕1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AA O O 的同侧 (1) 求三棱锥111C O A B -的体积(2) 求异面直线1B C 与1AA 所成角的大小 【解析】(1) 连11O B ,则111113AO A B B π∠==∴111O A B 为正三角形 ∴1113O A B S=∴1111111133C O A B O A B V OO S -=⋅=(2) 设点1B 在下底面圆周的射影为B ,连1BB ,则11BB AA ∥ ∴1BB C ∠为直线1B C 与1AA 所成角(或补角) 111BB AA == 连,,BC BO OC113AB A B π==, 23AC π=∴3BC π=∴3BOC π∠=∴BOC 为正三角形 ∴1BC BO ==∴11tan 1BCBB C BB ∠== ∴145BB C ∠=︒∴直线1B C 与1AA 所成角大小为45︒20.(本题满分14分)有一块正方形菜地EFGH , EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
2016年上海高考数学(理科)真题一、解答题(本大题共有14题,满分56分)1. 设x ∈R ,则不等式31x -<的解集为________________ 【答案】(2,4)【解析】131x -<-<,即24x <<,故解集为(2,4)2. 设32iiz +=,其中i 为虚数单位,则Im z =_________________【答案】3-【解析】i(32i)23i z =-+=-,故Im 3z =-3. 1l :210x y +-=, 2l :210x y ++=, 则12,l l 的距离为__________________25【解析】22112521d +==+4. 某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是___ (米) 【答案】1.765. 已知点(3,9)在函数()1x f x a =+的图像上,则()f x 的反函数1()f x -=____________ 【答案】2log (1)x -【解析】319a +=,故2a =,()12x f x =+∴2log (1)x y =-∴12()log (1)f x x -=-6. 如图,在正四棱柱1111ABCD A B C D -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为2arctan 3,则该正四棱柱的高等于____________________ 【答案】22【解析】32BD =, 12223DD BD =⋅=7. 方程3sin 1cos2x x =+在区间[0,2π]上的解为________________【答案】π5π,66x =【解析】23sin 22sin x x =-,即22sin 3sin 20x x +-=∴(2sin 1)(sin 2)0x x -+=∴1sin 2x =∴π5π,66x =8. 在2n x ⎫⎪⎭的二项式中,所有项的二项式系数之和为256,则常数项等于_______________ 【答案】112【解析】2256n =, 8n =通项88433882()(2)r rr r r rC x C x x--⋅⋅-=-⋅取2r =常数项为228(2)112C -=9. 已知的三边长为3,5,7,则该三角形的外接圆半径等于________________【解析】3,5,7a b c ===,2221cos 22a b c C ab +-==-∴sin C∴2sin c R C ==10. 设0,0a b >>,若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩无解,则a b +的取值范围是_____________【答案】(2,)+∞【解析】由已知,1ab =,且a b ≠,∴2a b +>11. 无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和,若对任意*n ∈N ,{2,3}n S ∈,则k 的最大值为___________ 【答案】412. 在平面直角坐标系中,已知(1,0)A , (0,1)B -, P 是曲线y =BP BA ⋅u u u r u u u r的取值范围是____________【答案】[0,12]+【解析】设(cos ,sin )P αα, [0,π]α∈,(1,1)BA =u u u r , (cos ,sin 1)BP αα=+u u u rπcos [0,12]sin 12)14BP BA ααα⋅=++=+∈++u u u r u u u r13. 设,,a b ∈R , [0,2π)c ∈,若对任意实数x 都有π2sin(3)sin()3x a bx c -=+,则满足条件的有序实数组(,,)a b c 的组数为______________ 【答案】4【解析】(i)若2a =若3b =,则5π3c =; 若3b =-,则4π3c =(ii)若2a =-,若3b =-,则π3c =;若3b =,则2π3c =共4组14. 如图,在平面直角坐标系xOy 中,O 为正八边形128A A A L 的中心,1(1,0)A ,任取不同的两点,i j A A ,点P 满足0i j OP OA OA ++=u u u r u u u r u u u u r r,则点P 落在第一象限的概率是_______________【答案】528 【解析】285528C =二、选择题(本大题共有4题,满分20分)15. 设a ∈R ,则“1a >”是“21a >”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件 【答案】A16. 下列极坐标方程中,对应的曲线为右图的是( ) A. 65cos ρθ=+ B. 65sin ρθ=+ C. 65cos ρθ=- D. 65sin ρθ=- 【答案】D【解析】π2θ=-时,ρ达到最大17. 已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且lim n n S S →∞=,下列条件中,使得*2()n S S n <∈N 恒成立的是( )A. 10a >, 0.60.7q <<B. 10a <, 0.70.6q -<<-C. 10a >, 0.70.8q <<D. 10a <, 0.80.7q -<<- 【答案】B【解析】1(1)1n n a q S q-=-, 11a S q =-, 11q -<<2n S S <,即1(21)0n a q -> 若10a >,则12nq >,不可能成立若10a <,则12nq <,B 成立18. 设(),(),()f x g x h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +,()()f x h x +,()()g x h x +均为增函数,则(),(),()f x g x h x 中至少有一个为增函数;②若()()f x g x +,()()f x h x +,()()g x h x +均是以T 为周期的函数,则(),(),()f x g x h x 均是以T 为周期的函数,下列判断正确的是( )A. ①和②均为真命题B. ①和②均为假命题C. ①为真命题,②为假命题D. ①为假命题,②为真命题 【答案】D【解析】①不成立,可举反例2,1)1(3,x x f x x x ≤-+>⎧=⎨⎩, 03,023,21()1,x x x x x x g x ≤-+<+⎧≥=<⎪⎨⎪⎩, 0(0)2,,x h x x x x -=≤>⎧⎨⎩②()()()()f x g x f x T g x T +=+++()()()()f x h x f x T h x T +=+++ ()()()()g x h x g x T h x T +=+++前两式作差,可得()()()()g x h x g x T h x T -=+-+ 结合第三式,可得()()g x g x T =+, ()()h x h x T =+ 也有()()f x f x T =+ ∴②正确 故选D三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19. (本题满分12分)将边长为1的正方形11AA O O (及其内部)绕1OO 旋转一周形成圆柱,如图,»AC 长为23π,¼11A B 长为3π,其中1B 与C 在平面11AA O O 的同侧 (1) 求三棱锥111C O A B -的体积(2) 求异面直线1B C 与1AA 所成角的大小【解析】(1) 连11O B ,则¼111113AO A B B π∠== ∴111O A B V 为正三角形∴1113O A B S V ∴1111111133C O A B O A B V OO S -=⋅=V(2) 设点1B 在下底面圆周的射影为B ,连1BB ,则11BB AA ∥ ∴1BB C ∠为直线1B C 与1AA 所成角(或补角)111BB AA == 连,,BC BO OC»¼113AB A B π==, »23AC π= ∴»3BCπ= ∴3BOC π∠=∴BOC V 为正三角形 ∴1BC BO ==∴11tan 1BCBB C BB ∠== ∴145BB C ∠=︒∴直线1B C 与1AA 所成角大小为45︒20.(本题满分14分)有一块正方形菜地EFGH , EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.
1、设x R ∈,则不等式13<-x 的解集为__________.
【答案】(2,4)
【解析】
试题分析:
由题意得:131x -<-<,即24x <<,故解集为(2,4).
考点:绝对值不等式的基本解法.
【名师点睛】解绝对值不等式,关键是去掉绝对值符号,进一步求解,本题也可利用两边平方的方法.本题较为容易.
2、设i
i Z 23+=,期中i 为虚数单位,则Im z =_____________. 【答案】3-
【解析】
试题分析:
i(32i)23i z =-+=-,故Im 3z =-
考点:1.复数的运算;2.复数的概念.
【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时运算与概念、复数的几何意义综合考查,也是考生必定得分的题目之一.
3、已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离___________.
【解析】试题分析:
利用两平行线间距离公式得
d 5
=
==. 考点:两平行线间距离公式.
【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即,x y 的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.
4、某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的
中位数是_________(米).
【答案】1.76
考点:中位数的概念.
【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.
5、已知点(3,9)在函数x a x f +=1)(的图像上,则________
)()(1=-x f x f 的反函数. 【答案】2log (x 1)-
【解析】
试题分析:
将点39(,)带入函数()x f x 1a =+的解析式得a 2=,所以()x f x 12=+,用y 表示x 得
2x log (y 1)=-,所以()12log (f x x 1)-=-.
考点:1.反函数的概念;2.指数函数的图象和性质.
【名师点睛】指数函数与对数函数互为反函数,求反函数的基本步骤是:一解、二换、三注.本题较为容易.
6、如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为3
2arctan ,则该正四棱柱的高等于____________.
【答案】【解析】
试题分析:
由题意得1
1122tan 33
DD DBD DD BD ∠==⇒=⇒=.。