电磁辐射的测量基础知识
- 格式:doc
- 大小:50.00 KB
- 文档页数:4
电磁辐射的测量基础知识电磁辐射的测量方法通常与测量点位和辐射源的距离有关,即,所进行的测量是远场测量还是近场测量。
由于远场和近场的情况下,电磁场的性质有所不同,因此,要对远场和近场测量有明确的了解。
1、电磁场的远场和近场划分电磁辐射源产生的交变电磁场可分为性质不同的两个部分,其中一部分电磁场能量在辐射源周围空间及辐射源之间周期性地来回流动,不向外发射,称为感应场;另一部分电磁场能量脱离辐射体,以电磁波的形式向外发射,称为辐射场。
一般情况下,电磁辐射场根据感应场和辐射场的不同而区分为远区场(辐射场)和近区场(感应场)。
由于远场和近场的划分相对复杂,要具体根据不同的工作环境和测量目的进行划分,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。
近区场通常具有如下特点:近区场内,电场强度与磁场强度的大小没有确定的比例关系。
即:E=377H。
一般情况下,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备的模具),磁场要比电场大得多。
近区场的电磁场强度比远区场大得多。
从这个角度上说,电磁防护的重点应该在近区场。
近区场的电磁场强度随距离的变化比较快,在此空间内的不均匀度较大。
远区场的主要特点如下:在远区场中,所有的电磁能量基本上均以电磁波形式辐射传播,这种场辐射强度的衰减要比感应场慢得多。
在远区场,电场强度与磁场强度有如下关系:在国际单位制中,E=377H,电场与磁场的运行方向互相垂直,并都垂直于电磁波的传播方向。
远区场为弱场,其电磁场强度均较小近区场与远区场划分的意义:通常,对于一个固定的可以产生一定强度的电磁辐射源来说,近区场辐射的电磁场强度较大,所以,应该格外注意对电磁辐射近区场的防护。
对电磁辐射近区场的防护,首先是对作业人员及处在近区场环境内的人员的防护,其次是对位于近区场内的各种电子、电气设备的防护。
常规电磁辐射监测方法1.电磁辐射污染源监测方法1)环境条件应符合行业标准和仪器标准中规定的使用条件。
测量记录表应注明环境温度、相对湿度。
2)测量仪器可使用各向同性响应或有方向性电场探头或磁场探头的宽带辐射测量仪。
采用有方向性探头时,应在测量点调整探头方向以测出测量点最大辐射电平。
测量仪器工作频带应满足待测场要求,仪器应经计量标准定期鉴定。
3)测量时间在幅射体正常工作时间内进行测量,每个测点连续测5次,每次测量时间不应小于15秒,并读取稳定状态的最大值。
若测量读数起伏较大时,应适当延长测量时间。
4)测量位置测量位置取作业人员操作位置,距地面0.5、1、1.7m三个部位。
辐射体各辅助设施(计算机房、供电室等)作业人员经常操作的位置,测量部位距地面0.5—1.7m。
辐射体附近的固定哨位、值班位置等。
数据处理出每个测量部位平均场强值(若有几次读数)。
根据各操作位置的E值(H、P d)按国家标准《电磁辐射防护规定》(GB 8702—88)或其它部委制定安全限值”作出分析评价。
2.环境电磁辐射测量方法1)测量条件气候条件:气候条件应符合待业标准和仪器标准中规定的使用条件。
测量记录表应注明环境温度相对湿度。
测量高度:离地面1.7~2m高度。
也可根据不同目的,选择测量高度。
测量频率:电场强度测量值>50 dBμV/m的频率作为测量频率。
测量时间:本测量时间为5:00~9:00,11:00~14:00,18:00~23:00城市环境电磁辐射的高峰期。
24小时昼夜测量,昼夜测量点不应少于10点。
测量间隔时间为1h,每次测量观察时间不应小于15s,若指针摆动过大,应适当延长观察时间。
2)布点方法典型辐射体环境测量布点对典型辐射体,比如某个电视发射塔周围环境实施监测时,则以辐射为中心,按间隔45°的八个方位为测量线,每条测量线上选取距场源分别30、50、100mm 等不同距离定点测量,测量范围根据实际情况确定。
如何测量工频电磁辐射(工频电磁场)
电磁辐射源产生的交变电磁场可分为性质不同的两个部分,其中一部分电磁场能量在辐射源周围空间及辐射源之间周期性地来回流动,不向外发射,称为感应场;另一部分电磁场能量脱离辐射体,以电磁波的形式向外发射,称为辐射场。
中国电力工业(包括民用和工业用电)的标准频率定为50赫兹,也有一些国家的电力工业的标准频率为60赫兹,因此通常所说的工频指50或者60赫兹(50/60Hz)。
由于工频的频率很低,不足产生对外传播的电磁波,是一种感应场,因此,测量工频电磁辐射,更确切的说法应该是测量工频电磁场,测量的是工频电场强度及工频磁场强度。
工频电磁场主要来自电力系统的电磁辐射,包括高压输变电系统中的线路、变电站,家里的电吹风、电视机、电脑、电冰箱、手机等电器周围。
测量工频电磁场,应尽量选用具有全向性探头的综合场强仪,如COLIY E300电磁场强度分析仪,具有很好的测量精度和强大的数据处理功能,在测量时不必调整探头方向,精度高达±1dB,满足国家标准《GB8702-88电磁辐射防护规定》中对电磁辐射测量仪(场强仪)的要求。
此外,国家环境保护部在输变电工程环境影响评价技术规范中规定,居民区输变电工程工频电场强度的推荐限值为4千伏/米。
工频磁感应强度限值是0.1毫特(即100微特)。
电磁辐射发射测试方法(一)
电磁辐射发射测试
方法一:频谱分析法
•使用频谱分析仪测量电磁辐射发射的频谱特征
•该方法可以确定电磁辐射的频率范围和主要频率成分
•需要专业仪器和相应的测试技巧
方法二:场强测试法
•使用场强仪器测量电磁场的强度
•可以确定电磁辐射的强度及分布情况
•需要选择适当的测试位置和测试点,以获得准确的数据
方法三:辐射源距离法
•根据辐射源与测试点的距离,计算电磁辐射的衰减情况
•可以评估辐射源的辐射范围和影响范围
•需要确定辐射源的位置和测试点的位置,并进行准确距离的测量方法四:辐射防护测试法
•测试辐射防护设备的有效性
•可以评估防护设备的辐射阻挡效果及缺陷
•需要专业的测试设备和标准,以确保测试结果的准确性
方法五:模拟测试法
•基于电磁辐射模拟场景进行测试
•可以模拟不同的辐射源和场景,并进行各种参数的测试
•需要先制定模拟场景和测试任务,然后选择合适的模拟设备和测试方法
方法六:辐射光度测试法
•使用光度仪器测量电磁辐射的亮度
•可以评估电磁辐射对人眼的刺激程度
•需要注意测试环境的光线条件,并使用准确的光度仪器进行测试以上是常见的几种电磁辐射发射测试方法,不同的方法适用于不同的测试场景和目的。
在进行测试时,需要选择适合的方法,并使用专业的仪器和设备。
同时,测试过程中需要注重安全,避免对人身和环境造成伤害。
电磁辐射实验测量电磁波的频率和波长电磁辐射是我们日常生活中经常接触到的一种物理现象。
它泛指电场和磁场相互变化而产生的波动现象,包括无线电波、微波、红外线、可见光、紫外线、X射线、γ射线等。
在进行电磁辐射实验测量时,我们常常需要确定电磁波的频率和波长。
首先,让我们了解一下频率的概念。
频率指的是单位时间内波的周期性重复次数,通常用赫兹(Hz)来衡量。
物理学中电磁波的频率范围非常广泛,从1赫兹的极低频到1025赫兹的极高频都有所涉及。
不同频率的电磁波具有不同的特性和应用。
确定电磁波的频率通常可以使用频率计等仪器。
频率计是一种能够测量电磁波频率的仪器,其工作原理基于波形周期性变化的特性。
我们可以将电磁波通过某种设备传入频率计,然后通过频率计显示出电磁波的频率数值。
而在确定电磁波的波长时,我们需要了解波长的概念。
波长是指电磁波中相邻两个波峰间或波谷间的距离,通常用米(m)来衡量。
波长与频率之间有一个简单的关系:波速等于波长乘以频率。
根据这个公式,我们可以通过已知波速和频率来计算波长。
在实验测量中,确定电磁波的波长可以使用光栅衍射仪等设备。
光栅衍射仪利用光的波动性进行实验测量。
当光通过光栅时,会产生衍射现象,形成明暗相间的衍射条纹。
通过衍射条纹的间距和光的入射角,我们可以计算得到电磁波的波长。
电磁辐射实验测量电磁波的频率和波长不仅仅在理论研究中有重要意义,在应用中也具有广泛的应用。
例如在通信领域,我们常常需要测量无线电波的频率和波长,以确定无线电信号的传输参数。
在医学领域,X射线和γ射线的频率和波长的测量对于诊断和治疗等应用也非常重要。
总而言之,电磁辐射实验测量电磁波的频率和波长是一个既有理论基础又具有实际应用的重要课题。
通过合适的仪器和实验方法,我们可以准确地测量电磁波的频率和波长,并应用于各个领域。
这项研究不仅为我们深入了解电磁辐射的特性提供了重要手段,也为未来电磁波的应用和研究提供了前提条件。
测试电磁辐射
测试电磁辐射的常用方法包括:
1. 使用电磁辐射测量仪器:常见的测量仪器有电磁辐射功率计、电磁辐射频谱分析仪等。
这些仪器可以测量电磁辐射的频率、功率密度等参数。
2. 电场强度测试:可以使用电场强度测试仪器,如电场计或电场探测器,来测量电磁辐射中的电场强度。
这种测试方法适用于较低频率的电磁辐射。
3. 磁场强度测试:使用磁场强度测试仪器,如磁场计或磁场探测器,可以测量电磁辐射中的磁场强度。
这种测试方法适用于中高频率的电磁辐射。
4. 电磁波频谱分析:使用频谱分析仪器,如频谱分析仪或频谱扫描仪,可以将电磁辐射信号分解为频率成分,以了解频率分布情况。
5. 热成像测试:使用热成像仪器,如红外热像仪,可以检测电磁辐射引起的物体温度变化,从而间接了解辐射情况。
需要注意的是,各种测试方法适用于不同频率范围的电磁辐射,选择合适的测试方法和仪器是很重要的。
另外,测试时还应遵循相应的安全操作规程,以保护测试人员的安全。
电磁辐射知识点电磁辐射是指一种由电磁波形成的辐射现象,是自然界中广泛存在的一种现象。
电磁辐射的源头可以是太阳、无线电塔、手机等电磁波发射器。
人们经常听到关于电磁辐射的各种说法,有一些声称电磁辐射对人体健康有害,而另一些则认为其影响微乎其微。
本文将介绍一些基本的电磁辐射知识点,以帮助读者更好地了解电磁辐射的性质和对人体的影响。
1. 电磁辐射的定义和特性电磁辐射是指电磁波通过空间传播形成的辐射现象。
它包括具有不同波长和频率的电磁波,如可见光、红外线、紫外线、无线电波等。
电磁辐射具有特定的频率和振幅,不同频率的电磁波对人体和环境的影响也不同。
2. 常见电磁辐射的来源电磁辐射的来源非常广泛,常见的包括:太阳辐射、电力线辐射、通信信号辐射(如手机、无线路由器等)、电器辐射(如电视、电脑等)等。
这些辐射源不仅存在于室外环境,也存在于室内环境,人们无法完全避免接触到电磁辐射。
3. 电磁辐射对人体的影响电磁辐射对人体的影响一直是一个备受争议的话题。
有研究表明,长期接触高强度的电磁辐射可能会增加患癌症的风险。
然而,目前并没有足够的证据证明低强度电磁辐射对人体健康有明显的不良影响。
大多数电磁辐射水平都处于安全范围内,只有在极少数情况下,如长时间暴露在高强度电磁辐射下,才可能对人体产生一定的危害。
4. 如何减少电磁辐射的暴露虽然电磁辐射对人体的影响可能是轻微的,但我们仍然可以采取一些预防措施来减少电磁辐射的暴露。
例如,减少使用手机的时间和频率,保持一定的距离,使用耳机等外部音频设备;使用具有辐射屏蔽功能的电器;避免久坐在电视、电脑屏幕前;选择距离辐射源较远的就寝位置等。
5. 电磁辐射的测量和限制标准为了保护人体健康,各国都制定了一些标准来限制电磁辐射的水平。
这些标准通常包括电磁辐射的频率范围、限制值和测量方法等。
在购买电子设备时,可以查看其电磁辐射的认证标识,确保其符合国家标准。
结论电磁辐射是人们生活中不可避免的一部分,它具有一定的生物效应。
电磁辐射(EMF)健康影响和测量技术及方法综述一、电磁辐射(EMF)项目背景介绍随着技术革命的更新和不同波段新的应用的不断发现,许多频率电磁辐射(EMF)的暴露水平显著增加,生活中的每个人都处在0-300GHz频率的复合电磁场(EMF)暴露中,电磁污染(EMF)已成为最广泛的环境影响因素之一。
电磁污染的主要来源有:各种输变电系统;运输系统、长途通讯设施和便携式通讯工具如移动电话;医药、商业和工业设备;雷达;电台和电视台发射天线等。
随着对电磁场(EMF)暴露会引起各种健康问题担忧的增加,1996年世界卫生组织(WHO)设立了国际电磁辐射(EMF)项目以寻求解决问题的方法。
由于对电磁辐射所造成的健康危害的不同理解,不同国家所制定的电磁辐射标准有很大的差异。
其中,俄罗斯、中国、意大利、比利时等国家在制定标准时考虑了电磁辐射对人体的神经效应方面的影响,标准限值较严厉,美国、澳大利亚、德国等国在制定标准时采用了国际非电离协会(ICNIRP)的推荐标准,没有考虑电磁辐射对人体的神经效应方面的影响,而只是考虑已有明确研究结果的热效应,标准限值较宽松,将来仍然有进一步提高标准限值的可能。
二、电磁辐射(EMF)的环境影响由于电磁辐射对环境所造成的影响主要有两方面,一是对人类健康的影响,二是对各种电气设备的影响,因此在考虑电磁辐射的环境影响时将从两个方面入手。
如图示:1.电磁辐射对人类健康的影响在评价电磁辐射生物效应的不良健康后果时,应该区分相互作用、生物效应和健康危害这几个概念:o 相互作用是由电感和电容的耦合或力作用于带电颗粒引起的,可能导致微小的身体变化。
o 生物效应是可被检测的分子水平以上的功能或结构改变,生理性变化可能或无法被衡量。
活的生物体在生命过程中对许多刺激产生反应,这种反应便是一种生物效应。
o 在人体生理正常代偿范围内以及尚未损害人的身体与精神健康的生物效应不能视为危害性效应。
o 相互作用所导致的生物效应若超出了人体生理正常代偿范围,则构成真正的或潜在的健康危害。
电磁辐射检测原理
电磁辐射检测原理是一种测量和分析电磁辐射的技术方法,通常用于评估电磁辐射对人体和环境的潜在影响。
其基本原理是利用特定传感器或探测器来测量电磁辐射的强度、频率和波长等参数。
以下是常见的几种电磁辐射检测原理:
1. 电离室原理:利用电离室的工作原理,即电磁辐射经过离子化气体时会产生电离现象。
测量设备会通过测量电离室中产生的离子数量来确定电磁辐射的强度。
2. 频率谱分析原理:将电磁辐射信号进行频率谱分析,得到不同频率的成分,从而确定电磁辐射的频率特性。
常用的频谱分析方法包括傅里叶变换和快速傅里叶变换。
3. 接收天线原理:利用天线接收电磁辐射信号,并将其转换为电信号进行测量。
不同种类的天线适用于不同频率范围的电磁辐射检测。
4. 热辐射测量原理:通过测量物体表面的热辐射来间接确定电磁辐射的强度。
热成像技术是一种常见的热辐射测量方法。
5. 电磁波干涉原理:利用电磁辐射在干涉中产生的波峰和波谷来测量辐射的特性,如波长和振幅等。
常见的干涉技术包括干涉仪和干涉滤光片。
这些原理可以单独或联合使用,根据不同的测量需求选择适当的方法和设备来进行电磁辐射检测。
实验中常见的电磁辐射测量方法电磁辐射是我们生活中不可避免的存在,无论是家庭电器、通信设备还是工业制造等领域,都会产生各种不同频率和强度的电磁辐射。
作为电磁辐射的重要组成部分,我们需要了解和测量它的强度,以评估对人体和环境的潜在风险。
本文将介绍一些实验中常见的电磁辐射测量方法。
一、电磁波谱电磁波谱是指所有电磁辐射形式的总称,它包括广泛的频率范围,从极低频到极高频,例如无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。
电磁波谱的测量方法有很多,其中最常见的是使用频谱分析仪。
频谱分析仪能够将电磁波信号按照频率进行分解,并显示在屏幕上。
通过观察频谱分布,我们可以判断不同频率的电磁辐射在环境中的强度和分布情况。
二、电场和磁场强度测量电磁辐射通常会伴随着电场和磁场的存在。
为了准确测量电磁辐射的强度,我们需要测量电场和磁场的强度。
测量电场强度通常采用电场强度计,它通过测量电场施加的力来计算电场的强度。
电场强度计可以实时测量电场的大小,并给出相应的数值。
而磁场强度则可以通过使用磁场强度计进行测量。
磁场强度计使用磁铁或线圈来感知磁场,并将其转化为电信号,再通过仪器进行测量。
三、辐射功率密度测量辐射功率密度是指单位面积内的电磁辐射能量。
在实验中,可以使用辐射功率密度计来测量辐射功率密度。
辐射功率密度计通常采用热电偶或能量转换器传感技术,能够将辐射能量转化为电信号进行测量。
辐射功率密度计可以帮助我们了解电磁辐射对环境的影响,例如辐射对植物生长的影响、辐射对动物行为的影响等。
四、生化效应测量电磁辐射可能对生物体产生一定的生化效应,如DNA损伤、细胞凋亡等。
为了研究电磁辐射的生化效应,可以通过测量生物标志物的变化来评估其对生物体的影响。
例如,可以测量细胞内活性氧、细胞凋亡标志物等,从而了解电磁辐射对细胞功能和生理状态的影响。
总结起来,实验中常见的电磁辐射测量方法包括电磁波谱分析、电场和磁场强度测量、辐射功率密度测量以及生化效应测量等。
电磁辐射的测量方法
电磁辐射的测量方法有多种,其中常见的方法有:
1.磁场强度测量:使用磁场强度计或磁力计测量电磁辐射产生的磁场强度。
磁场强度计能够直接测量磁场的强度,在电磁辐射现场中使用时,可以通过改变测量位置和方向,获取不同点的磁场强度数值,并进行分析和比较。
2.电场强度测量:使用电场强度计测量电磁辐射产生的电场强度。
电场强度计能够直接测量电场的强度,在电磁辐射现场中使用时,可以通过改变测量位置和方向,获取不同点的电场强度数值,并进行分析和比较。
3.频谱分析:使用频谱分析仪等设备对电磁辐射信号进行频谱分析。
频谱分析仪能够将不同频率的电磁辐射信号分解为不同频率成分,并显示其频率和强度。
通过频谱分析,可以了解电磁辐射信号的频谱特征和频率分布情况。
4.辐射功率测量:利用功率计、能谱仪等设备对电磁辐射的功率进行测量。
辐射功率是描述电磁辐射强度的一个重要参数,通过测量辐射功率可以了解电磁辐射的强弱情况。
5.热像仪测量:使用红外热像仪等设备对电磁辐射产生的热量进行测量。
电磁辐射会产生热量,热像仪可以将热量转化为图像,通过观察热像仪显示的图像,可以了解电磁辐射的热量分布情况。
6.电磁辐射监测系统:设置电磁辐射传感器,在监测系统中对电磁辐射进行实时监测。
监测系统可以用于长时间、大范围的电磁辐射监测,可以记录电磁辐射的变化趋势和时间变化规律。
电磁辐射的频谱分析与测量技术一、频谱分析的基本概念与原理电磁辐射是指在电磁场中能够传播的电磁波,它由电场和磁场相互作用而形成。
频谱分析是对电磁辐射的频率分布进行测量和分析的一种技术手段。
频谱是指在一定时间内,电磁波信号的振幅随频率变化的图像或函数。
频谱分析的基本原理是将信号分解成不同频率的成分,通过测量每个频率成分的振幅,得到整个信号频谱的分布情况。
二、频谱分析的应用领域频谱分析技术在无线通信、雷达、天文学、医学和环境监测等领域有着广泛的应用。
1. 无线通信频谱分析技术在无线通信中起着关键作用。
通过对无线通信信号的频谱分析,可以实现信号的调制与解调、信号的压缩与扩展,以及对通信信号进行处理和优化,提高通信质量与效率。
2. 雷达雷达是一种通过电磁波进行探测和测距的无线电设备。
频谱分析技术可以用于雷达信号的解调和测量,通过对雷达信号的频谱分析,可以提取目标的距离、速度和方向等信息,实现目标的探测和跟踪。
3. 天文学频谱分析技术在天文学领域用于测量和研究宇宙中的电磁辐射。
天体发出的电磁辐射经过频谱分析可以获得天体的光谱信息,从而研究天体的物理性质和演化过程。
4. 医学在医学领域,频谱分析技术可以用于医学图像的处理和分析。
通过对医学图像中的频谱进行分析,可以提取病变的特征和信息,实现对疾病的诊断和治疗。
5. 环境监测频谱分析技术可以用于环境中电磁辐射的监测和分析。
通过对环境中电磁辐射的频谱进行测量,可以评估电磁辐射对人体健康和环境的影响,制定相应的控制措施和标准。
三、频谱分析的测量技术频谱分析的测量技术有多种,包括频谱仪、扫频仪、功率谱密度测量等。
1. 频谱仪频谱仪是用于测量电磁波频谱的一种仪器。
它通过信号的变换和处理,将电磁波信号转化成频域表示,显示出频率分布的图像或曲线。
现代频谱仪具有高分辨率、宽频率范围和快速测量速度等特点,可以实时测量和显示信号的频谱信息。
2. 扫频仪扫频仪是一种用于测量频率响应的仪器。
电磁波的辐射特性如何测量?在我们的日常生活中,电磁波无处不在,从手机通信到微波炉加热食物,从广播电视信号到 WiFi 网络连接。
然而,要了解电磁波的性质和行为,特别是其辐射特性,就需要进行精确的测量。
那么,究竟如何测量电磁波的辐射特性呢?首先,我们需要明确什么是电磁波的辐射特性。
简单来说,它包括电磁波的频率、波长、功率、极化方向、辐射方向图等参数。
这些特性对于评估电磁波的传播、对周围环境的影响以及设备的性能都至关重要。
测量电磁波频率和波长的常用方法之一是使用频谱分析仪。
频谱分析仪能够将输入的电磁波信号分解成不同的频率成分,并以图形的方式显示出来。
通过观察频谱分析仪的输出,我们可以确定电磁波的频率范围和主要频率成分。
而波长则可以通过公式“波长=光速/频率”计算得出,其中光速是一个已知的常量。
对于电磁波的功率测量,功率计是常用的工具。
功率计可以直接测量电磁波的发射功率或接收功率。
在测量时,需要注意选择合适的功率探头,以适应不同频率和功率范围的电磁波。
此外,还有一种间接测量功率的方法,即通过测量电场强度或磁场强度,然后利用相关公式计算出功率。
电磁波的极化方向也是其辐射特性的一个重要方面。
极化方向指的是电磁波电场矢量的方向。
要测量极化方向,可以使用极化天线或者极化探测器。
这些设备能够对不同极化方向的电磁波做出响应,从而帮助我们确定电磁波的极化特性。
接下来是测量电磁波的辐射方向图。
辐射方向图描述了电磁波在空间各个方向上的辐射强度分布。
为了测量辐射方向图,通常会使用天线测试场或者暗室。
在这些环境中,可以通过旋转被测天线或移动测量探头,在不同的角度位置测量电磁波的强度,然后将这些测量数据绘制成辐射方向图。
在实际测量中,环境因素可能会对测量结果产生影响。
例如,周围的物体可能会反射、散射电磁波,从而干扰测量。
因此,在进行精确测量时,需要尽量减少环境的影响。
比如,在暗室中进行测量可以有效地屏蔽外界的电磁干扰。
另外,测量设备的精度和校准也至关重要。
电磁辐射基础知识目录1. 1 电磁辐射概述 (3)1.1 电磁辐射的定义 (4)1.2 电磁辐射的分类 (4)1.3 电磁辐射的性质 (5)2. 2 电磁波的基本概念 (7)2.1 电磁波的产生 (8)2.2 电磁波的传播特性 (8)2.3 电磁波的能量与频率关系 (10)3. 3 电磁辐射源的类型及特点 (11)3.1 自然辐射源 (11)3.1.1 太阳辐射 (12)3.1.2 地球辐射 (14)3.1.3 空间辐射 (15)3.2 人工辐射源 (16)3.2.1 无线电波辐射 (18)3.2.2 微波辐射 (19)3.2.3 射频辐射 (20)3.2.4 直线加速器辐射 (21)3.2.5 X射线和γ射线辐射 (22)4. 4 电磁辐射对人体的影响 (24)4.1 电离辐射对人体的影响 (24)4.1.1 直接效应 (26)4.1.2 间接效应 (28)4.2 非电离辐射对人体的影响 (29)4.2.1 热效应 (30)4.2.2 生物效应 (31)4.3 防护措施与标准 (33)5. 5 电磁辐射监测与测量技术 (34)5.1 电磁辐射监测方法 (36)5.1.1 频域监测方法 (37)5.1.2 时域监测方法 (37)5.2 电磁辐射测量仪器 (39)5.2.1 频谱分析仪 (40)5.2.2 时域分析仪 (41)5.2.3 高能粒子探测器 (42)6. 6 电磁辐射应用领域 (44)6.1 通信领域 (45)6.1.1 移动通信 (46)6.1.2 卫星通信 (48)6.2 医疗领域 (50)6.2.1 X射线诊断技术 (51)6.2.2 CT扫描技术 (52)6.3 其他领域 (53)1. 1 电磁辐射概述电磁辐射是由变化的电场和磁场相互作用而产生的波动现象,这种辐射无需介质即可在真空中传播。
电磁波的传播不需要介质,它包括宇宙射线、宇宙背景辐射、射电天文信号、无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。
电磁辐射测量的基础知识1.电磁辐射传播区域的分类电磁辐射传播区域可分为近场区和远场区两大范围,因此电磁辐射测量首先要考虑测量点和辐射源/天线之间的距离,即确定所进行的测量是近场测量还是远场测量。
近场区通常指靠近天线或其他辐射源的区域,在此区域内,电场和磁场不具备完全的平面波特性,点和点之间的差异非常大。
近场区又进一步分为感应近场区(Reactive Near-field Region)和辐射近场区(Radiating Near-field Region)。
1)最接近辐射源/天线的是感应近场区,相对于辐射近场区,这里感应场占支配地位,它包含大部分或者几乎所有的储存能量。
无线电发射机供给发射天线以电荷和电荷的变化,对于任一瞬间, 这种电荷可以看作是由静止电荷和变化电荷所组成。
其变化电荷即电流又可以看作是由恒定电流和变化电流所组成。
静电荷产生静电场, 恒定电流产生恒定磁场, 变化电流产生交变电磁场。
因而近场区分布不但具有交变电磁场成份, 而且更具有静电场和恒定磁场的特征。
一般情况下,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多;对于电压低电流大的场源(如某些感应加热设备的模具),磁场要比电场大得多。
在靠近辐射源/天线的地方,感应场强度与R2至R3成反比,因此随着距离R的减小,感应场强度急剧增加。
感应近场区的电磁场强度比其它区域大得多,电磁辐射防护的重点应该在这里。
2)当测量距离增大到R1=λ/2π时(λ为电磁波波长,λ=c/f,c为光速,f为频率),感应场强度与辐射场强度相当,即为感应近场区和辐射近场区的分界线。
进入辐射近场区后,相对于感应近场区,这里辐射场占支配地位。
电磁能量基本上均以电磁波形式辐射传播,辐射强度的衰减比感应场要慢得多。
但这里的电磁场仍不具备平面波特性,即辐射场强度角分布与距天线的距离有关。
3)当测量距离增大到R2=2D2/λ时(D为天线的最大物理性尺寸),就进入了远场区,电磁波辐射具备平面波特性,即辐射场强度角分布基本上与距天线的距离无关。
电磁辐射的测量基础知识
1、电磁场的远场和近场划分
电磁辐射源产生的交变电磁场可分为性质不同的两个部分,其中一部分电磁场能量在辐射源周围空间及辐射源之间周期性地来回流动,不向外发射,称为感应场;另一部分电磁场能量脱离辐射体,以电磁波的形式向外发射,称为辐射场。
一般情况下,电磁辐射场根据感应场和辐射场的不同而区分为近区场(感应场)和远区场(辐射场)。
由于远场和近场的划分相对复杂,要具体根据不同的工作环境和测量目的进行划分,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。
近区场通常具有如下特点:
l 近区场内,电场强度与磁场强度的大小没有确定的比例关系。
即:E¹377H。
一般情况下,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备的模具),磁场要比电场大得多。
l 近区场的电磁场强度比远区场大得多。
从这个角度上说,电磁防护的重点应该在近区场。
l 近区场的电磁场强度随距离的变化比较快,在此空间内的不均匀度较大。
远区场的主要特点如下:
l 在远区场中,所有的电磁能量基本上均以电磁波形式辐射传播,这种场辐射强度的衰减要比感应场慢得多。
l 在远区场,电场强度与磁场强度有如下关系:在国际单位制中,E=377H,电场与磁场的运行方向互相垂直,并都垂直于电磁波的传播方向。
l 远区场为弱场,其电磁场强度均较小
近区场与远区场划分的意义:
通常,对于一个固定的可以产生一定强度的电磁辐射源来说,近区场辐射的电磁场强度较大,所以,应该格外注意对电磁辐射近区场的防护。
对电磁辐射近区场的防护,首先是对作业人员及处在近区场环境内的人员的防护,其次是对位于近区场内的各种电子、电气设备的防护。
而对于远区场,由于电磁场强较小,通常对人的危害较小。
对我们最经常接触的从短波段30MHz到微波段的3000MHz的频段范围,其波长范围从10米到0.1米。
例:具体辐射源的近场(感应场区)与远场(辐射场区)(l = c / f)
频率
(f) 波长(l) 界限(3l)
50 / 60 Hz 电力 6000 / 5000
km 18000 / 15000 km
50 kHz 电焊 6 km 18km
27 MHz CB 广播, 透热疗法 11.1
m 33.3 m
100 MHz FM 广播 3
m 9 m
433 MHz 工业应用 0.7
m 2.1 m
900 MHz 移动电话,寻呼机 0.33
m 1 m
2.45 GHz微波,工业 0.12
m 0.36 m
6 GHz 数字广播 0.05
m 0.15 m
20 GHz 卫星传输 0.015 m 0.045 m
附:场区的具体划分
场强与距离的关系
以r表示测量点到辐射源的距离,则在该点的感应场强度与r2至r3成反比,辐射场强度与r成反比(因此,辐射场强度与距离r的乘积与r无关,称为场强距离乘积)。
在靠近辐射源的地方,随着距离r的减小,感应场强度急剧增加。
近场与远场的划分
当测量距离r=λ/2π≈λ/6时,感应场强度与辐射场强度相当。
在距离辐射源比较近(r<λ/6)的地方,感应场强度大于辐射场强度,称为近场(区)或感应场区,较远的地方(r>λ/6)则相反,辐射场占优势,称为远场(区)或辐射场区。
近场区和远场区的提法被广为使用,但在不同的应用领域,其划分界限不统一。
也称为近区场和远区场。
一般当r大于3λ时,可忽略感应场的成份,认为处于远场(区)。
当辐射源尺度与波长可比拟时,还可将辐射场区分为辐射近场区和辐射远场区。
辐射远场区的定义是,“辐射场强度角分布基本上与距天线的距离无关的场区”,在辐射远场区,将天线上各点到测量点的连线当作是平行的,所引入的误差小于一定的限度。
如天线尺寸为D,则远场区距离应大于2D2/λ。
当辐射源尺寸D的数量级小于波长λ时(2D2/λ<λ/6,D<λ/3.5),辐射近场区范围小于感应场区,辐射场区全部是辐射远场区。
如果测量天线为微波段的面天线,而且尺寸较大,所测辐射源与测量天线的距离大于2D2/λ认为是辐射远场区。
由以上公式可见,近场与远场的划分界限与辐射源频率(波长)有关。
电磁辐射频率范围
⑴ 全范围
广义上包括X射线、γ射线、宇宙射线等电离电磁辐射,狭义上包括0~
3×1012Hz,从静电场、静磁场到亚毫米波,该频率范围的电磁辐射不能造成原子与分子的电离,不管其强度有多大。
⑵ 目前我国管理范围
目前认为影响较大、受关注、研究较多并已经制定相应标准限值的频段有:
工频50Hz,射频100kHz-300GHz。
电磁辐射污染源监测要求所用仪器的测量频率范围与污染源的工作频率相适应,因此有必要了解常见电磁辐射源的频率。
GSM移动通信基站:900/1800MHz
中波广播:535-1605KHz
短波广播:4-19 MHz内的部分频段
调频(声音)广播:88-108MHz
电视:50-92,168-223,471-566,607-958 MHz五个频段
家用微波炉:2450 MHz,工业微波炉:915,2450 MHz
高压电力设备:工频50Hz,电磁噪声干扰中短波(测量范围0.5-30 MHz)
高频感应加热设备(如熔炼炉、淬火炉等):工作频率几百kHz
高频介质加热设备:工作频率几MHz至几十MHz。
如塑料热合机27.12,40.68MHz。
超短波电疗机:40.68 MHz
国际电信联盟(ITU)分配给工科医(ISM)设备的自由辐射频率为13.56MHz,27.12 MHz,40.68 MHz,2.45GHz等。
在这些频率范围内的电磁辐射强度不受限制。
电磁能的发射与传播途径
⑴ 电磁发射
是指“从源向外发出电磁能的现象”。
电磁发射分为辐射发射和传导发射。
⑵ 辐射发射
是“通过空间传播的、有用的或不希望有的电磁能量”。
而辐射发射经常称之为电磁辐射,其定义为:“a.能量以电磁波形式由源发射到空间的现象。
b.能量以电磁波形式在空间传播。
注:电磁辐射一词的含义有时也可引申,将电磁感应(即感应场)也包括在内。
”我们在日常工作中使用的是其引申含义。
⑶ 传导发射
是指“沿电源线或信号线传输的电磁发射。
”
⑷ 电磁环境
电磁环境的定义是“存在于给定场所的所有电磁现象的总和。
”电磁环境包括辐射发射与传导发射。
但从环境工程来看,电磁环境的主要影响因素是电磁辐射。
实际上电磁辐射骚扰源常常也伴随着传导发射。
实际传播途径可以是辐射与传导的组合(注意前面是发射途径),比如电磁波到达建筑物时,既可以(穿过墙壁或)通过门窗进入室内,也可以通过电线、钢筋传导进入室内。