半导体器件——第四章..
- 格式:ppt
- 大小:3.38 MB
- 文档页数:54
第四章 金属-半导体结4-1. 一硅肖脱基势垒二极管有0.01 cm 2的接触面积,半导体中施主浓度为1016 cm 3−。
设V 7.00=ψ,V V R 3.10=。
计算 (a )耗尽层厚度,(b )势垒电容,(c )在表面处的电场4-2. (a )从示于图4-3的GaAs 肖脱基二极管电容-电压曲线求出它的施主浓度、自建电势势垒高度。
(b) 从图4-7计算势垒高度并与(a )的结果作比较。
4-3. 画出金属在P 型半导体上的肖脱基势垒的能带结构图,忽略表面态,指出(a )s m φφ>和(b )s m φφ<两种情形是整流节还是非整流结,并确定自建电势和势垒高度。
4-4. 自由硅表面的施主浓度为15310cm −,均匀分布的表面态密度为122110ss D cm eV −−=,电中性级为0.3V E eV +,向该表面的表面势应为若干?提示:首先求出费米能级与电中性能级之间的能量差,存在于这些表面态中的电荷必定与表面势所承受的耗尽层电荷相等。
4-5. 已知肖脱基二极管的下列参数:V m 0.5=φ,eV s 05.4=χ,31910−=cm N c ,31510−=cm N d ,以及k=11.8。
假设界面态密度是可以忽略的,在300K 计算: (a )零偏压时势垒高度,自建电势,以及耗尽层宽度。
(b)在0.3v 的正偏压时的热离子发射电流密度。
4-6.在一金属-硅的接触中,势垒高度为eV q b 8.0=φ,有效理查逊常数为222/10*K cm A R ⋅=,eV E g 1.1=,31610−=cm N d ,以及31910−==cm N N v c 。
(a )计算在300K 零偏压时半导体的体电势n V和自建电势。
(b )假设s cm D p /152=和um L p 10=,计算多数载流子电流对少数载流子电流的注入比。
4-7. 计算室温时金-nGaAs 肖脱基势垒的多数载流子电流对少数载流子电流的比例。
半导体器件物理进展第四章CMOS的等比例缩小、优化设计及性能因子CMOS Scaling, Design Optimization, and Performance FactorsPart 1 MOSFET模型及小尺寸效应内容提要:MOSFET结构及其偏置条件MOSFET的漏极电流模型MOSFET的亚阈区特性与温度特性 MOSFET的小尺寸效应MOSFET的缩比特征长度MOSFET的速度饱和效应1. MOSFET结构及其偏置条件MOSFET在实际集成电路中的剖面结构如下图所示。
横向:源-沟道-漏;纵向:M-O-S;几何参数L:沟道长度;W:沟道宽度;t ox:栅氧化层厚度;x j:源漏结深;MOSFET的发展简史:早期:主要采用铝栅电极,栅介质采用热氧化二氧化硅,扩散形成源、漏区,其与栅电极之间采用非自对准结构,场区采用厚氧化层隔离;中期:栅极采用N型掺杂的多晶硅栅,源、漏区与栅极之间采用自对准离子注入结构,场区采用硅的局部氧化工艺(LOCOS)实现器件隔离;后期:栅极采用互补双掺杂(N型和P型)的多晶硅栅,源漏区与栅极之间采用LDD(轻掺杂漏)结构和金属硅化物结构,场区采用浅沟槽隔离(STI)技术。
近期:栅极采用难熔金属栅极(例如W、Mo等),栅介质采用高K介质材料(例如氧化铪等),源、漏区与栅极之间采用自对准金属硅化物结构,场区采用浅沟槽隔离或其它介质隔离技术。
一个自对准MOSFET的工艺制造过程以NMOS器件为例,包含四个结构化的光刻掩模:(1)场区光刻掩模:利用氮化硅掩蔽的LOCOS局部氧化工艺,在P型掺杂的硅单晶衬底上定义出器件有源区和场氧化层隔离区;(2)栅极光刻掩模:通过多晶硅的淀积、光刻和刻蚀工艺,定义出器件的多晶硅栅电极;(3)接触孔光刻掩模:通过对源漏有源区及多晶硅栅电极上二氧化硅绝缘层的光刻和刻蚀工艺,定义出相应的欧姆接触窗口;(4)铝引线光刻掩模:通过铝布线金属的溅射、光刻和刻蚀工艺,定义出器件各引出端的铝引线电极;对于包含PMOS器件的CMOS工艺,则还需要增加一步N阱区的掩模及其光刻定义。
第四章 半导体中载流子的输运现象在前几章我们研究了热平衡状态下,半导体导带和价带中的电子浓度和空穴浓度。
我们知道电子和空穴的净流动将会产生电流,载流子的运动过程称谓输运。
半导体中的载流子存在两种基本的输运现象:一种是载流子的漂移,另一种是载流子的扩散。
由电场引起的载流子运动称谓载流子的漂移运动;由载流子浓度梯度引起的运动称谓载流子扩散运动。
其后我们会将会看到,漂移运动是由多数载流子(简称多子)参与的运动;扩散运动是有少数载流子(简称少子)参与的运动。
载流子的漂移运动和扩散运动都会在半导体内形成电流。
此外,温度梯度也会引起载流子的运动,但由于温度梯度小或半导体的特征尺寸变得越来越小,这一效应通常可以忽略。
载流子运动形成电流的机制最终会决定半导体器件的电流-电压特性。
因此,研究半导体中载流子的输运现象非常必要。
4.1漂移电流密度如果导带和价带都有未被电子填满的能量状态,那么在外加电场的作用下,电子和空穴将产生净加速度和净移位。
电场力的作用下使载流子产生的运动称为“漂移运动”。
载流子电荷的净漂移会产生“漂移电流”。
如果电荷密度为ρ的正方体以速度dυ运动,则它形成的电流密度为()4.1dr fdJ ρυ=其中ρ的单位为3C cm - ,drfJ 的单位是2Acm -或2/C cms 。
若体电荷是带正电荷的空穴,则电荷密度epρ=,e 为电荷电量191.610(e C -=⨯库仑),p 为载流子空穴浓度,单位为3cm -。
则空穴的漂移电流密度/p drfJ可以写成:()()/ 4.2p drf dpJ ep υ=dp υ表示空穴的漂移速度。
空穴的漂移速度跟那些因素有关呢?在电场力的作用下,描述空穴的运动方程为()*4.3p F m a eE==e 代表电荷电量,a 代表在电场力F 作用下空穴的加速度,*pm 代表空穴的有效质量。
如果电场恒定,则空穴的加速度恒定,其漂移速度会线性增加。
但半导体中的载流子会与电离杂质原子和热振动的晶格原子发生碰撞或散射,这种碰撞或散射改变了带电粒子的速度特性。
第四章平衡半导体4.0本章概要在上一章中,我们讨论了一般晶体,运用量子力学的概念对其进行了研究,确定了单晶晶格中电子的一些重要特性。
在这一章中,我们将运用这些概念来专门研究半导体材料。
我们将利用导带与价带中的量子态密度函数以及费米-狄拉克分布函数确定导带与价带中电子与空穴的浓度。
另外,我们将在半导体材料中引入费米能级的概念。
注意,本章中所涉及的半导体均处于平衡状态。
所谓平衡状态或者热平衡状态,是指没有外界影响(如电压、电场、磁场或者温度梯度等)作用于半导体上的状态。
在这种状态下,材料的所有特性均与时间无关。
本章目标:(1)推导半导体中热平衡电子浓度和空穴浓度关于费米能级的表达式。
(2)讨论通过在半导体中添加特定杂质原子来改变半导体材料性质的过程。
(3)推导半导体材料中热平衡电子浓度和空穴浓度关于添加到半导体中的掺杂原子浓度的表达式。
(4)求出费米能级的位置,其为添加到半导体中的掺杂原子浓度的函数。
简单说来,本章讨论的重点是:在不掺杂和掺杂的情况下,分别求平衡半导体中电子和空穴的浓度值,以及费米能级位置。
4.1半导体中的载流子我们知道:电流从本质上来说是电荷移动的速率。
在半导体中有两种载流子——电子和空穴——有能力产生电流。
载流子的定义:在物理学中,载流子指可以自由移动的带有电荷的物质微粒,如电子和离子。
如半导体中的自由电子与空穴,导体中的自由电子,电解液中的正、负离子,放电气体中的离子等。
既然半导体中的电流很大程度上取决于导带中电子与价带中空穴的数量,那么我们关心的半导体的一个重要参数就是这些载流子的密度。
联想我们之前学习的知识,我们不难知道电子和空穴的密度与态密度函数、费米-狄拉克分布函数都有关。
在接下来的章节中,我们会从更严谨的数学推导出发,导出电子与空穴的热平衡浓度,定性地讨论这些关系。
4.1.1电子与空穴的热平衡分布导带中电子关于能量的分布,我们可以从允带量子态密度函数乘以量子态被电子占据的概率函数(分布函数)得出。