图8-18 OFDM解调原理框图
《通信原理课件》
《通信原理课件》
《通信原理课件》
《通信原理课件》
图8-19 用DFT实现OFDM的原理框图
《通信原理课件》
《通信原理课件》
图8-14 多载波传输系统原理框图
《通信原理课件》
在多载波调制方式中,子载波设置主要 有3种方案。图8-15(a)为传统的频分复 用方案,它将整个频带划分为N个互不重叠 的子信道。在接收端可以通过滤波器组进 行分离。图8-15(b)为偏置QAM方案, 它在3dB处载波频谱重叠,其复合谱是平 坦的。
进制信号将得到 MQAM 信号,其中 M L2 。
矢量端点的分布图称为星座图。通常可以用星座图来描述 QAM 信号 的信号空间分布状态。MQAM 目前研究较多,并被建议用于数字通信中的 是 十 六 进 制 的 正 交 幅 度 调 制 ( 16QAM ) 或 六 十 四 进 制 的 正 交 幅 度 调 制 (64QAM),下面重点讨论 16QAM。
现代数字调制技术
8.1 引言
在第6章中已经讨论了几种基本数字调制技术的调制和解调 原理。随着数字通信的迅速发展,各种数字调制方式也在 不断地改进和发展,现代通信系统中出现了很多性能良好 的数字调制技术。
本章我们主要介绍目前实际通信系统中常使用的几种现代 数字调制技术。首先介绍几种恒包络调制,包括偏移四相 相移键控(OQPSK)、 π/4四相相移键控( π/4 -QPSK)、 最小频移键控(MSK)和高斯型最小频移键控(GMSK); 然后介绍正交幅度调制(QAM),它是一种不恒定包络调 制。在介绍了这几种单载波调制后,再引入多载波调制, 着重介绍其中的正交频分复用(OFDM)。
但是由于方型星座QAM信号所需的平均发送功 率仅比最优的QAM星座结构的信号平均功率稍大, 而方型星座的MQAM信号的产生及解调比较容易 实现,所以方型星座的MQAM信号在实际通信中 得到了广泛的应用。当M=4, 16, 32, 64时 MQAM信号的星座图如图8-11所示。