太阳能热发电和聚光光伏发电
- 格式:ppt
- 大小:4.23 MB
- 文档页数:54
流体力学在太阳能发电工程中的应用太阳能作为可再生能源的一种重要形式,正在逐渐成为解决能源危机和环境污染问题的关键技术。
在太阳能发电工程中,流体力学是一个不可或缺的领域,它研究了在流体中的力和运动规律。
本文将探讨流体力学在太阳能发电工程中的应用,并重点介绍太阳能光热发电和光伏发电两个方面。
一、太阳能光热发电中的流体力学应用太阳能光热发电通过聚光集热器将太阳能转化为热能,进而产生蒸汽推动涡轮机发电。
流体力学在太阳能光热发电中起到了关键作用,主要集中在两个方面:聚光器设计和管路系统优化。
1. 聚光器设计聚光器是将太阳辐射能集中到一个小区域的装置,需要根据太阳辐射特点进行设计。
在聚光器的设计中,流体力学提供了一些重要的参数和模型,如光学性能、热传导和流体流动等。
通过流体力学分析,可以确定适当的聚光器形状、曲率和表面粗糙度,以最大限度地提高光热转换效率。
2. 管路系统优化聚光器通过集热管将热能传送到蒸汽发电装置中。
在管路系统的设计和优化中,流体力学可以提供重要参考。
例如,通过流体流动模拟,可以确定管道的截面积、长度和形状,以减小流体阻力和能量损失。
此外,流体力学还可以帮助优化管道的布局和连接方式,提高整个系统的效率和可靠性。
二、光伏发电中的流体力学应用光伏发电是利用光电效应将太阳能直接转化为电能的技术,流体力学在光伏发电中同样扮演着重要角色。
下面将从光伏面板设计和能量转换效率两个方面介绍流体力学在光伏发电中的应用。
1. 光伏面板设计光伏面板是将太阳能转化为电能的核心部件,其设计与光学、热学和流体力学密切相关。
流体力学可以提供光伏面板表面的特性和微观结构设计等方面的建议。
例如,通过流体力学的分析,可以确定表面的纹理和反射层,以最大限度地提高太阳能的吸收和转换效率。
2. 能量转换效率光伏面板的能量转换效率与大气环境和温度变化密切相关,流体力学可以通过分析空气流动和温度分布等参数,帮助优化光伏发电系统的设计和性能。
太阳能热发电技术的应用太阳能热发电技术是一种利用太阳能产生电能的技术。
它利用太阳能将热能转化为电能,具有环保、可持续的特点。
目前在全球各地都有广泛的应用,特别是在那些日照充足的地区。
本文将对太阳能热发电技术的应用进行详细介绍。
简介太阳能热发电技术是一种可再生能源技术,其原理是利用镜面聚光器将太阳能转化为热能,再将热能转化为电能。
相比于太阳能光伏发电技术,它对太阳的辐射强度、角度和方向的要求较低,且具有较高的发电效率。
太阳能热发电技术具有较强的适应性和可扩展性,可以根据不同的需求和应用场景进行集成和优化。
应用领域太阳能热发电技术在能源、环保、农业、建筑等领域都有广泛的应用。
一、能源领域太阳能热发电技术可以作为一种可再生能源利用形式,为城市和工业区提供清洁、稳定的电源。
在较广的应用范围内,它能够降低能源的消耗并减少二氧化碳等污染物的排放。
二、环保领域太阳能热发电技术可以被用来控制水污染等环境问题。
在污染严重的地区,通过太阳能热发电技术来进行污水处理,将不仅可以减轻污染负担,同时还能获得清洁能源以供使用。
三、农业领域太阳能热发电技术也可以用于较大规模的农业生产和灌溉。
集中式的太阳能热发电技术可以为农业提供可靠的电源,从而提高农业生产效益。
同时,它也可以为灌溉提供动力,从而保证灌溉的正常进行。
四、建筑领域太阳能热发电技术可以被用来建筑,为建筑提供清洁、可靠的电源。
在现代建筑中,太阳能热发电技术在提供电源的同时,还可以起到节能、保护环境的作用。
应用案例目前,太阳能热发电技术已在全球各地得到广泛应用,以下列举几个典型的案例。
一、西班牙索洛尔-塔镇(Solucar-Tower)Solucar-Tower位于西班牙塞维利亚省,是一座太阳能热发电厂。
它采用了超过600个巨型镜面反射器,将阳光聚集到一个28层的高塔上,利用太阳能将水加热成蒸汽,产生动力,进而产生电能。
这座发电厂每年能够生产大约1200万千瓦时的电能,用于给当地提供电力,相当于为12万户家庭提供电力。
太阳能发电技术的研究现状与前景近年来,全球气候变化问题日益凸显,各国政府纷纷制定了相应的环境保护政策,其中最重要的就是转向可再生能源。
太阳能作为最具前途和潜力的可再生能源之一,其利用已经得到广泛关注和应用。
本文将探讨太阳能发电技术的研究现状与前景。
一、太阳能发电技术的分类太阳能发电技术一般可以分为光伏发电和聚光发电两种。
光伏发电,是指利用半导体材料在光加热作用下产生的光生电效应,将太阳辐射转换为电能。
目前光伏发电技术已经得到了广泛应用,光伏电池板的效率也有了很大提升。
而聚光发电则是另一种不同的方式,主要是通过将光线聚集到一个中心点上,再利用光学透镜或反射器将它转化为热能,最后利用热发电机或蒸汽涡轮机产生电能。
这种聚光发电技术需要相对较高的集光器质量和成本,但其效率较高。
二、太阳能发电技术的现状当前太阳能光伏发电技术已经非常成熟,市面上有许多太阳能电池板的生产商,生产出的产品质量越来越高。
但目前光伏发电技术还存在一些问题,如成本高、资源利用低、效率低等。
目前聚光发电的技术仍在发展中,实验室内的聚光发电效率已经远高于光伏技术。
但由于聚光发电需要大量安装成本和大量空间,所以其商业化应用仍面临着一定的挑战。
三、太阳能发电技术的前景在未来越来越多的国家面临着能源问题的同时,太阳能作为一种可再生能源将会有越来越广泛的应用。
未来太阳能光伏发电市场预估将会有更大的扩展,技术也将会变得更加成熟。
与此同时,聚光发电技术的发展也将会更为蓬勃。
一些公司和研究机构正在开发更高效、更低成本的聚光发电设备,并开发更多利用高温太阳能的技术,以更大程度上提高太阳能的利用率。
总之,太阳能作为一种绿色能源,市场前景广阔。
在政策的推动和技术的创新下,太阳能发电技术有望逐步成为未来主流的能源供应方式。
聚光光伏应用场景
聚光光伏技术是一种将太阳光通过光聚焦系统集中投射到太阳能电池上的光伏发电技术,具有高光电转换效率、较低成本、较小占地面积等优势。
聚光光伏技术主要应用于以下场景:
1. 太阳能发电站:聚光光伏系统可以大规模应用于太阳能发电站,利用光聚焦系统将更多的太阳能光线集中到太阳能电池上,提高发电效率,减少占地面积。
2. 太阳能热发电:聚光光伏技术可以用于太阳能热发电系统中,将太阳光集中到工作介质上,提高温度,产生热量,进一步转化为电能。
3. 太阳能热水供应:聚光光伏技术可以用于太阳能热水系统中,将太阳能光线集中到太阳能热水器上,加热水,提供热水供应。
4. 太阳能热处理:聚光光伏技术可以用于太阳能热处理系统中,将太阳能集中到物体表面,提高温度,实现材料热处理、烧结、熔炼等工艺。
5. 太阳能海水淡化:聚光光伏技术可以用于太阳能海水淡化系统中,将太阳能光线集中到海水蒸发器上,提高蒸发速度,实现海水的淡化。
6. 太阳能空调系统:聚光光伏技术可以用于太阳能空调系统中,将太阳能光线集中到吸收剂上,提高吸收剂的温度,从而实现空调制冷或制热效果。
总之,聚光光伏技术的应用场景非常广泛,涵盖了太阳能发电、热能利用、海水淡化、空调制冷等多个领域。
随着技术的不断发展,聚光光伏技术有望在未来得到更广泛的应用。
太阳能光热发电系统的光学设计与优化太阳能光热发电系统是一种利用太阳光产生热量,再通过热机转换为电能的设备,具有清洁、可再生等优点,因此备受关注。
在太阳能光热发电系统中,光学设计是非常重要的一环,直接影响系统的发电效率。
本文将探讨太阳能光热发电系统的光学设计与优化方法。
1. 系统光学组成太阳能光热发电系统通常由聚光器、吸收器和光伏组成。
其中,聚光器负责将太阳光线聚焦到吸收器上,吸收器将太阳光转化为热能,再通过热机转化为电能。
光伏则将未被吸收器转化的太阳光线直接转化为电能。
2. 光学设计原理在光学设计中,需要考虑各种因素,如折射、反射、色散等。
通过合理设计聚光器的形状和材料,可以实现太阳光线的高效聚焦,提高系统的光热转化效率。
此外,吸收器的材料和涂层也至关重要,合适的吸收率和热损失率能够提高系统的整体发电效率。
3. 光学设计优化方法为了进一步提高太阳能光热发电系统的效率,可以采取以下优化方法:- 优化聚光器的形状和材料,提高聚光效果,降低能量损失;- 优化吸收器的材料和涂层,提高光热转化效率,减少热损失;- 利用光学模拟软件对系统进行模拟分析,找出最佳设计方案;- 联合调节吸收器和光伏的工作温度,提高系统整体发电效率。
4. 实际应用案例目前,太阳能光热发电系统在工业生产、城市供暖等领域得到广泛应用。
例如,西班牙的塞维利亚太阳能热电站采用了高效的光学设计,实现了较高的发电效率。
该案例表明,光学设计在太阳能光热发电系统中的重要性。
5. 结语综上所述,太阳能光热发电系统的光学设计与优化是提高系统发电效率的重要环节。
通过合理设计聚光器和吸收器,采取优化方法,可以提高系统的发电效率,促进太阳能光热发电技术的发展和应用。
希望本文可以为相关领域的研究人员和工程师提供参考和借鉴。
太阳能光热发电概述:光伏发电技术一般以多晶硅为一代技术,薄膜为二代技术,聚光技术为三代技术。
光伏发电就是利用光电子照射在半导体上产生直流电,直接并入电网或通过逆变器把电能放在蓄电池中。
太阳能光热发电也称为聚光太阳能热发电(Concentrating Solar Power,CSP),又称太阳能聚热发电技术,是太阳能发电中不同于光伏发电的另一种技术路线,完全不同于光伏发电。
光热发电技术(CSP)是指用太阳光加热介质然后推动汽轮机发电的太阳能利用形式,与通常所讲的直接将太阳光转换为电力的光伏发电不同,光热发电是太阳能-热能-电能的转换过程。
它是依靠各式的镜面,将太阳的直接辐射(DNI)聚集并加热导热介质,热交换后产生高温水蒸气,推动汽轮机发电。
即通过光热管、聚光管把太阳照射的热量通过超白玻璃、高温储热材料、吸热膜层材料等进行储存,然后接入类似火力发电厂的汽轮机系统,通过烧水蒸气的方式最终由发电机发电。
主要技术分为槽式、塔式、碟式和菲涅尔式。
CSP与常规化石能源在热力发电上原理相同,电能质量优良,可直接无障碍并网。
同时,可储能、可调峰,实现连续发电。
更为重要的是,光热发电在热发电环节与火电相同,CSP更适合建大型电站项目,可通过规模效应实现成本迅速下降。
光热电站的具体组成部分主要分为镜场集热系统、储能系统和发电系统。
在光照强度高的时间里,其工作模式为通过镜场集热后将一部分热能通过储热系统储存,另一部分热能将转移至发电系统来维持发电。
在光照强度不高的时间里,镜场集热系统不进行工作,储热系统通过将储存的热能转移至发电系统来维持发电。
因此,由于储能系统的存在,光热发电的年发电小时数可接近传统热电的发电小时数。
在近几年建设的光热电站中,越来越多项目选用与热电站(包括火电站、天然气电站和垃圾发电站)联合建设运作,通过联合运作,不仅能够使光热电站的发电持续性更强,更能通过提高系统温度使系统效率得到提升。
另外,将光热电站建在海边还能用于制备氢气和海水淡化。
太阳能热发电系统的发电形式太阳能热发电系统是一种利用太阳能将光能转化为电能的技术。
它通过利用太阳能辐射的热量,将其转化为蒸汽或热水,再通过蒸汽或热水驱动涡轮机发电。
太阳能热发电系统的发电形式主要包括以下几种:1. 直接发电:太阳能热发电系统中的平板集热器可以直接将太阳能转化为电能。
平板集热器通过吸收太阳辐射的热量,将工作介质加热至高温,然后通过热交换器将热能转化为电能。
这种形式的发电方式简单直接,适用于小规模的太阳能热发电系统。
2. 热能储存发电:太阳能热发电系统中的热能储存是一种重要的技术手段。
通过将太阳能转化为热能,并将其储存起来,可以在夜间或阴天时继续发电。
常见的热能储存方式包括熔盐储热、石墨储热等。
这种形式的发电方式可以提高太阳能热发电系统的可靠性和稳定性。
3. 热力循环发电:太阳能热发电系统中的热力循环发电是一种常见的发电形式。
它通过将太阳能转化为热能,然后利用热能驱动涡轮机发电。
常见的热力循环发电方式包括蒸汽动力循环、有机朗肯循环等。
这种形式的发电方式具有高效率和稳定性的特点。
4. 光热发电:太阳能热发电系统中的光热发电是一种利用太阳能将光能转化为热能,再将热能转化为电能的技术。
光热发电系统通过聚光器将太阳能集中到一个小区域,使其温度升高,然后利用高温产生的热能驱动发电机组发电。
这种形式的发电方式适用于大规模的太阳能热发电系统。
总结起来,太阳能热发电系统的发电形式包括直接发电、热能储存发电、热力循环发电和光热发电。
这些形式各具特点,可以根据实际需求选择合适的发电方式。
太阳能热发电系统的发展将为可再生能源领域的发展做出重要贡献,促进能源的可持续利用。
太阳能聚光光伏(CPV)聚光光热(CSP)介绍⼀、CPV概述聚光光伏(CPV)太阳能是指利⽤透镜或反射镜等光学元件,将⼤⾯积的汇聚到⼀个极⼩的⾯积上,再将汇聚后的太通过⾼转化效率的光伏电池直接转化为电能。
光伏发电在经历了第⼀代晶硅电池和第⼆代薄膜电池之后,⽬前第三代CPV 发电⽅式正逐渐成为太阳能领域的投资重点,并且CPV模式相对于前两代具有诸多的优势:(1)节省昂贵的半导体材料:CPV是通过提⾼聚光倍数的⽅式,减少光伏电池的使⽤量,⽽透光镜及反光镜等光学元件的成本远远低于减少的光伏电池成本。
(2)提升光电转换效率:CPV系统采⽤砷化镓电池并依靠太阳追踪系统实现了更⾼的光电转换效率,较前两代光伏系统明显缩短能量回收期。
(3)极⾼的规模化潜⼒:CPV系统因其光电转换效率⾼、占地⾯积⼩等特点,是建造⼤型电源电站的最理想的太阳能发电技术,通过简单复制的规模化部署,单⼀CPV电⼚可较容易的达到MW级规模。
(4)成本下降空间巨⼤:硅电池和薄膜电池已实现产业化⽣产,规模化效应已得到充分体现,并且其技术较为成熟,未来成本下降的空间已经有限。
⽽CPV系统的成本下降仍然较⼤,⼤批量⽣产的规模效应,以及聚光系统、电池、冷却系统等效率的进⼀步提⾼是成本下降的两⼤途径。
⼆、CPV太阳能系统的结构尽管各⼤⼚商所⽣产的CPV系统的模式不尽相同,但各类CPV系统的组件主要是由四⼤部分组成,即聚光系统,光伏电池、太阳追踪系统、冷却系统。
1、聚光系统聚光系统是整个CPV系统的最重要的组成部分,它通常由主聚光器和⼆次聚光器组成,聚光系统的聚光精度很⼤程度上决定了整个CPV系统的性能⾼低。
根据聚光⽅式的不同,聚光系统可分为透射式聚光系统和反射式聚光系统。
(1)透射式聚光系统透射式聚光系统⼀般采⽤菲涅⽿透镜聚焦的⽅式,与普通凸透镜相⽐,菲涅尔透镜只保留了有效折射⾯,可节省近80%的材料。
⽬前⽤于制作菲涅⽿透镜的最常⽤材料是PMMA(俗称“亚克⼒”或“有机玻璃”),与玻璃透镜相⽐,它的优点是重量轻、易加⼯成型、成本低,⽽且对⾃然环境适应性能强,即使长时间在⽇光照射、风吹⾬淋也不会使其性能发⽣改变。
太阳能热发电太阳能热发电,也叫聚焦型太阳能热发电(Concentrating Solar Power,简称CSP),通过大量反射镜以聚焦的方式将太阳能直射光聚集起来,加热工质,产生高温高压的蒸汽,蒸汽驱动汽轮机发电。
目录概述聚光类太阳能热发电槽式太阳能热发电塔式太阳能热发电碟式太阳能热发电概述人类利用太阳能虽然已有3000多年的历史,但把太阳能作为一种能源和动力加以利用,却只有不到400年的历史。
自17世纪初以来可以按照太阳能利用发展和应用的状况,把现代世界太阳能利用的发展过程大致划分为8个阶段。
近代太阳能利用的历史,一般从1615年法国工程师所罗门,德·考克斯发明世界上第一台利用太阳能驱动的抽水泵算起;1901~1920年这一阶段世界太阳能研究的重点,仍然是太阳能动力装置。
但采用的聚光方式多样化,并开始采用平板式集热器和低沸点工质;1921~1945年由于化石燃料的大量开采应用及爆发了第二次世界大战的影响,此阶段太阳能利用的研究开发处于低潮,参加研究工作的人数和研究项目及研究资金大为减少;1946~1965年这一阶段,太阳能利用的研究开始复苏,加强了太阳能基础理论和基础材料的研究,在太阳能利用的各个方面都有较大进展;1966~1973年此阶段由于太阳能利用技术还不成熟,尚处于成长阶段,世界太阳能利用工作停滞不前,发展缓慢;1973~1980年这一时期爆发的中东战争引发了西方国家的“石油危机”,使得越来越多的国家和有识之士意识到,现时的能源结构必须改变,应加速向新的能源结构过渡,客观上使这一阶段成了太阳能利用前所未有的大发展时期;1981~1991年由于世界石油价格大幅度回落,而太阳能产品价格居高不下,缺乏竞争力,太阳能利用技术无重大突破;1992年至今为第八阶段,1992年6月联合国“世界环境与发展大会”在巴西召开之后,世界各国加强了对清洁能源技术的研究开发,使太阳能的开发利用工作走出低谷,得到越来越多国家的重视和加强。