第五章场效应管
- 格式:ppt
- 大小:484.00 KB
- 文档页数:29
场效应管的结构及工作原理(教案)第一章:引言1.1 课程背景本课程旨在帮助学生了解和掌握场效应管的结构及工作原理。
场效应管作为一种重要的半导体器件,在电子电路中具有广泛的应用。
1.2 学习目标了解场效应管的基本结构理解场效应管的工作原理第二章:场效应管的基本结构2.1 结型场效应管(JFET)2.1.1 N沟道JFET2.1.2 P沟道JFET2.2 金属-氧化物-半导体场效应管(MOSFET)2.2.1 N型MOSFET2.2.2 P型MOSFET2.3 场效应管的封装与引脚第三章:场效应管的工作原理3.1 JFET的工作原理3.1.1 导电通道的形成3.1.2 栅极电压对导电通道的控制3.2 MOSFET的工作原理3.2.1 导电通道的形成3.2.2 栅极电压对导电通道的控制3.3 场效应管的导通与截止条件第四章:场效应管的特性4.1 静态特性4.1.1 输入特性4.1.2 输出特性4.2 动态特性4.2.1 过渡时间4.2.2 开关速度4.3 场效应管的参数第五章:场效应管的应用5.1 放大器应用5.1.1 放大器的基本原理5.1.2 放大器的设计与实现5.2 开关应用5.2.1 开关的基本原理5.2.2 开关的设计与实现5.3 其他应用场效应管的结构及工作原理(教案)第六章:结型场效应管(JFET)的特性6.1 输出特性6.1.1 电流-电压关系6.1.2 输出特性曲线6.2 输入特性6.2.1 输入阻抗6.2.2 输入特性曲线6.3 传输特性6.3.1 传输特性曲线6.3.2 转移特性分析第七章:金属-氧化物-半导体场效应管(MOSFET)的特性7.1 MOSFET的输出特性7.1.1 电流-电压关系7.1.2 输出特性曲线7.2 MOSFET的输入特性7.2.1 输入阻抗7.2.2 输入特性曲线7.3 MOSFET的传输特性7.3.1 传输特性曲线7.3.2 转移特性分析第八章:场效应管的驱动电路8.1 驱动电路的作用8.1.1 驱动场效应管的需求8.1.2 驱动电路的设计原则8.2 驱动电路的设计8.2.1 电压驱动电路8.2.2 电流驱动电路8.3 驱动电路的稳定性与保护第九章:场效应管的电路应用实例9.1 放大器应用实例9.1.1 单级JFET放大器9.1.2 多级MOSFET放大器9.2 开关应用实例9.2.1 数字开关9.2.2 模拟开关9.3 其他应用实例9.3.1 电压控制放大器9.3.2 功率放大器第十章:总结与展望10.1 课程总结10.1.1 场效应管的结构特点10.1.2 场效应管的工作原理与特性10.2 场效应管的应用领域10.2.1 电子设备中的应用10.2.2 未来发展趋势10.3 练习与思考题10.3.1 填空题10.3.2 选择题10.3.3 简答题10.3.4 设计题场效应管的结构及工作原理(教案)第十一章:场效应管的测试与故障诊断11.1 测试仪器与设备11.1.1 直流参数测试仪11.1.2 交流参数测试仪11.2 场效应管的测试项目11.2.1 栅极电阻测试11.2.2 漏极电流测试11.2.3 源极电阻测试11.3 故障诊断与分析11.3.1 故障类型及原因11.3.2 故障诊断流程第十二章:场效应管的可靠性与寿命12.1 可靠性基本概念12.1.1 可靠性的定义12.1.2 可靠性参数12.2 影响场效应管可靠性的因素12.2.1 材料与工艺因素12.2.2 环境因素12.3 提高场效应管可靠性的措施12.3.1 设计优化12.3.2 生产工艺控制第十三章:场效应管的节能与环保13.1 节能的重要性13.1.1 电子设备的能耗问题13.1.2 场效应管在节能中的作用13.2 环保意识与场效应管13.2.1 电子废弃物问题13.2.2 场效应管的环保优势13.3 节能与环保技术的应用13.3.1 高效能场效应管设计13.3.2 绿色制造与回收技术第十四章:场效应管的最新发展动态14.1 新型场效应管的研究方向14.1.1 纳米场效应管14.1.2 宽禁带场效应管14.2 场效应管技术的创新应用14.2.1 物联网中的应用14.2.2 中的应用14.3 未来场效应管的发展趋势14.3.1 性能提升14.3.2 成本降低第十五章:课程复习与拓展学习15.1 复习重点与难点15.1.1 场效应管的基本结构15.1.2 场效应管的工作原理与特性15.2 拓展学习资源15.2.1 学术期刊与论文15.2.2 在线课程与论坛15.3 实践项目与研究建议15.3.1 实验室实践项目15.3.2 研究课题建议重点和难点解析本文档涵盖了场效应管的结构、工作原理、特性、应用、测试、可靠性、节能环保以及最新发展动态等方面的内容。
第五章场效应管及其放大电路自测题一、填空题1.场效应管的转移特性I D~U GS,符合(B)规律。
A.指数B.平方C.线性2.当U GS=0时,仍能工作在饱和区的场效应管是(C)场效应管。
A.结型B.增强型MOSC.耗尽型MOS3.场效应管的跨导与双极性晶体管相比,一般情况下(B)。
A.更大B.更小C.差不多4.场效应管的漏极电流IDD从2mA变为4mA时,它的跨导gfm将(A)。
A.增大B.减小C.不变5.场效应管源极跟随器与双极型晶体管射极跟随器相比,(B C)。
A.其跟随特性更好B.跟随特性更差C.输出阻抗高D.输出阻抗低6.造成源极跟随器与射极跟随器相比有以上不同特性的根本原因是(B C)。
A.场效应管输入阻抗高B.场效应管跨导低C.场效应管放大倍数小7.以下几种场效应管构成的连接方式可以构成有源放大器的是(ABC)。
A.放大管和负载管为同种导电类型的器件B.放大管和负载管为不同导电类型的器件C.放大管为增强型NMOS管,负载管为耗尽型NMOS管D.放大管为耗尽型NMOS管,负载管为增强型NMOS管8.与双极型晶体管相比,场效应管具有的特点是(B C D)。
A.放大作用大B.输入阻抗高C.抗辐射能力强D.功耗小9.N沟道结型场效应管的偏置电压UGS应为(B)。
A.正B.负C.零10.可以采用自给偏置方式的场效应管有(A C )。
A.结型场效应管B.增强型MOS场效应管C.耗尽型MOS场效应管第五章自测题答案。
第五章 场效应管放大电路1、 图1所示场效应管工作于放大状态,ds r 忽略不计,电容对交流视为短路。
跨导为m 1ms g =。
(1)画出电路的交流小信号等效电路;(2)求电压放大倍数uA 和源电压放大倍数us A ;(3)求输入电阻i R 和输出电阻oR 。
题图12、电路如图2所示,场效应管的m 11.3ms g =,ds r 忽略不计。
试求共漏放大电路的源电压增益us A 、输入电阻i R 和输出电阻oR 。
图23、 放大电路如图3所示,已知场效应管的DSS 1.6mA I =,p U = -4V ,ds r 忽略不计,若要求场效应管静态时的GSQ 1V U =-,各电容均足够大。
试求:(1)g1R 的阻值;(2)uA 、i R 及o R 的值。
图34、图4(a)所示电路中的场效应管的转移特性为图4(b)所示,试求解该电路的GS U 、D I 和DS U 。
图45、电路如图5所示,已知FET 的I DSS = 3mA 、U P = -3V 、U (BR)DS = 10V 。
试问在下列三种条件下,FET 各处于哪种状态?(1) R d = 3.9k Ω;(2) R d = 10k Ω;(3) R d = 1k Ω。
VT+V DD R gR d图56、源极输出器电路如图6所示,已知场效应管在工作点上的互导m 0.9ms g ,ds r 忽略不计,其他参数如图中所示。
求电压增益u A 、输入电阻i R 和输出电阻oR 。
图6填空题1、双极型半导体三极管是器件,而场效应管属于器件。
2、对于MOSFET,用来描述栅源电压对漏极电流控制能力大小的参数称为。
3、在MOSFET中,在漏源电压一定的条件下,用以描述漏极电流与栅源电压之间关系的曲线称为。
4、在N沟道的MOSFET的电路中,若栅源电压已大于开启电压,漏源电压在某一变化区域内,漏极电流会随着漏源电压的增大而增大,说明此时MOSFET工作于区。
5、在构成放大器时,可以采用自给偏压电路的场效应管是场效应管。
场效应管的结构及工作原理(教案)第一章:引言1.1 课程概述本课程旨在帮助学生了解和掌握场效应管(FET)的结构及工作原理。
通过本课程的学习,学生将能够理解FET的基本概念、种类、应用及其在电子技术领域的重要性。
1.2 教学目标1. 了解场效应管的定义和发展历程。
2. 掌握场效应管的基本结构和分类。
3. 理解场效应管的工作原理及其在不同应用领域的优势。
第二章:场效应管的基本结构2.1 结型场效应管(JFET)2.1.1 JFET的定义2.1.2 JFET的结构特点2.1.3 JFET的导电机制2.2 金属-氧化物-半导体场效应管(MOSFET)2.2.1 MOSFET的定义2.2.2 MOSFET的结构特点2.2.3 MOSFET的导电机制2.3 绝缘栅双极型晶体管(IGBT)2.3.1 IGBT的定义2.3.2 IGBT的结构特点2.3.3 IGBT的导电机制第三章:场效应管的工作原理3.1 结型场效应管(JFET)的工作原理3.1.1 增强型JFET的工作原理3.1.2 耗尽型JFET的工作原理3.2 金属-氧化物-半导体场效应管(MOSFET)的工作原理3.2.1 增强型MOSFET的工作原理3.2.2 耗尽型MOSFET的工作原理3.3 绝缘栅双极型晶体管(IGBT)的工作原理3.3.1 IGBT的工作原理第四章:场效应管的性能参数4.1 结型场效应管(JFET)的性能参数4.1.1 输入阻抗4.1.2 输出阻抗4.1.3 跨导4.1.4 开关速度4.2 金属-氧化物-半导体场效应管(MOSFET)的性能参数4.2.1 输入阻抗4.2.2 输出阻抗4.2.3 跨导4.2.4 开关速度4.3 绝缘栅双极型晶体管(IGBT)的性能参数4.3.1 输入阻抗4.3.2 输出阻抗4.3.3 跨导4.3.4 开关速度第五章:场效应管的应用领域5.1 结型场效应管(JFET)的应用领域5.1.1 放大器5.1.2 开关电路5.1.3 电压控制器件5.2 金属-氧化物-半导体场效应管(MOSFET)的应用领域5.2.1 放大器5.2.2 开关电路5.2.3 电压控制器件5.3 绝缘栅双极型晶体管(IGBT)的应用领域5.3.1 电力电子5.3.2 变频调速5.3.3 电力系统第六章:场效应管的测量与测试6.1 测量仪器与设备6.1.1 直流参数测试仪6.1.2 交流参数测试仪6.1.3 噪声测试仪6.2 场效应管的测量项目6.2.1 栅极电位与漏极电流的关系测量6.2.2 输入阻抗测量6.2.3 输出阻抗测量6.2.4 开关时间测量6.3 测试结果分析与应用6.3.1 测试结果的判断与分析6.3.2 测试结果在实际应用中的应用第七章:场效应管的驱动与保护7.1 驱动电路的设计7.1.1 驱动电路的基本要求7.1.2 驱动电路的设计方法7.1.3 驱动电路的实际应用案例7.2 场效应管的保护电路7.2.1 过压保护电路7.2.2 过流保护电路7.2.3 短路保护电路7.3 驱动与保护电路的实际应用7.3.1 驱动与保护电路在放大器中的应用7.3.2 驱动与保护电路在开关电路中的应用第八章:场效应管的故障诊断与维修8.1 故障诊断方法8.1.1 观察法8.1.2 测量法8.1.3 替换法8.2 常见故障与维修方法8.2.1 栅极输入故障8.2.2 漏极输出故障8.2.3 内部短路故障8.3 故障维修实例8.3.1 放大器故障维修实例8.3.2 开关电路故障维修实例第九章:场效应管在现代电子技术中的应用9.1 数字电路中的应用9.1.1 逻辑门电路9.1.2 微处理器电路9.1.3 存储器电路9.2 模拟电路中的应用9.2.1 放大器电路9.2.2 滤波器电路9.2.3 稳压电路9.3 电力电子中的应用9.3.1 变频调速电路9.3.2 电力控制系统9.3.3 电力变换器电路第十章:总结与展望10.1 课程总结本课程对场效应管的结构、工作原理及其应用进行了详细的介绍,使学生掌握了场效应管的基本知识,为further study in the field of electronic technology 打下了坚实的基础。
第五章MOS 场效应管的特性5.1MOS 场效应管5.3体效应第五章MOS 场效应管的特性5.1 MOS 场效应管5.2 MOS 管的阈值电压5.3 体效应115.5MOSFET 的噪声5.6MOSFET 尺寸按比例缩小5.7MOS 器件的二阶效应5.4 MOSFET 的温度特性5.5 MOSFET 的噪声5.6 MOSFET 尺寸按比例缩小5.7 MOS 器件的二阶效应1)N 型漏极与P 型衬底;2)N 型源极与P 型衬底。
5.1 MOS 场效应管5.1.1 MOS 管伏安特性的推导两个PN 结:图2)1)2同双极型晶体管中的PN 结一样,在结周围由于载流子的扩散、漂移达到动态平衡,而产生了耗尽层。
3)一个电容器结构:23)栅极与栅极下面的区域形成一个电容器,是MOS 管的核心,决定了MOS 管的伏安特性。
p+/ n+n(p) MOSFET的三个基本几何参数toxpoly-Si diffusionDWG L3p+/ n+⏹栅长:⏹栅宽:⏹氧化层厚度:LWt oxSMOSFET的三个基本几何参数⏹L min、W min和t ox由工艺确定⏹L min:MOS工艺的特征尺寸(feature size)决定MOSFET的速度和功耗等众多特性⏹L和W由设计者选定⏹通常选取L= L min,设计者只需选取W,W是主要的设计变量。
⏹W影响MOSFET的速度,决定电路驱动能力和功耗4MOSFET 的伏安特性:电容结构⏹当栅极不加电压或加负电压时,栅极下面的区域保持P 型导电类型,漏和源之间等效于一对背靠背的二极管,当漏源电极之间加上电压时,除了PN 结的漏电流之外,不会有更多电流形成。
⏹当栅极上的正电压不断升高时,P 型区内的空穴被不断地排斥到衬底方向。
当栅极上的电压超过阈值电压V T ,在5栅极下的P 型区域内就形成电子分布,建立起反型层,即N 型层,把同为N 型的源、漏扩散区连成一体,形成从漏极到源极的导电沟道。