北师大版八年级数学下册教学设计 认识分式
- 格式:doc
- 大小:238.00 KB
- 文档页数:6
北师大版数学八年级下册《分式及分式的相关概念》教案1一. 教材分析北师大版数学八年级下册《分式及分式的相关概念》这一章节是在学生已经掌握了实数、代数式、方程等知识的基础上进行教授的。
分式作为初中数学中的一个重要内容,不仅在学习代数方程求解、函数等方面有重要作用,而且对于培养学生的逻辑思维能力、抽象思维能力也具有重要意义。
本节内容主要介绍分式的定义、分式的基本性质、分式的运算以及分式的相关概念。
二. 学情分析学生在学习这一章节时,已经具备了一定的数学基础,但分式的概念和性质较为抽象,对于部分学生来说理解上可能存在一定难度。
因此,在教学过程中,需要关注学生的学习情况,针对学生的特点进行引导,帮助学生理解和掌握分式的相关概念。
三. 教学目标1.理解分式的定义,掌握分式的基本性质。
2.学会分式的运算方法,提高运算能力。
3.理解分式的相关概念,如分母、分子、分式方程等。
4.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.分式的定义和基本性质。
2.分式的运算方法。
3.分式的相关概念。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等多种教学方法,引导学生主动探究、积极参与,提高学生的学习兴趣和积极性。
六. 教学准备1.教学课件或黑板。
2.教学素材,如分式的例子、练习题等。
七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,如“某商品的原价是200元,现在打8折,求打折后的价格。
”让学生感受分式在实际生活中的应用。
2.呈现(10分钟)讲解分式的定义,如“分式是形如a/b的表达式,其中a和b都是整式,b不为0。
”同时,呈现分式的基本性质,如“分式的分子和分母都乘以(或除以)同一个不为0的整式,分式的值不变。
”3.操练(10分钟)让学生进行分式的基本运算,如分式的加减乘除。
教师引导学生总结运算规律,巩固所学知识。
4.巩固(10分钟)讲解分式的相关概念,如分母、分子、分式方程等。
通过具体例子,让学生理解分式方程的解法。
北师大版八年级下册《认识分式》教案1. 教材及教学目标1.1 教材本课程的教材为《北师大版八年级数学》第二册,第四章节——认识分式。
1.2 教学目标1.知道什么是分式,认识分式的定义、性质和简单的基本运算;2.能够将一个正整数表示为两个整数的商,熟练掌握分式的约分和通分方法;3.能够根据具体情况,选用合适的分数单位进行计算;4.能够应用分式在实际问题中解决问题。
2. 教学重点1.分式的定义和性质,基本运算方法;2.分式的约分和通分方法。
3. 教学难点将分式的运用发挥到解决实际问题的能力。
4. 教学内容及方法4.1 教学内容4.1.1 分式的定义和性质•分式的定义,分式的分子、分母、分式的值、分数的正、负、零等概念;•分式的基本性质:倒数的倒数、分式的分子或分母乘同一数、交换律、结合律;4.1.2 分式的基本运算方法•分式的加、减、乘、除法的基本运算法则;•分式的约分和通分方法;•分式的比较。
4.1.3 分式在实际问题中的应用•将生活实际问题用分式形式表示;•利用分式解决实际问题。
4.2 教学方法本课程采用以下教学方法:4.2.1 讲述法通过讲解教师能够将学生对该概念的认识提高至一个新的水平,教师应该关注学生的反应以及他们的反馈,以评估学生对该概念的理解程度。
4.2.2 例题导入法在教学过程中,选择一些典型的例子,逐步举例说明分式的定义、性质以及约分和通分方法等,使学生能够深入理解该概念,同时积极参与到教学中来。
4.2.3 练习法在教学的过程中,老师可以在讲解后提出一些练习题,供学生上课完成或者在下一节课前完成。
这样既能考查学生对该概念的理解程度,又能将教学内容与实际应用结合起来。
4.2.4 讨论法在教学的过程中,将学生分成小组,引导他们一起讨论课上学过的内容。
让学生自己思考和解决问题,加深学生对该概念的理解,同时也能让学生相互交流,增强学生的技能,并提高他们的动手能力。
5. 教学步骤5.1 教学准备•教师要先做好课前的准备,包括准备好教学用具、复习教材内容等;•学生应该带齐教材、笔和作业本等,准备好听课。
八年级数学下册《分式》教案北师大版一、教学目标知识与技能:1. 理解分式的概念,掌握分式的基本性质和运算法则。
2. 能够运用分式解决实际问题,提高解决问题的能力。
过程与方法:1. 通过观察、操作、思考、交流等过程,培养学生的抽象思维能力和逻辑推理能力。
2. 学会用数形结合的方法,理解分式的几何意义。
情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探究精神和合作意识。
2. 感受数学与实际生活的联系,提高学生运用数学知识解决实际问题的能力。
二、教学内容第一课时:分式的概念及基本性质1. 学习分式的定义,理解分式中的分子、分母、分式值等概念。
2. 掌握分式的基本性质,如分式的正负性、分式的相等性、分式的乘除法等。
第二课时:分式的运算1. 学习分式的加减法运算,掌握运算法则。
2. 学习分式的乘除法运算,掌握运算法则。
第三课时:分式的应用1. 运用分式解决实际问题,如面积计算、浓度问题等。
2. 培养学生的应用能力和解决问题的能力。
第四课时:分式的几何意义1. 学习分式在几何中的应用,如面积的计算、比例的求解等。
2. 培养学生的数形结合思想,提高抽象思维能力。
第五课时:分式的综合练习1. 巩固分式的概念、运算和应用。
2. 提高学生的综合运用能力和解决问题的能力。
三、教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、合作交流,培养学生的抽象思维能力和逻辑推理能力。
四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的完成质量,巩固学习成果。
3. 单元测试:进行单元测试,了解学生的掌握情况,为下一步教学提供依据。
五、教学资源1. 教材:北师大版八年级数学下册。
2. 课件:制作精美的课件,辅助教学。
3. 练习题:提供适量的练习题,巩固所学知识。
4. 教学工具:黑板、粉笔、多媒体设备等。
六、第六课时:分式的拓展与深化1. 学习分式的进一步性质,如分式的分解、分式的有理化等。
5.1.1《认识分式》教学设计
【教学目标】
1.了解分式的概念,能确定分式有意义的条件,能确定使分式的值为0的条件。
2.通过解决实际问题,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一类代数式。
3.体会类比等数学思想或方法,获得代数学习的成功经验。
【教学重难点】
重点:分式的概念,分式有意义的条件。
难点:分式有意义的条件,分式的值为0的条件。
【教学过程】
一、创设情境,形成概念
1.以游庐山为问题情境,提出问题:
(1)飞机在无风时的最大航速为800 km/h,它以最大航速顺风航行900 km所用时间,与以最大航速逆风航行600 km所用时间相等,问风速为多少?
(2)门票价格:学生票:每张90元;成人票:每张180元。
现有 50 位学生, 3 位成人,平均每张票多少钱?现有a位学生,b 位成人,平均每张票多少钱?
(3)五老峰高1700米,登上山顶用时110分钟,平均速度是多少?登上山顶用时x分钟,平均速度是多少?
(4)牯岭街里有许多景点,旅游团给大家70分钟自由时间,我们要参观 6 景点,则游览每个景点大约可以停留多少分钟?我们要参观 n景点,则游览每个景点大约可以停留多少分钟?
设计意图:以诗歌形式,激发兴趣,加深理解。
五、布置作业,课外延伸
必做题:课本习题15.1第1、2、3题。
选做题:拓展推广第13题。
【推荐】猜灯谜作文(精选30篇)【推荐】猜灯谜作文(精选30篇)在平时的学习、工作或生活中,大家对作文都不陌生吧,借助作文可以宣泄心中的情感,调节自己的心情。
你知道作文怎样才能写的好吗?下面是小编整理的猜灯谜作文,仅供参考,欢迎大家阅读。
猜灯谜作文篇1一年一度的中秋节快到了,中秋节的时候的习俗有:博饼,放孔明灯,敬田头,听香……看着妈妈忙忙碌碌地准备着,陷入美好的记忆中。
去年的中秋节,妈妈决定吃完饭后上天台边赏月边猜谜语,我们乐得直拍手叫好。
“一起赏月,猜谜语啦!”妈妈大喊。
我和弟弟都还在做自己的事。
妈妈提高嗓音:“快来一起赏月,猜谜语啦!”我和弟弟迅速打开房门,以最快的速度赶到天台上。
爸爸妈妈已经坐在天台的椅子上等我们了,我和弟弟也跟着坐在了旁边的椅子上。
开始猜谜语了,妈妈先下手为强:“我先出,听好了。
充耳不闻无话讲,打一茶叶名。
”妈妈话音刚落,爸爸马上接:“是龙井。
”爸爸平日里可爱喝茶了,这种简单的问题怎能难倒他。
“不能常喝浓茶,会生病哦!”我一本正经地说道,“书上就是这样写的!”爸爸微笑着说:“女儿长大了,懂事了!好吧,听你的,我以后要少喝浓茶。
”我们一家人就在这月光下,开始品尝月饼。
我们大口大口地往嘴里塞。
妈妈嘱咐我们:“吃慢点,别噎着了。
”我对妈妈说:“一定不会的,如果噎着了,我就是个大傻子。
”爸爸妈妈放声大笑。
吃完月饼后,爸爸说:“该我出了。
七品小官不明断,打一食品。
”妈妈马上反应过来,说:“是芝麻糊。
”弟弟急了:“现在该我出了。
谜语是话到嘴边又咽下,打一食品。
”“我知道,谜底是云吞。
”我高兴地大喊。
妈妈对我说:“小声点,别吵到人家赏月。
”“好吧,不过该我出了。
三两木耳,打一地理名词。
”我严肃地说。
这可把全家给难住了,“哈哈,不懂了吧?我来告诉你们吧,是森林。
”我得意地说道,爸爸妈妈哈哈大笑。
全家人沉浸在浓浓的月光中。
又是中秋月圆时,月儿圆,人团圆。
仰望夜空,昨夜星辰早已坠落,今日明月正当空。
八年级数学下册《分式》教案北师大版第一章:分式的概念与基本性质1.1 分式的概念学习目标:理解分式的定义,掌握分式的构成要素。
教学内容:介绍分式的定义,解释分子和分母的概念。
教学方法:通过实际例子,让学生理解分式的含义,并进行练习。
1.2 分式的基本性质学习目标:掌握分式的基本性质,包括分式的乘除法、乘方等。
教学内容:介绍分式的基本性质,解释分式的乘除法规则,展示乘方运算的例子。
教学方法:通过实际例子,让学生掌握分式的基本性质,并进行练习。
第二章:分式的运算2.1 分式的加减法学习目标:掌握分式的加减法运算规则,能够正确进行计算。
教学内容:介绍分式的加减法规则,展示例题,并进行练习。
教学方法:通过实际例子,让学生理解分式的加减法运算规则,并进行练习。
2.2 分式的乘除法学习目标:掌握分式的乘除法运算规则,能够正确进行计算。
教学内容:介绍分式的乘除法规则,展示例题,并进行练习。
教学方法:通过实际例子,让学生理解分式的乘除法运算规则,并进行练习。
第三章:分式的应用3.1 分式在实际问题中的应用学习目标:学会将实际问题转化为分式问题,并运用分式进行解决。
教学内容:介绍分式在实际问题中的应用,展示例题,并进行练习。
教学方法:通过实际问题,让学生学会将问题转化为分式问题,并运用分式进行解决。
3.2 分式在几何问题中的应用学习目标:学会将几何问题转化为分式问题,并运用分式进行解决。
教学内容:介绍分式在几何问题中的应用,展示例题,并进行练习。
教学方法:通过几何问题,让学生学会将问题转化为分式问题,并运用分式进行解决。
第四章:分式的综合练习4.1 分式的综合练习(一)学习目标:综合运用分式的概念、基本性质和运算规则进行练习。
教学内容:提供一系列分式的练习题,让学生综合运用所学知识进行解答。
教学方法:通过练习题,让学生巩固分式的概念、基本性质和运算规则,提高解题能力。
4.2 分式的综合练习(二)学习目标:综合运用分式的概念、基本性质和运算规则进行练习。
《认识分式》教案教学目标一、知识与技能1、使学生了解分式的概念,明确分式中分母不能为0是分式成立的条件.2、使学生理解分式的基本性质.并运用分式的基本性质对分式进行恒等变形.二、过程与方法能从具体情境中抽象出数量关系和变化规律,经历对具体问题的探索过程,进一步培养符号感.三、情感态度和价值观通过丰富的现实情境,使学生在已有数学经验的基础上,了解数学的价值,发展“用数学”的信心.教学重点:理解分式的特点;掌握分式基本性质的内容,并有意识地运用它化简分式.教学难点:分式基本性质的运用.教学过程:一、知识回顾: 你能判断下面哪些式子是整式吗? x 2+xy+y 2 -3x 2y 3 5x-1 a学生回忆旧知回答:整式有a ,x 2+xy+y 2 ,-3x 2y 3 ,5x-1,说一说 、 、 与上面的整式有什么区别.引出本课主体----认识分式 二、探究新知(一) 探究分式的概念1、 出示一组图片,并提出问题:2m n -a 9a 1-m 3m 32m n -a 9a 1-xy y xy y面对日益严重的土地沙化问题,某县决定在一定期限内固沙造林2400hm 2,实际每月固沙造林的面积比原计划多30hm 2,结果提前完成原计划的任务.如果设原计划每月固沙造林xhm 2,那么(1)原计划完成造林任务需要多少个月?(2)实际完成造林任务用了多少个月?师生共同分析:题中的等量关系如下:原计划完成造林任务需的时间=固沙造林总公顷数÷原计划每月固沙造林的数量原计划每月固沙造林的公顷数+30=实际每月固沙造林的公顷数.根据分析列出方程:(1),(2)2、做一做:(1)2010年上海世博会吸引了成千上万的参观者,某一时段内的统计结果显示,前a 天日均参观人数35万人,后b 天日均参观人数45万人,这(a+b )天日均参观人数为多少万人?(2)文林书店库存一批图书,其中一种图书的原价是每册a 元,现降价x 元销售,当这种图书的库存全部售出时,其销售额为b 元.降价销售开始时,文林书店这种图书的库存量是多少?学生分析题意,列出方程:(1),(2)(2)同学们观察我们列出的几个代数式,,,,它们有什么共同特征?它们与整式有什么不同?学生分组讨论后回答:上面的几个代数式的共同特征:这些式子都可写成 的形式,分子、分母都是整式, 分母中都含字母 它们与整式的不同点就在于它们的分母中都含有字母,而整式的分母中不含有字母.归纳总结:整式A 除以整式B ,可以表示成 BA 的形式.如果除式B 中含有字母,那么称B A为分式,其中A 称为分式的分子,B 称为分式的分母.注意:①分子分母都是整式;②分母中含有字母 ;③分母不能为零.3、例题讲解.①当a=1,2时,分别求分式 的值. +-a 12a 1BA②当a 为何值时,分式 有意义?解:①当a=1时, 当a=2时, ②当分母的值等于零时,分式没有意义,除此以外,分式都有意义.由分母2a-1=0,得a=1/2.所以,当a 取1/2以外的任何实数时,分式 有意义.注意:性质中是同时乘以或除以同一个不为零的整式. 三、练一练1、下列式子中,哪些是整式?哪些是分式?2、已知分式 (1) 当x 为何值时,分式无意义?(2) 当x 为何值时,分式有意义?3.分式 232+-x x 无意义,X应取什么数?分式 3322+-x x 有意义,X应取什么数?若分式 121+-x x 的值为0,则X的值是__.四、课堂小结谈谈你这节课有什么收获?分式的概念: ①子分母都是整式,②分母中含有字母,③分母不能分式的三个件条:分式无意义的条件,分式有意义的条件,分式的值为零的条件。
1 相识分式第1课时 分式的有关概念教学目标 一、基本目标1.了解分式的概念,明确分式与整式的区分.2.经验用字母表示现实情境中数量关系的过程,体会分式的模型思想,进一步发展符号感.3.通过教材土地沙化问题的情境,体会爱护人类生存环境的重要性. 二、重难点目标 【教学重点】 分式的概念. 【教学难点】分式有(无)意义的条件,分式值为0的条件. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P 108~P109的内容,完成下面练习. 【3 min 反馈】1.一般地,用A 、B 表示两个整式,A ÷B 可以表示成AB的形式.假如B 中含有字母,那么称A B为分式,其中A 称为分式的分子,B 称为分式的分母.对于随意一个分式,分母都不能为零.2.分式有意义的条件是分母不为0.分式的值为0的条件是分子等于0,且分母不等于0.3.下列各式中,哪些是分式?①2b -s ;②3000300-a ;③27;④v s ;⑤s 32;⑥2x 2+15;⑦45b +c ;⑧-5;⑨3x 2-1;⑩x 2-xy +y 22x -1;⑪5x -7.解:分式有①②④⑦⑩.4.当x 取何值时,下列分式无意义?当x 取何值时,下列分式的值等于0? (1)3-x x +2;(2)x +53-2x. 解:(1)当x +2=0时,即x =-2时,分式3-x x +2无意义.当x =3时,分式3-x x +2的值等于0.(2)当3-2x =0时,即x =32时,分式x +53-2x 无意义.当x =-5时,分式x +53-2x 的值等于0.环节2 合作探究,解决问题 活动1 小组探讨(师生互学)【例1】当x 取何值时,下列分式有意义?当x 取何值时,下列分式无意义?当x 取何值时,下列分式值为零?(1)x +1x -1 ; (2)x -2x 2-1; (3)x 2-1x 2-x. 【互动探究】(引发学生思索)依据分式有、无意义所满意的条件进行推断.分式的值为0,则分母不为0,且分子等于0.【解答】(1)有意义:x -1≠0,即x ≠1. 无意义:x -1=0,即x =1.值为0:x +1=0且x -1≠0,∴x =-1. (2)有意义:x 2-1≠0,即x ≠±1. 无意义:x 2-1=0,即x =±1. 值为0:x -2=0且x 2-1≠0,∴x =2. (3)有意义:x 2-x ≠0,即x ≠0且x ≠1. 无意义:x 2-x =0,即x =0或x =1. 值为0:x 2-1=0且x 2-x ≠0,即x =-1.【互动总结】(学生总结,老师点评)分式有意义的条件:分式的分母不能为0.分式无意义的条件:分式的分母等于0.分式值为0的条件:分式的分子等于0,但分母不能等于0.分式的值为0肯定是在有意义的条件下成立的.活动2 巩固练习(学生独学) 1.若代数式1x -1+x 有意义,则实数x 的取值范围是( D ) A .x ≠1 B .x≥0 C .x ≠0D .x≥0且x≠12.若分式2x -13x +5有意义,则x 的取值范围是x≠-53.3.若分式x 2-1x +1的值为0,则x 的值是1.4.对于分式x -m -nm -2n +3x ,已知当x =-3时,分式的值为0;当x =2时,分式无意义.试求m 、n 的值.解:∵当x =-3时,分式的值为0,∴⎩⎪⎨⎪⎧-3-m -n =0,m -2n -9≠0,即⎩⎪⎨⎪⎧m +n =-3,m -2n≠9.又∵当x =2时,分式无意义, ∴m -2n +3×2=0,即m -2n =-6.解方程组⎩⎪⎨⎪⎧m +n =-3,m -2n =-6,得⎩⎪⎨⎪⎧m =-4,n =1.活动3 拓展延长(学生对学)【例2】视察下面一列分式:x 3y ,-x 5y 2,x 7y 3,-x9y 4,….(其中x≠0)(1)依据上述分式的规律写出第6个分式;(2)依据你发觉的规律,试写出第n(n 为正整数)个分式,并简洁说明理由.【互动探究】(1)依据已知分式的分子与分母的次数与系数关系得出答案;(2)利用(1)中数据的变更规律得出答案.【解答】(1)视察各分式的规律可得,第6个分式为-x13y 6.(2)由已知可得:第n(n 为正整数)个分式为(-1)n +1×x 2n +1yn.理由:∵分母的底数为y ,次数是连续的正整数,分子底数是x ,次数是连续的奇数,且第偶数个分式为负,∴第n(n 为正整数)个分式为(-1)n +1×x 2n +1yn.【互动总结】(学生总结,老师点评)此题主要考查了分式的定义以及数字变更规律,得出分子与分母的变更规律是解题关键.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.分式的概念:一般地,假如A 、B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式.2.分式AB 有无意义的条件:当B≠0时,分式有意义;当B =0时,分式无意义.3.分式AB 值为0的条件:当A =0,B≠0时,分式的值为0.练习设计请完成本课时对应练习!第2课时 分式的基本性质教学目标 一、基本目标1.能正确理解和运用分式的基本性质.2.通过与分数的基本性质相比较,归纳得出分式的基本性质,体验类比的思想方法. 二、重难点目标 【教学重点】理解分式的基本性质,会进行分式的化简. 【教学难点】敏捷应用分式的基本性质将分式变形. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P 110~P112的内容,完成下面练习. 【3 min 反馈】1.分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.这一性质可以用式子表示为:b a =b ·m a ·m ,b a =b ÷ma ÷m(m ≠0).2.把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.分子和分母已没有公因式,这样的分式称为最简分式.化简分式时,通常要使结果成为最简分式或整式.3.分式的分子、分母及分式本身的三个符号中,随意变更其中两个的符号,分式的值不变;若只变更其中一个或三个全变号,则分式的值变成原分式值的相反数.4.下列等式的右边是怎样从左边得到的?(1)a 2b =ac 2bc (c ≠0); (2)x 3xy =x 2y . 解:(1)由c ≠0,知a 2b =a ·c 2b ·c =ac 2bc .(2)由x ≠0,知x 3xy =x 3÷x xy ÷x =x 2y.5.约分:(1)a 2bc ab ; (2)-32a 3b 2c 24a 2b 3d. 解:(1)公因式为ab ,所以a 2bc ab=ac .(2)公因式为8a 2b 2,所以-32a 3b 2c 24a 2b 3d =-4ac3bd.环节2 合作探究,解决问题活动1 小组探讨(师生互学)【例1】不变更分式0.2x +12+0.5x 的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A ..2x +12+5xB ..x +54+xC .2x +1020+5xD .2x +12+x【互动探究】(引发学生思索)利用分式的基本性质,把0.2x +12+0.5x 的分子、分母都乘10,得2x +1020+5x . 【答案】C【互动总结】(学生总结,老师点评)视察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需依据分式的基本性质让分子和分母同乘某一个数即可.【例2】约分:(1)-5a 5bc 325a 3bc 4; (2)x 2-2xyx 3-4x 2y +4xy2.【互动探究】(引发学生思索)要约分须要先找分子、分母的公因式,如何确定公因式呢? 【解答】(1)-5a 5bc 325a 3bc 4=5a 3bc 3-a 25a 3bc 3·5c =-a25c . (2)x 2-2xy x 3-4x 2y +4xy 2=x x -2yx x -2y2=1x -2y. 【互动总结】(学生总结,老师点评)约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.活动2 巩固练习(学生独学)1.把分式2x2x -3y 中的x 和y 都扩大为原来的5倍,那么分式的值( B )A .扩大为原来的5倍B .不变C .缩小为原来的15D .扩大为原来的52倍2.将分式x2-y x 5+y 3的分子与分母中各项系数化为整数,结果是15x -30y6x +10y .3.约分:(1)-15a +b 2-25a +b ; (2)m 2-3m9-m2.解:(1)3a +b5.(2)-mm +3.4.先约分,再求值:(1)3m +n9m 2-n2,其中m =1,n =2; (2)x 2-4y 2x 2-4xy +4y 2,其中x =2,y =4. 解:(1)3m +n 9m 2-n 2=13m -n =13×1-2=1.(2)x 2-4y 2x 2-4xy +4y 2=x +2y x -2y x -2y 2=x +2y x -2y =2+2×42-2×4=-53. 活动3 拓展延长(学生对学)【例3】若x 2=y 3=z 4≠0,求x -y -z 3x +2y -z的值.【互动探究】因为条件是以比相等的形式出现,所以考虑设比值为k ,把待求式转化为关于k 的式子求值.【解答】设x 2=y 3=z 4=k (k ≠0),x =2k ,y =3k ,z =4k ,∴x -y -z 3x +2y -z =2k -3k -4k 6k +6k -4k =-5k8k=-58.【互动总结】(学生总结,老师点评)当数学问题中出现或隐含比值相等的条件时,设比值为一个新字母,把问题转化为新字母的问题求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.分式的基本性质:分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,随意变更其中两个符号,分式的值不变;若只变更其中一个符号或三个全变号,则分式的值变成原分式值的相反数.练习设计请完成本课时对应练习!。
《认识分式》教学设计
认识分式是义务教育课程标准实验教科书(北师版)《数学》八年级下册第五章第一节内容,本章主要是研究分式与分式方程的应用;本节要求使学生分式的基本性质.利用分式的基本性质对分式进行“等值”变形。
了解分式约分的步骤和依据,掌握分式约分的方法。
所以本节的重点是分式的基本性质.利用分式的基本性质约分.将一个分式化简为最简分式。
【知识与能力目标】
1.分式的基本性质.
2.利用分式的基本性质对分式进行“等值”变形。
3.了解分式约分的步骤和依据,掌握分式约分的方法。
4.使学生了解最简分式的意义,能将分式化为最简分式。
【过程与方法目标】
1.能类比分数的基本性质,推测出分式的基本性质。
2.培养学生加强事物之间的联系,提高数学运算能力。
【情感态度价值观目标】
通过类比分数的基本性质及分数的约分,推测出分式的基本性质和约分,在学生已有数学经验的基础上,提高学生学数学的乐趣。
【教学重点】
1.分式的基本性质。
2.利用分式的基本性质约分。
3.将一个分式化简为最简分式。
【教学难点】
分子、分母是多项式的约分。
教师准备
课件、多媒体;
学生准备;
练习本;
Ⅰ.复习分数的基本性质,推想分式的基本性质。
[师]我们来看如何做不同分母的分数的加法:21+ 3
1. [生]2
1+31=3231⨯⨯+2321⨯⨯=63+62=65. [师]这里将异分母化为同分母,
21=3231⨯⨯=63, 31=2321⨯⨯=6
2.这是根据什么呢? [生]根据分数的基本性质:分数的分子与分母都乘以(或除以)同一个不等于零的数,分数的值不变。
[师]很好!分式是一般化了的分数,我们是否可以推想分式也有分数的这一类似的性质呢?
Ⅱ.新课讲解
1.分式的基本性质
出示投影片(§5.1.2 A )
[生](1)将6的分子、分母同时除以它们的最大公约数3得到.即6=36÷=2
. 依据是分数的基本性质:分数的分子与分母同乘以(或除以)同一个不等于零的数,分数的值不变。
(2)分式a a 2与21相等,在分式a a 2中,a ≠0,所以a a 2=a a a a ÷÷2=2
1; 分式mn n 2与m n 也是相等的.在分式mn n 2中,n ≠0,所以mn n 2=n mn n n ÷÷2=m
n . [师]由此,你能推想出分式的基本性质吗?
[生]分式是一般化了的分数,类比分数的基本性质,我们可推想出分式的基本性质:
分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变。
[师]在运用此性质时,应特别注意什么?
[生]应特别强调分式的分子、分母都乘以(或除以)同一个不为零的整式中的“都”“同一个”“不为零”。
[师]我们利用分数的基本性质可对一个分数进行等值变形.同样我们利用分式的基本性质也可以对分式进行等值变形。
下面我们就来看一个例题(出示投影片§5.1.2 B )
[生]在(1)中,因为y ≠0,利用分式的基本性质,在
x 2的分子、分母中同乘以y ,即可得到右边,即x b 2=y x y b ⋅⋅2=xy
by 2; [师]很好!在(1)中,题目告诉你y ≠0,因此我们可用分式的基本性质直接求得.可
(2)中右边又是如何从左边得到的呢?
[生]在(2)中,bx ax 可以分子、分母同除以x 得到,即bx ax =x bx x ax ÷÷=b
a . [生]“x ”如果等于“0”,就不行.
在bx ax 中,x 不会为“0”,如果是“0”,bx ax 中分母就为“0”,分式bx
ax 将无意义,所以(2)中虽然没有直接告诉我们x ≠0,但要由bx ax 得到b a ,bx ax 必须有意义,即bx ≠0由此可得b ≠0且x ≠0.
[师]这位同学分析得很精辟!
2.分式的约分
[师]利用分数的基本性质可以对分数进行化简。
利用分式的基本性质也可以对分式化简。
我们不妨先来回忆如何对分数化简。
[生]化简一个分数,首先找到分子、分母的最大公约数,然后利用分数的基本性质就可将分数化简。
例如123,3和12的最大公约数是3,所以123=31233÷÷=4
1. [师]我们不妨仿照分数的化简,来推想对分式化简.(出示投影片§5.1.2 C )
[师]在分数化简中,我们约去了分子、分母的公约数,那么在分式化简中,我们应如何办?
[生]约去分子、分母中的公因式.例如(1)中a 2bc 可分解为ac·(ab ).分母中也含有因式ab,因此利用分式的基本性质:
ab bc a 2=)()(2ab ab ab bc a ÷÷=)
()()(ab ab ab ab ac ÷÷⋅=ac. [师]我们可以注意到(1)中的分式,分子、分母都是单项式,把公有的因式分离出来,然后利用分式的基本性质,把公因式约去即可。
这样的公因式如何分离出来呢?同学们可小组讨论。
[生]如果分子、分母是单项式,公因式应取系数的最大公约数,相同的字母取它们中最低次幂。
[师]回答得很好.可(2)中的分式,分子、分母都是多项式,又如何化简?
[生]通过对分子、分母因式分解,找到它们的公因式。
[师]这个主意很好.现在同学们自己动手把第(2)题试着完成一下。
[生]解:(2)12122+--x x x =2)1()1)(1(-+-x x x =1
1-+x x . [生]老师,我明白了,遇到分子、分母是多项式的分式,应先将它们分解因式,然后约去公有的因式。
[师]在例3中,ab bc a 2=ac ,即分子、分母同时约去了整式ab; 12122+--x x x =1
1-+x x ,即分子、分母同时约去了整式x -1.把一个分式的分子和分母的公因式约去,这种变形我们称为分式的约分。
下面我们亲自动手,再来化简几个分式.(出示投影片§5.1.2 D )
[生]解:(1)
y x 220=)5()4(xy x ⋅=x 4; (2))()(b a b b a a ++=b
a . [师]在刚才化简第(1)题中的分式时,一位同学这样做的(出示投影片§3.1.2 E )
[生]我认为小颖的做法中,
220x 中还有公因式5x ,没有化简完,也就是说没有化成最简结果。
[师]很好!y x xy 2205如果化简成x
41,说明化简的结果中已没有公因式,这种分式称为最简分式。
因此,我们通常使结果成为最简分式或者整式。
Ⅲ.巩固、提高
出示投影片(§5.1.2 F )
[师]通过今天的学习,同学们有何收获?(鼓励学生积极回答)
[生]数学知识之间是有内在联系的.利用分数的基本性质就可推想出分式的基本性质。
[生]分式的约分和化简可联系分数的约分和化简。
[生]化简分式时,结果一定要求最简。
Ⅴ.课后作业
课本习题5.2及读一读.
Ⅵ.活动与探究
实数a 、b 满足ab=1,记M=a +11+b +11,N=a a +1+b
b +1,比较M 、N 的大小.
略。