传感器网络安全技术综述
- 格式:ppt
- 大小:96.50 KB
- 文档页数:35
无线传感器网络应用技术综述摘要:传感器被越来越多地布置到实际的网络环境中,用于实现某些应用。
无线传感器网络已经成为了科学研究领域最前沿的课题之一,引起了工业界和学术界众多研究者的关注。
通过总结相关方面的工作,综述在不同领域中无线传感器网络的实际应用,并对具体应用的一些重要特性进行分析,在此基础上提出若干值得继续研究的方面。
关键词:无线传感器;网络应用一、无线传感器网络简介随着微机电系统的迅速发展,片上系统SoC(System on Chip)得以实现,一块小小的芯片可以传递逻辑指令,感知现实世界,乃至做出反应。
无线传感器网络WSN(Wireless Sensor Network),这一由大量具有片上微处理能力的微型传感器节点组成的网络,引起了工业界和学术界众多研究者的关注。
传统的传感器网络通常由两种节点:传感器节点(sensor)和接收器节点(sink)组成。
传感器节点负责对事件的感知和数据包的传输;接收器节点则是数据传输的目标节点,一般具有人机交互界面,并可以接入其它类型的网络体系。
传感器网络以其低成本、低功耗的特点,在军事、环境监测、医疗健康等领域都有着广泛的应用。
在本文中,对大量现有无线传感器和无线传感器网络的应用进行分析,从节点移动性、节点互联方式、网络数据规模、网络分层结构等方面进行分析和比较。
并在此基础上,提出若干值得继续研究的方面,为挖掘传感器网络新的应用打下基础。
二、无线传感器网络的特点目前常见的无线网络包括移动通信网、无线局域网、蓝牙网络、ad hoc网络等,与这些网络相比,无线传感器网络具有以下特点:(1)硬件资源有限。
节点由于受价格、体积和功耗的限制,其计算能力、程序空间和内存空间比普通的计算机功能要弱很多。
这一点决定了在节点操作系统设计中,协议层次不能太复杂。
(2)电源容量有限。
网络节点由电池供电,电池的容量一般不是很大。
任何技术和协议的使用都要以节能为前提。
(3)自组织。
无线传感器网络安全随着无线传感器网络的广泛应用,其安全问题越来越受到人们的。
无线传感器网络的安全性是保证其可靠运行的关键因素之一,也是防止未经授权的访问和数据泄露的重要保障。
本文将介绍无线传感器网络的安全威胁和防范措施。
无线传感器网络通过无线通信进行数据传输,因此通信安全是其主要的安全问题之一。
通信安全的主要威胁包括:窃听、阻断、篡改和假冒。
这些威胁会导致数据泄露、数据完整性受损以及未经授权的访问等问题。
无线传感器网络的另一个安全问题是传感器节点的安全性。
由于传感器节点通常具有资源限制的特性,因此其安全性比传统的计算机网络更为复杂。
传感器节点的安全威胁主要包括:物理破坏、能量耗尽、恶意软件和拒绝服务攻击等。
无线传感器网络的拓扑结构也是其安全问题之一。
拓扑结构的选择将直接影响网络的性能和安全性。
一些常见的网络拓扑结构包括星型、树型和网状等。
不同的拓扑结构具有不同的优点和缺点,因此需要根据具体的应用场景选择合适的拓扑结构。
加密技术是保障无线传感器网络安全的重要手段之一。
通过对传输的数据进行加密,可以防止未经授权的访问和数据泄露。
常用的加密算法包括对称加密算法和非对称加密算法。
在选择加密算法时,需要考虑其安全性、计算量和资源消耗等因素。
节点认证和授权是保障无线传感器网络安全的重要措施之一。
通过对节点进行认证和授权,可以防止未经授权的节点接入网络,同时也可以防止未经授权的节点访问网络中的数据。
常用的认证和授权技术包括基于密码的认证和基于角色的授权等。
入侵检测和防御是保障无线传感器网络安全的重要手段之一。
通过对网络中的数据进行分析和处理,可以检测出是否有恶意攻击行为发生,并采取相应的防御措施。
常用的入侵检测和防御技术包括基于统计分析的入侵检测技术、防火墙技术等。
网络拓扑结构优化是保障无线传感器网络安全的重要措施之一。
通过对网络拓扑结构进行优化,可以提高网络的性能和安全性。
常用的优化方法包括:选择合适的拓扑结构、优化节点布局、动态调整拓扑结构等。
传感器技术文献综述摘要:传感器技术是综合多种学科的复合型技术,是一门正在蓬勃发展的现代化传感器技术.本文通过将所看的传感器相关文献总分为传感器、智能传感器以及无线传感器网络三个类别,对每一类别进行综述,分析每类别传感器研究中所存在的不足,探讨了相应的解决方案。
关键词:传感器1.引言传感器技术是一门正在蓬勃发展的现代化传感器技术,是涉及微机械与微电子技术、计算机技术、信号处理技术、电路与系统、传感技术、神经网络技术以及模糊控制理论等多种学科的综合性技术,而该技术也广泛应用到了军事、太空探索、智能家居、农业、医疗等领域。
在伴随着“信息时代”的到来,作为获取信息的重要手段——传感器技术得到飞速发展,其应用领域越来越广,人们对其要求越要越高,需求也越来越迫切。
但传感器技术的广泛应用以及飞速发展并不代表着该技术已经成熟,相反在很多方面它还只是一项新兴的技术,依然存在很多的问题等待我们去解决。
如何能够让我们的传感器装置很快的适应周围的环境,迅速准确的处理传输客户所需求的信号,并可以根据客户的要求作出相应的反应以及如何可以尽量的延长传感器装置的生存时间等等.这些问题都是我们在研究传感器技术的过程中所应该解决的问题。
2.传感器传感器是一种物理装置,能够探测、感受外界的信号、物理条件(如光、热、温度、湿度等)或化学组成,并将探知到的信息传递给其他装置。
该装置相当我们的人类的眼睛、鼻子、舌头、耳朵以及皮肤等一些感知器官。
这样,精确快速地感受外界的信号就是迅速正确作出反应实施行动的前提条件。
现在的物理传感器、生物传感器都是力图解决感知、精确以及快速这三个难题。
例如文献[1]中的气体流量监测就有很多种的感知方法,但每种方法都存在着精确以及反应速率方面的问题,所以还需要不断的改进。
然而,有很多的问题大自然已经很好的为我们解决了,我们应该取其精华。
因此,我认为仿生传感器一定会解决很多传感器方面的问题.文献[2]就模仿沙漠蚂蚁利用太阳偏振光在沙漠中很好的辨别方向机理设计了偏振测角传感器。
传感器网络中的数据融合技术综述一、引言随着无线通信、传感技术的不断进步,传感器网络技术正在成为当前互联网技术与工业自动化技术的热门领域之一,在环境监测、智能交通、医疗卫生、安全监控、智能家居等领域中有着广泛的应用。
然而,由于传感器网络中数据的大量生成和传输,怎样高效地利用这些数据是一个重要的研究方向,数据融合技术就是在这个领域中起到了重要的作用。
二、传感器网络数据融合技术的概述1.传感器网络中数据融合技术的定义数据融合技术是一种将从不同传感器节点上采集到的原始数据整合、筛选和组合在一起,形成更全面、准确、可信的数据信息的技术。
通过数据融合技术的应用,可以提高数据的可靠性、准确性、全面性和通用性,从而提高传感器网络中数据的价值。
2.传感器网络中数据融合技术的特点数据融合技术的特点主要有以下几个方面:(1)可靠性:数据融合技术可以降低单个传感器节点所采集的数据对整个系统的影响,从而提高数据的可靠性。
(2)准确性:通过对不同传感器节点上采集到的数据进行分析和处理,可以消除数据中的噪声和误差,减少数据的不确定性,提高数据的准确性。
(3)全面性:数据融合技术可以整合不同传感器节点上采集到的数据,使得数据的覆盖范围更广,提高数据的全面性。
(4)通用性:数据融合技术可以使得不同传感器节点所得到的数据具有一定的通用性,从而提高数据的应用范围。
3.传感器网络中数据融合技术的分类根据不同的融合方式和目标,传感器网络中数据融合技术可以分为以下几种类型:(1)低层数据融合:低层数据融合是指对同一传感器节点所采集到的多个数据进行整合和融合,以提高数据的准确性和可靠性。
(2)中层数据融合:中层数据融合是指对同一区域内不同传感器节点所采集到的数据进行整合和融合,以提高数据的全面性和准确性。
(3)高层数据融合:高层数据融合是指对多个区域内的数据进行整合和融合,以提高数据的通用性和应用范围。
4.传感器网络中数据融合技术的应用传感器网络中数据融合技术应用广泛,主要应用在以下几个领域中:(1)环境监测:在环境监测领域中,传感器网络可以采集不同地点、不同特征的数据,利用数据融合技术进行处理和分析,得到更准确、更全面的环境数据信息。
无线传感器网络安全关键技术研究摘要:作为一种新兴的网络,无线传感器网络已经给我们在带来了诸多的便利。
然而在给我们带来全新体验的同时,无线网络也带来了巨大的信息安全挑战。
从无线传感器网络的加密技术、密钥的分配与管理和安全框架协议几个方面入手,分析了现行各种技术的利弊,界定了其适用范围,并对今后的研究方向提出了一些看法。
关键词:无线传感器网络;安全技术;密钥管理;安全协议无线传感器网络是由一定数量的传感器节点以无线通信技术自组织方式构成的网络。
目前已经得到广泛的应用。
作为一种新兴的网络,无线传感器网络已经给我们带来了诸多的便利,诸如无线上网、3G手机等等。
然而在给我们带来全新体验的同时,无线网络也带来了巨大的信息安全挑战。
因此,本文将重点论述无线传感器网络安全的关键技术。
1无线传感器网络的密钥管理分析加密技术是无线传感器网络安全技术的基础,对于加密技术来说,密钥管理是其核心任务。
目前,无线传感器网络密钥管理技术大体可以分为:预共享密钥管理模型、基于密钥池的随机密钥预分配模型以及基于KDC的分配模型。
这几种模型各有所长,但应用中也都存在不足之处,因此,需要对其适用范围加以界定。
1.1预共享密钥管理模型预共享密钥管理模型是一种对称密钥管理,具体来说主要包括了全网预共享密钥模型和点到点预共享密钥两种模式。
全网预共享型仅在网络部署前为所有节点统一分配一个密钥,从而缓解了各个传感器节点的压力,不需要建立大量的密钥通信,RAM占用和通信负载较小,并且具有很强的网络可扩展性。
但一旦出现部分节点被破坏的情况,那么整个网络安全抵抗性就会大大降低,无法保证网络的后向机密性。
且无法进行任意两个节点的认证,容易受到各种假冒与复制攻击。
所以这种密钥管理一般被应用于安全要求不高且网络相对稳定的环境中。
相对全网预共享密钥模型,点到点预共享模型则要求网络中任两个节点间的预共享对一个不同的主密钥,有通信需求的两个节点可使用主密钥衍生的密钥进行加密及节点身份认证。