高压加热器的原理
- 格式:pdf
- 大小:129.98 KB
- 文档页数:3
电工技术·理论与实践2015年9月下 215高压加热器疏水水位波动大原因分析及处理陈粤军广东粤嘉电力有限公司,广东 梅州 514000摘要:高压加热器作为火电厂给水系统的重要设备,其运行稳定性直接关系机组的安全性和经济性。
高压加热器疏水水位异常波动的状况,将会降低其交换效率,加剧相关设备的冲蚀程度,成为机组安全运行和经济运行的严重威胁。
笔者通过分析高压加热器水位异常波动的原因,采取了使高压加热器优化运行的措施。
通过实践发现,明显改善了高热加热器输水水位异常波动的问题。
关键词:高压加热器;水位波动;原因;措施 中图分类号:TK264.9 文献标识码:A 文章编号:1002-1388(2015)09-0215-01在火力发电中,为了充分利用蒸汽余热,高压加热器以汽轮机的抽汽余热作为供热源来加热锅炉给水,并使之达到要求温度。
这样的结构设计不仅降低了整个循环系统的冷源损失,提高了热效率,还增加机组运行的经济性及安全性。
1 高压加热器工作原理高压加热器以汽轮机的抽汽余热作为供热源,蒸汽先降低其过热度,进而通过凝结段凝结成液相状态,然后在疏水冷却段进一步释放热量,降低其温度,以至降低疏水温度,减少疏水的汽化程度。
疏水经过汽液两相流控制后,由压力较高部件排入到压力较低部件。
压力较低的高压加热器疏水接口是采用虹吸管结构形式使疏水向上流动,经疏水调节阀排至除氧器。
2 机组安全运行面临的问题高压加热器疏水系统的运行工况比较复杂,对其设计安装质量要求十分严格。
在机组日常运行过程中,最近经常出现高压加热器疏水水位异常波动现象,一般在0~400mm 之间。
此种状况出现时,受条件限制,操作工人只能使用手动调节疏水阀,水位不能有效地精确控制,这将导致汽水混合物进入循环系统而分担了部分热量,致使蒸汽无法有效加热给水,并且严重冲刷损坏了整个循环系统的给水管道及其附件设备。
日积月累,这样将严重威胁机组的安全和经济运行。
3 高压加热器水位异常波动的原因分析通过实践发现,高压加热器疏水水位出现异常波动状况对整个机组安全运行至关重要。
高压加热器:定义:在回热给水系统中位于给水泵至锅炉之间的加热器。
高压加热器,该装置由壳体和管系两大部分组成,在壳体内腔上部设置蒸汽凝结段,下部设置疏水冷却段,进、出水管顶端设置给水进口和给水出口。
当过热蒸汽由进口进入壳体后即可将上部主螺管内的给水加热,蒸汽凝结为水后,凝结的热水又可将下部疏冷螺管内的部分给水加热,被利用后的凝结水经疏水出口1被疏流出体外。
本装置具有能耗低,结构紧凑,占用面积少,耗用材料省等显著优点,并能够较严格控制疏水水位,疏水流速和缩小疏水端差。
什么是高压加热器端差高加端差有上端差(加热器进气压力下的饱和温度与出水温度的差值称为上端差,也称传热端差)和下端差(正常疏水温度与进水温度的差值称为下端差)
低压加热器定义:在回热给水系统中位于凝汽器至除氧器之间的加热器。
低压加热器的作用是利用在汽轮机内做过部分功的蒸气,抽至加热器内加热给水,提高水的温度,减少了汽轮机排往凝汽器中的蒸汽量,降低了能源损失,提高了热力系统的循环效率。
结构是较多的采用直立管板式加热器。
加热器的受热面一般是用黄铜管或无缝钢管构成的直管束或U形管束组成的。
被加热的水从上部进水管进入分隔开的水室一侧,再流入U形管束中,U形管在加热器的蒸气空间,吸收加热蒸气的热量,由管壁传递给管内流动的水,被加热的水经过加热器出口水室流出。
除氧器deaerator定义:给水回热系统中,使给水加热到饱和温度,能去除给水中溶解气体的混合式加热器。
高压加热器疏水放气原理1. 引言1.1 高压加热器疏水放气原理的重要性高压加热器疏水放气原理的重要性在工业生产中占据着至关重要的地位。
在高压加热器中,水和气体是不可避免地存在的,而水中含有的气体会影响加热器的正常运行,降低加热效率,甚至可能引发安全事故。
正确的疏水放气操作是确保高压加热器顺利运行的关键。
疏水操作可以有效地去除加热器中积聚的水和气体,保持加热器内部清洁,减少能量损耗,延长设备使用寿命。
放气装置的正确使用可以避免气体在加热器内积聚,减少压力波动,保证设备的安全稳定运行。
深入研究高压加热器疏水放气原理,探索其作用机理和操作技巧,对于提高加热器的工作效率,节约能源资源,保障生产安全具有重要意义。
本文旨在探讨高压加热器疏水放气原理,为相关领域的研究和应用提供参考和借鉴。
希望通过本文的介绍和分析,能够深入理解高压加热器疏水放气原理的重要性,并进一步推动相关技术的发展和应用。
1.2 本文研究的目的本文的研究目的是探讨高压加热器疏水放气原理的重要性和实际应用。
通过深入分析高压加热器的基本结构和功能、高压加热器中水和气体的特点,以及疏水装置和放气装置的作用和原理,本文将揭示高压加热器疏水放气原理的具体实现方法,帮助读者更好地理解其工作原理和优势。
在工业生产中,高压加热器是关键的设备之一,其运行稳定性和效率对整个生产过程起着至关重要的作用。
而正确理解和应用高压加热器疏水放气原理,则可以有效地防止设备内部因水和气体混合而导致的问题,提高设备的运行效率和寿命。
本文的研究目的是为了帮助读者全面了解高压加热器疏水放气原理的重要性,为工业生产中的设备维护和运行提供有益的参考和指导。
2. 正文2.1 高压加热器的基本结构和功能高压加热器是热电站中的重要设备,主要用于将高压蒸汽加热至更高的温度以提供给汽轮机。
它的基本结构包括加热管束、燃烧室、疏水装置和放气装置等部分。
加热管束是高压加热器的核心部件,通常由数十甚至上百根细长管子组成。
高压加热器的概念及原理高压加热器是一种将流体加热到高温状态的设备。
其原理是利用加热元件将电能或其他形式的能量转化为热能,使流体温度升高。
高压加热器通常由以下几个主要部分组成:加热元件、加热管路、温度控制系统和安全保护装置。
首先,加热元件是高压加热器的核心部分,通常采用电阻加热器或燃气加热器。
电阻加热器通过将电能转化为热能,通过加热元件的导电材料,将热能传递给流体,使其升温。
燃气加热器则通过燃烧燃气产生的高温燃烧气体,将热能传递给流体。
其次,加热管路是将加热元件与流体之间进行热能传递的介质。
在加热管路中,流体流经加热元件,通过与加热元件的接触,吸收热能并升温。
加热管路通常由耐高温、耐压的金属材料制成,以保证加热过程的安全稳定进行。
然后,温度控制系统是对高压加热器的温度进行监测和控制的装置。
它通常包括温度传感器、控制器和执行器。
温度传感器用于感知加热器内部的温度,并将其信号传送给控制器。
控制器根据温度传感器的信号,调节加热元件的加热功率,以达到所需的温度。
执行器则根据控制器的指令,调节加热元件的工作状态。
通过温度控制系统,可以精确地控制高压加热器的温度,提高加热过程的稳定性和效率。
最后,安全保护装置是为了确保高压加热器在使用过程中的安全性而设置的装置。
常见的安全保护装置包括过温保护装置、压力保护装置和断电保护装置。
过温保护装置可以监测加热器的温度,当温度超过设定值时,立即切断加热元件的电源,避免温度过高导致设备损坏或事故发生。
压力保护装置监测管路中的压力,如果压力超过安全范围,会自动切断加热元件的供电,防止压力过高引发事故。
断电保护装置可以监测电源的状态,当发生断电时,及时切断加热元件的电源以防止意外发生。
综上所述,高压加热器通过加热元件将能量转化为热能,使流体升温。
通过加热管路、温度控制系统和安全保护装置,实现了加热过程的控制和保护。
高压加热器广泛应用于工业生产中,例如蒸汽发生器、热风炉、锅炉等领域,为高温工艺提供所需的热能。
火电厂高低压加热器工作原理
加热器本体是一个密封的容器,内部有一个复杂的结构,包括水箱、
水管、换热板等。
工作时,需要将锅炉进水通过水管引入到水箱中,然后
通过交替流经换热板上的加热元件来实现加热。
加热器元件是加热器的核心部分,主要由燃烧器、热交换器、风机等
组成。
当燃料燃烧时,燃烧器会产生热能,并将热能传递给热交换器。
热
交换器中的加热元件通过与燃烧产生的烟气进行热交换,将热能传递给锅
炉进水。
控制系统是用来控制加热器的温度和压力的,主要包括温度控制、压
力控制和安全保护三个方面。
其中,温度控制是通过监测加热器的进出水
温度来调节加热器的工作状态,以实现进水加热至设计温度;压力控制是
通过监测加热器内的压力来调节加热器的进出水压力,以保证加热器的安
全稳定运行;安全保护是指在加热器出现异常情况时,自动切断燃料供应、停止加热器的工作,以防止事故发生。
在火电厂运行过程中,高低压加热器扮演着非常重要的角色。
它可以
提高锅炉的热效率,减少燃料的消耗,降低烟气排放。
此外,加热器还可
以减少锅炉的结焦和腐蚀,延长锅炉的使用寿命。
因此,合理使用高低压
加热器对于火电厂的运行和能源利用具有重要意义。
高压加热器工作原理及制造要点浅析摘要:在火力发电厂中高压给水加热器(以下简称为高压)主要是利用汽轮机的抽汽油加热给水装置,其可以有效的提升火电厂的热效率并节约燃料,同时可以保证机组的运行安全。
高压加热器是在高压高温的环境下运行工作的,所以结构比较紧凑,在制造的过程中对技术有着较高的要求,尤其是U形管管板式高加需要使用更加专业的技术来完成。
关键词:高压加热器;原理;制造1高压加热器工作原理阐述热力学第二定律:热量必然自然地从高温物体转移到低温物体。
高压加热器为表面式加热器,以管子作为传热面,热气再由汽轮机抽汽进入到壳内,加热在管子外部,给水在管子内部。
蒸汽可以实现凝结放热,蒸汽放热量可以通过传热面的金属管壁传递热量给管内给水,在此基础上提升管内给水温度。
图1为典型的高压加热器,其工作流程为:给水从进水口进入水室,因分程隔板的阻挡,迫使给水转弯向下流入管板上的管口进入管子,加热蒸汽即抽汽的热量通过管壁传给管内给水,给水流经U形管被加热后进入水室的出口侧,经出水口流出加热器被送往锅炉。
加热蒸汽在壳体内被冷却凝结成疏水,从壳体底部的疏水出口流出。
从汽轮机中抽出一定数量的做过一部分功的蒸汽用来加热锅炉给水的回热过程,可提高机组循环热效率。
图1正置立式U形管式高加2高压加热器制造的关键点2.1液压胀管液压胀管是一种新的胀管方法(图2)。
液压胀管的优点在于可精确计算和精确调节液压介质的工作压力,可得到重复过程所需的均匀性。
胀头能伸入管内而又不损坏管子,且胀管产生的内应力小。
目前国内已有制造厂把液压胀管法引用到高压加热器制造过程。
管子受到具有一定压力的液体作用,在高液压下,管材产生屈服变形,直至碰到管孔壁为止;压力继续升高,管子压向管孔壁,压力一直升高直至管孔壁达到一定程度的变形,在液压降低并消失后,管板由于弹性反向变形而把管子紧紧夹住。
在开始胀管之前,必须先向二次区充压,即在增压器3的出口端加压(一次压力),该过程是由操纵分配阀7实现的。
高压加热器原理高压加热器是一种用于加热高压流体的设备,其工作原理基于热传导和对流传热。
通过高压加热器,我们可以将高压下的流体加热至所需的温度,以满足工业、能源等领域的需求。
一、热传导的作用机制高压加热器的工作原理首先依赖于热传导的作用机制。
热传导是由物质内部分子或原子的热运动引起的,当物质中部分分子获得热量后,它们将与周围分子碰撞,使热量逐渐传导到整个物体。
在高压加热器中,热传导主要发生在流体和加热器的接触界面。
二、对流传热的过程当流体通过高压加热器时,其中的能量转移到了加热器的热交换表面,通过对流传热来实现流体的加热。
对流传热是通过流体的运动与加热表面之间的热交换实现的,由于流体的运动能够带走加热表面的热量,从而保持加热表面的温度差。
三、高压加热器的结构高压加热器通常由一个密封的容器和一个加热元件组成。
容器用于承受高压,并确保流体不泄漏。
加热元件则负责将电能或其他形式的能量转化为热能,并将其传递给流体。
四、高压加热器的工作过程1. 流体的进入:高压流体经过调节装置进入高压加热器。
2. 加热元件发热:电能或其他能源通过加热元件转化为热能,在加热元件与流体接触的界面产生热量。
3. 热传导和对流传热:由于加热元件与流体接触的界面有较大的温度差,热量通过热传导和对流传热的方式逐渐传递给流体。
4. 流体的加热:流体温度逐渐升高,达到所需的加热温度。
5. 流体的出口:加热后的流体通过出口装置离开高压加热器,继续流向下一工艺环节。
高压加热器的原理和工作过程使得其在多个领域得到广泛应用。
在石油化工行业中,高压加热器常用于改善反应效率、提高产品质量;在能源领域,高压加热器可用于发电系统中的蒸汽循环系统,提高发电效率;在核工业中,高压加热器可用于核反应堆的热交换系统,实现冷却剂的加热等。
总之,高压加热器通过热传导和对流传热的方式将能量传递给流体,使其达到所需的温度。
在各个领域的应用中,高压加热器发挥着关键作用,为工业生产和能源利用带来了便利与效益。
高压加热器的原理
高压加热器工作原理
高压加热器是接在高压给水泵之后的加热给水的混合式加热器,用来提高给水温度,提高经济效益的。
低压加热器是接在轴封加热器之后的,用来加热上高压除氧器的凝结水的,也是提高凝结水温度,提高经济效益的。
高加和低加的工作方式是基本相似的,加热器里面布满了小细管,管内走锅炉给水和凝结水,管外来的是从汽轮机抽出的各段抽汽,经过换热,分别提高给水和凝结水的温度,抽汽被凝结成水,变成疏水,高压加热器的疏水一般去高压除氧器,低压加热器的疏水一般通过疏水泵打到凝汽器。
这就是简单的工作流程,要想弄明白,还得深入学习。
一般厂高加有两台,低加有三台,三台低加的内部压力依次减小。
高压加热器的三个传热段原理
(1)过热蒸汽冷却段。