运动控制课程设计
- 格式:doc
- 大小:670.03 KB
- 文档页数:23
运动控制系统的课程设计一、课程目标知识目标:1. 学生能理解运动控制系统的基本概念、组成和分类。
2. 学生能掌握运动控制系统中常见传感器的原理和应用。
3. 学生能描述运动控制系统的执行机构工作原理及其特点。
4. 学生了解运动控制算法的基本原理,如PID控制、模糊控制等。
技能目标:1. 学生具备运用所学知识分析和解决实际运动控制问题的能力。
2. 学生能设计简单的运动控制系统,并进行仿真实验。
3. 学生能熟练使用相关软件和工具进行运动控制系统的调试与优化。
情感态度价值观目标:1. 学生培养对运动控制系统相关技术的兴趣,激发学习热情。
2. 学生养成合作、探究的学习习惯,培养团队协作精神。
3. 学生认识到运动控制系统在工程实际中的应用价值,增强社会责任感。
课程性质:本课程为电子信息工程及相关专业高年级学生的专业课程,旨在帮助学生掌握运动控制系统的基本原理、设计方法和实际应用。
学生特点:学生已具备一定的电子、电气和控制系统基础,具有较强的学习能力和实践操作能力。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,强调学生的动手能力和创新能力培养。
通过本课程的学习,使学生具备运动控制系统设计、调试和应用的能力。
教学过程中,关注学生的个体差异,因材施教,确保课程目标的实现。
二、教学内容1. 运动控制系统概述- 运动控制系统的基本概念、组成和分类- 运动控制系统的发展及应用领域2. 运动控制系统传感器- 常见运动控制传感器的工作原理、特性及应用- 传感器的选型及接口技术3. 执行机构- 电动伺服电机、步进电机、液压气动执行机构的工作原理及特点- 执行机构的控制策略及性能分析4. 运动控制算法- PID控制算法原理及其在运动控制中的应用- 模糊控制、神经网络等其他先进控制算法介绍5. 运动控制系统设计- 系统建模、控制器设计及仿真- 硬件在环(HIL)仿真与实验- 运动控制系统调试与优化6. 运动控制系统实例分析- 分析典型运动控制系统的设计过程及解决方案- 案例教学,培养学生的实际操作能力教学内容安排与进度:- 第1周:运动控制系统概述- 第2-3周:运动控制系统传感器- 第4-5周:执行机构- 第6-7周:运动控制算法- 第8-9周:运动控制系统设计- 第10周:运动控制系统实例分析教材章节关联:本课程教学内容与教材中第3章“运动控制系统”相关内容相衔接,涵盖第3章中的3.1-3.5节。
四足运动控制课程设计一、课程目标知识目标:1. 学生能够理解四足动物的运动原理,掌握四足机器人的基本结构及其功能。
2. 学生能够描述四足运动控制的基本算法,并了解其在实际应用中的优势。
3. 学生能够解释步态生成与调节的基本方法,并分析不同步态对运动性能的影响。
技能目标:1. 学生能够设计并搭建简单的四足机器人模型,进行基本的运动控制实验。
2. 学生通过编程实践,掌握四足运动控制的基本技巧,实现对四足机器人的速度、方向和步态的有效控制。
3. 学生能够运用所学知识,针对特定场景提出四足机器人的优化方案,解决实际问题。
情感态度价值观目标:1. 学生通过课程学习,培养对机器人科技的兴趣和好奇心,激发创新意识。
2. 学生在团队协作中学会沟通与交流,培养合作精神和集体荣誉感。
3. 学生能够认识到四足运动控制在灾害救援、环境监测等领域的应用价值,增强社会责任感。
课程性质:本课程为实践性较强的综合课程,结合了机械、电子、计算机等多学科知识。
学生特点:六年级学生具备一定的逻辑思维能力和动手能力,对新鲜事物充满好奇心。
教学要求:注重理论与实践相结合,关注学生个体差异,提高学生的动手实践能力和创新能力。
通过课程目标的分解与实现,使学生在知识、技能和情感态度价值观方面得到全面提升。
二、教学内容1. 四足动物运动原理:介绍四足动物的运动特点、步态分类及运动学参数。
- 教材章节:第二章“四足动物运动学基础”2. 四足机器人结构与功能:讲解四足机器人的基本结构、驱动方式和传感器应用。
- 教材章节:第三章“四足机器人结构与设计”3. 四足运动控制算法:学习四足运动控制的基本算法,如PID控制、模糊控制等。
- 教材章节:第四章“四足运动控制算法与应用”4. 步态生成与调节:分析四足机器人步态生成与调节的方法,以及不同步态对运动性能的影响。
- 教材章节:第五章“步态生成与优化”5. 编程实践:利用Arduino、Python等编程语言,实现四足机器人的运动控制。
电机运动控制课程设计一、课程目标知识目标:1. 学生能理解电机运动控制的基本原理,掌握电机类型、特点及其在自动化领域的应用。
2. 学生能描述电机运动控制中涉及的关键参数,如电压、电流、转速和转矩等,并理解它们之间的关系。
3. 学生能掌握电机运动控制的基本电路及其工作原理,包括启动、停止、正反转和速度控制等。
技能目标:1. 学生能够运用所学知识,设计简单的电机运动控制电路,并进行模拟实验。
2. 学生能够通过编程实现对电机运动参数的调节,实现对电机运动的精确控制。
3. 学生能够运用电机运动控制知识解决实际生活中的问题,具备一定的动手操作和创新能力。
情感态度价值观目标:1. 学生通过本课程的学习,培养对电机运动控制技术的兴趣,提高学习积极性。
2. 学生在团队合作中学会沟通、协作,培养团队精神和责任感。
3. 学生能够认识到电机运动控制在工业自动化等领域的重要性,增强对科技创新和社会发展的关注。
课程性质:本课程为实践性较强的学科,要求学生将理论知识与实际操作相结合,培养学生的动手能力和创新能力。
学生特点:学生为初中生,对电机运动控制有一定的基础知识,好奇心强,喜欢动手实践。
教学要求:教师应注重理论与实践相结合,充分调动学生的积极性,引导学生主动参与课堂讨论和实验操作,提高学生的实际操作能力。
同时,关注学生的个体差异,给予个性化指导,使每个学生都能达到课程目标。
通过课程学习,学生能够将所学知识应用于实际生活中,实现学习成果的转化。
二、教学内容1. 电机原理与类型:介绍电机的基本原理、分类及各类电机的特点和应用场景,重点关注直流电机和交流电机的结构和工作原理。
教材章节:第一章《电机原理与类型》2. 电机运动控制参数:讲解电机运动控制中涉及的关键参数,如电压、电流、转速和转矩等,并分析它们之间的关系。
教材章节:第二章《电机运动控制参数》3. 电机运动控制电路:介绍电机运动控制的基本电路,包括启动、停止、正反转和速度控制等,分析各电路的工作原理。
运动控制课程设计-不可逆直流PWM双闭环调速系统运动控制课程设计-不可逆直流PWM双闭环调速系统一、设计背景和目的随着工业自动化的快速发展,运动控制系统的应用越来越广泛。
其中,不可逆直流PWM双闭环调速系统在许多场合具有重要作用。
本设计旨在加深对运动控制理论的理解,通过实际操作,掌握不可逆直流PWM双闭环调速系统的设计方法。
二、系统概述不可逆直流PWM双闭环调速系统主要包括电流反馈环和速度反馈环。
电流反馈环主要用于控制电流,速度反馈环则主要用于控制转速。
通过两个环路的协同作用,实现对电机转速的精确控制。
三、系统设计1.硬件设计本系统主要由功率电路、控制电路、检测电路和驱动电路组成。
功率电路包括PWM逆变器和整流器,用于实现直流电转换为交流电,并根据控制信号调节输出电压。
控制电路主要包括控制器和算法,用于实现对电流和转速的反馈控制。
检测电路包括电流检测和速度检测,用于实时监测电流和转速。
驱动电路包括PWM驱动器和H桥驱动器,用于驱动电机旋转。
2.软件设计本系统的软件部分主要包括电流控制环和速度控制环的实现。
电流控制环通过比较实际电流与设定电流的差值,运用PI(比例积分)控制算法调节PWM逆变器的输出电压,以实现对电流的精确控制。
速度控制环则通过比较实际速度与设定速度的差值,运用PI控制算法调节PWM驱动器的占空比,以实现对转速的精确控制。
两个环路之间采用串联连接,电流控制环作为速度控制环的内环,以实现对电流和转速的高效控制。
四、测试与分析1.测试方法为验证本系统的性能,需要进行电流控制环测试和速度控制环测试。
在电流控制环测试中,设定电流值,观察实际电流是否能够快速、准确地跟踪设定值。
在速度控制环测试中,设定转速值,观察实际转速是否能够快速、准确地跟踪设定值。
2.结果分析通过测试,可以发现本系统在电流控制环和速度控制环方面均具有较好的性能。
在电流控制环测试中,实际电流能够快速、准确地跟踪设定值,跟踪误差较小。
plc运动控制技术课程设计一、课程目标知识目标:1. 让学生掌握PLC(可编程逻辑控制器)的基本原理和运动控制技术的基础知识。
2. 使学生了解并能够解释PLC在工业运动控制中的应用场景和优势。
3. 让学生掌握PLC编程中与运动控制相关的基本指令和编程逻辑。
技能目标:1. 培养学生能够运用PLC进行简单的运动控制系统的设计、编程和调试能力。
2. 培养学生通过分析实际运动控制需求,设计出合理的PLC控制方案的能力。
3. 提高学生团队协作能力和实际问题解决能力,能在小组项目中有效沟通和协作。
情感态度价值观目标:1. 培养学生对PLC运动控制技术产生浓厚的兴趣,激发学生探究工业自动化领域的热情。
2. 培养学生具有创新意识和实践精神,敢于面对挑战,勇于尝试新的解决方案。
3. 培养学生严谨的科学态度和良好的工程伦理观,认识到技术在生产生活中的重要性和责任感。
课程性质:本课程为实践性较强的课程,以理论讲授和实验操作相结合的方式进行。
学生特点:学生具备一定的电气基础和编程知识,具有较强的动手能力和好奇心。
教学要求:注重理论与实践相结合,充分调动学生的主观能动性,培养学生的创新能力和实际操作技能。
在教学过程中,将课程目标分解为具体可衡量的学习成果,以便于教学设计和评估。
二、教学内容1. PLC基本原理与结构:介绍PLC的组成、工作原理、性能指标等,对应教材第一章内容。
2. PLC编程基础:讲解PLC编程语言、基本指令、编程逻辑,对应教材第二章内容。
3. 运动控制基础:介绍运动控制的基本概念、类型和常用的运动控制器件,对应教材第三章内容。
4. PLC在运动控制中的应用:分析实际应用案例,讲解PLC在运动控制中的接线方式、程序设计方法等,对应教材第四章内容。
5. 运动控制系统的设计与调试:学习运动控制系统的设计步骤、调试方法及故障排查技巧,对应教材第五章内容。
6. 实践操作:安排学生进行实验操作,包括PLC编程、运动控制系统的搭建和调试,结合教材附录中的实验指导书进行。
电机与运动控制课程设计一、课程目标知识目标:1. 理解电机的基本原理和分类,掌握电机在运动控制中的应用。
2. 学习电机的主要参数,如电压、电流、功率、转速等,并能运用相关公式进行计算。
3. 掌握电机运动控制的基本方法,包括启动、停止、正反转、调速等。
技能目标:1. 能够正确选择和使用电机,进行简单的运动控制电路设计。
2. 学会使用运动控制相关器件,如继电器、接触器、控制器等,完成电机控制电路的搭建。
3. 培养实际操作能力,能够独立完成电机运动控制实验,并对实验结果进行分析。
情感态度价值观目标:1. 培养学生对电机与运动控制技术的好奇心和探索精神,激发学生学习兴趣。
2. 培养学生的团队合作意识,学会在小组合作中共同解决问题,提高沟通与协作能力。
3. 增强学生的环保意识,了解电机在节能减排方面的作用,培养学生的社会责任感。
本课程针对高中年级学生,结合电机与运动控制相关知识,注重理论与实践相结合。
在教学过程中,关注学生特点,充分调动学生的主观能动性,培养其创新思维和实践能力。
通过本课程的学习,使学生能够掌握电机与运动控制的基本知识和技能,为后续相关专业学习打下坚实基础。
同时,注重培养学生的情感态度和价值观,使其成为具有创新精神和责任感的新时代青年。
二、教学内容1. 电机原理及分类:介绍电机的基本工作原理,包括电磁感应定律;讲解直流电机、交流电机、步进电机等常见电机类型及其特点和应用场景。
教材章节:第一章 电机原理与分类2. 电机主要参数:学习电机的主要技术参数,如电压、电流、功率、转速等;掌握相关计算公式和相互之间的关系。
教材章节:第二章 电机的主要技术参数3. 运动控制基本方法:讲解电机启动、停止、正反转、调速等基本控制方法;介绍相应控制器件,如继电器、接触器、控制器等。
教材章节:第三章 电机运动控制基本方法4. 运动控制电路设计:学习运动控制电路的设计原理,包括控制电路的搭建、调试和优化;进行实际操作练习。
运动过程控制课程设计一、课程目标知识目标:1. 学生能理解运动过程控制的基本概念,掌握运动学的基本公式,并能够运用这些知识分析简单的运动过程。
2. 学生能够描述和解释运动过程中的速度、加速度、位移等物理量的关系和变化。
3. 学生能够运用物理原理,解释运动过程中控制参数对运动轨迹和运动状态的影响。
技能目标:1. 学生能够设计简单的运动控制实验,运用实验方法和数据分析技巧来探究运动过程。
2. 学生通过实际操作,掌握运动控制器的基本使用方法,能够进行基础的编程和调试。
3. 学生能够运用数学工具,解决运动过程中的计算问题,具备一定的数学建模能力。
情感态度价值观目标:1. 学生通过本课程的学习,培养对物理科学的兴趣,激发探索自然界运动规律的欲望。
2. 学生在学习中培养合作精神,通过团队协作完成实验和问题探究,增强集体荣誉感。
3. 学生通过解决实际运动控制问题,认识到科学技术在现实生活中的应用,增强创新意识和实践能力。
课程性质:本课程属于理科学科,以理论讲授与实验操作相结合的方式进行,注重理论与实践的融合。
学生特点:考虑到学生处于高中年级,具备一定的物理基础和数学运算能力,同时具有较强的求知欲和动手能力。
教学要求:教学中应注重启发式教学,鼓励学生主动思考,通过案例分析、实验探究等形式,提高学生的参与度和实践操作能力。
同时,注重培养学生的科学态度和创新思维,将知识目标、技能目标和情感态度价值观目标有效结合,促进学生的全面发展。
二、教学内容1. 基本概念与原理:- 运动过程控制的基本定义与分类- 速度、加速度、位移等物理量的关系和计算- 牛顿运动定律及其在运动控制中的应用2. 运动控制实验与分析:- 运动控制器的基本原理与操作方法- 编程与调试基础,实现简单的运动控制- 实验数据分析与处理技巧3. 运动过程控制案例分析:- 案例一:直线运动控制- 案例二:曲线运动控制- 案例三:圆周运动控制4. 教学内容的安排与进度:- 第一周:基本概念与原理学习- 第二周:运动控制器操作与编程基础- 第三周:运动控制实验与数据分析- 第四周:案例分析与应用实践教材关联:- 教材第一章:运动过程控制基本概念与原理- 教材第二章:运动控制器及其编程- 教材第三章:运动控制实验设计与数据分析- 教材第四章:运动过程控制案例分析教学内容确保科学性和系统性,注重理论与实践相结合,使学生能够通过本课程的学习,掌握运动过程控制的基本知识和技能。
运动控制系统课程设计算一、教学目标本课程的教学目标是使学生掌握运动控制系统的基本原理、方法和应用。
具体包括:1.知识目标:学生能够理解运动控制系统的概念、组成、工作原理和分类,掌握常用的运动控制算法和策略,了解运动控制系统在工程中的应用。
2.技能目标:学生能够运用运动控制系统的基本原理和方法解决实际问题,具备分析和设计运动控制系统的的能力。
3.情感态度价值观目标:学生能够认识运动控制系统在现代工业和日常生活中的重要性,培养对运动控制技术的兴趣和热情,提高创新意识和团队合作能力。
二、教学内容本课程的教学内容主要包括:1.运动控制系统的基本概念、组成和分类。
2.运动控制系统的数学模型和分析方法。
3.常用的运动控制算法和策略,如PID控制、模糊控制、神经网络控制等。
4.运动控制系统的仿真和实验,包括硬件设备和软件工具的使用。
5.运动控制系统在工程中的应用案例。
三、教学方法为了达到本课程的教学目标,将采用以下教学方法:1.讲授法:通过教师的讲解,使学生掌握运动控制系统的基本概念、原理和算法。
2.案例分析法:通过分析实际应用案例,使学生了解运动控制系统在工程中的应用和设计方法。
3.实验法:通过实验操作,使学生熟悉运动控制系统的硬件设备和软件工具,培养学生的动手能力。
4.讨论法:通过分组讨论和课堂讨论,激发学生的思考和创造力,提高团队合作能力。
四、教学资源为了支持本课程的教学内容和教学方法的实施,将准备以下教学资源:1.教材:选用《运动控制系统》作为主教材,提供系统的理论知识。
2.参考书:推荐《运动控制工程》等参考书籍,为学生提供更多的学习资料。
3.多媒体资料:制作课件和教学视频,以图文并茂的形式展示运动控制系统的原理和应用。
4.实验设备:准备运动控制实验平台和相关设备,为学生提供实践操作的机会。
五、教学评估本课程的教学评估将采用多种方式,以全面、客观地评价学生的学习成果。
具体包括:1.平时表现:通过课堂参与、提问、小组讨论等形式的评估,考察学生的学习态度和课堂表现。
目录摘要 ..................................... 错误!未定义书签。
1 设计分析 (1)1.1双闭环调速系统的结构图 (1)1.2直流双闭环系统的原理 (1)1.3双闭环调速系统优点 (2)1.5 PWM变换器介绍 (3)2 电路设计 (3)2.1 PWM(双极式)主电路设计 (3)2.2 双闭环调节器电路设计 (4)2.2.1 电流调节器 (4)2.2.2 转速调节器 (5)2.3 信号产生电路 (6)2.4 IGBT基极驱动电路原理 (8)2.5 基于EXB841驱动电路设计 (9)2.6 锯齿波信号发生电路 (10)3 系统参数计算 (10)3.1电流调节器的设计 (10)3.2 转速调节器的设计 (13)心得及总结 (17)致谢 (18)参考文献 (19)附录 (20)摘要伺服系统对数控技术、自动化、电气工程及其自动化、机电一体化等专业是一门很重要的专业技术课。
伺服系统的作用是联系数控装置与被控设备的中间环节,起着传递指令信息和反馈设备运行状态信息的桥梁作用。
在当代工业上PWM控制调速系统已经被广泛地应用,其优点还是日益突现,而带有双闭环的调速系统更是受到广泛欢迎。
在本次设计中,为了使调速达到高精度、高准度的要求,我使用了电流调节器和转速调节器,以此来组成双闭环,电流环为内环,转速环为外环。
这样的设计能够达到任务要求的静态指标和动态指标。
特别是把此两环校正为典型Ⅰ型和典型Ⅱ型后的性能指标更是达到了要求。
本次设计中的电流调节器和电压调节器都是使用PI调节器,PI调节器是由运放和各种电子元器件组成的,由于本次设计时间有限所以就没有把相应的参数给调出来了。
关键词:PWM;直流调速;双闭环;双极式1 设计分析1.1双闭环调速系统的结构图直流双闭环调速系统的结构图如图1所示,转速调节器与电流调节器串极联结,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制PWM装置。
其中脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电机转速,达到设计要求。
图1 双闭环调速系统的结构图1.2直流双闭环系统的原理ASR(速度调节器)根据速度指令Un*和速度反馈Un的偏差进行调节,其输出是电流指令的给定信号U i*(对于直流电动机来说,控制电枢电流就是控制电磁转矩,相应的可以调速)。
ACR(电流调节器)根据U i*和电流反馈U i的偏差进行调节,其输出是U PE(功率变换器件的)的控制信号Uc。
进而调节U PE的输出,即电机的电枢电压,由于转速不能突变,电枢电压改变后,电枢电流跟着发生变化,相应的电磁转矩也跟着变化,由Te-TL=Jdn/dt,只要Te与TL不相等转速会相应的变化。
整个过程到电枢电流产生的转矩与负载转矩达到平衡,转速不变后,达到稳定。
1.3双闭环调速系统优点一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。
这种理想的起动过程如图2所示。
为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。
根据反馈控制规律,要控制某个量,只要引入这个量的负反馈。
因此采用电流负反馈控制过程,起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。
采用转速、电流双闭环控制系统。
参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图如图4所示。
1.4转速、电流双闭环控制系统双闭环调速系统的起动过程有三个特点:1饱和非线性。
在不同情况下表现为不同结构的线性系统。
2准时间最优控制。
Ⅱ阶段属于电流受限制条件下的最短时间控制。
采用饱和非线性控制方法实现准时间最优控制是一种很有使用价值的控制策略,在各种多环系统中普遍地得到应用。
3转速必超调。
按照PI 调节器的特性,只有转速超调,ASR 的输入偏差电压n U 为负值,才能使ASR 退饱和。
这就是说,采用PI 调节器的双闭环调速系统的转速必超调。
1.5 PWM 变换器介绍脉宽调速系统的主要电路采用脉宽调制式变换器,简称PWM 变换器。
PWM 变换器有不可逆和可逆两类,可逆变换器又有双极式、单极式和受限单极式等多种电路。
2 电路设计2.1 PWM (双极式)主电路设计H 型变换器电路在控制方式上分为双极式、单极式和受限单极式三种,本次设计我们选择双极式H 型可逆PWM 变换器。
H 桥式可逆直流脉宽调速系统主电路的如图9所示,WM 逆变器的直流电源由交流电网经不控的二极管整流器产生,并采用大电容0C 滤波,以获得恒定的直流电压s U 。
由于直流电源靠二极管整流器供电,不可能回馈电能,电动机制动时只好对滤波电容充电,这时电容器两端电压升高称作“泵升电压”。
为了限制泵升电压,用镇流电阻Rz 消耗掉这些能量,在泵升电压达到允许值时接通VTz 。
图9 H 桥式直流脉宽调速系统主电路四单元IGBT 模块型号:20MT120UF 生产厂家:IR 公司主要参数如下:CER U =1200V c I =16A *CN T =100C ︒ kW P CM 9.0= V U sat CE 05.3)(= 2.2 双闭环调节器电路设计为了实现闭环控制,必须对被控量进行采样,然后与给定值比较,决定调节器的输出,反馈的关键是对被控量进行采样与测量。
2.2.1 电流调节器由于电流检测中常常含有交流分量,为使其不影响调节器的输入,需加低通滤波。
此滤波环节传递函数可用一阶惯性环节表示,由初始条件知滤波时间常数s T oi 002.0=,以滤平电流检测信号为准。
为了平衡反馈信号的延迟,在给定通道上加入同样的给定滤波环节,使二者在时间上配合恰当。
图10 给定滤波与反馈滤波的PI 型电流调节器2.2.2 转速调节器转速反馈电路如图11所示,由测速发电机得到的转速反馈电压含有换向纹波,因此也需要滤波,由初始条件知滤波时间常数s T on 01.0 。
根据和电流环一样的原理,在转速给定通道上也加入相同时间常数的给定滤波环节。
图11 含给定滤波与反馈滤波的PI 型电转速调节器2.3 信号产生电路本设计采用集成脉宽调制器SG3524作为脉冲信号发生的核心元件。
根据主电路中IGBT的开关频率,选择适当的t R、t C值即可确定振荡频率。
电路中的PWM信号由集成芯片SG3524产生,SG3524采用是定频PWM电路,DIP-16型封装。
由SG3524构成的基本电路如图12所示,由15脚输入+15V电压,用于产生+5V基准电压。
在6、7引脚之间接入外部阻容元件构成PI 调节器,可提高稳态精度。
12、13引脚通过电阻与+15V电压源相连,供内部晶体管工作,由电流调节器输出的控制电压作为2引脚输入,通过其电压大小调节12、13引脚的输出脉冲宽度,实现脉宽调制变换器的功能实现。
图12 SG3524管脚图图13 SG3524引脚接线图图14 SG3524内部框图主要参数:输入电压Uimax:40V 输出电流:500mA 好散功率:1W2.4 IGBT基极驱动电路原理工作原理如图15所示图15 EXB841内部结构图EXB841 系列驱动器的各引脚功能如下:脚1 :连接用于反向偏置电源的滤波电容器;脚2 :电源(+20V);脚3 :驱动输出;脚4 :用于连接外部电容器,以防止过流保护电路误动作(大多数场合不需要该电容器);脚5 :过流保护输出;脚6 :集电极电压监视;脚7 、8 :不接;脚9 :电源;脚10 、11 :不接;脚14 、15 :驱动信号输入(-,+);2.5 基于EXB841驱动电路设计驱动电路中V5起保护作用,避免EXB841的6脚承受过电压,通过VD1检测是否过电流,接VZ3的目的是为了改变EXB模块过流保护起控点,以降低过高的保护阀值从而解决过流保护阀值太高的问题。
R1和C1及VZ4接在+20V电源上保证稳定的电压。
VZ1和VZ2避免栅极和射极出现过电压,Rge是防止IGBT误导通。
针对EXB841存在保护盲区的问题,可如图16所示将EXB841的6脚的超快速恢复二极管VDI换为导通压降大一点的超快速恢复二极管或反向串联一个稳压二极管,也可采取对每个脉冲限制最小脉宽使其大于盲区时间,避免IGBT过窄脉宽下的低输出大功耗状态。
针对EXB841软关断保护不可靠的问题,可以在EXB841的5脚和4脚间接一个可变电阻,4脚和地之间接一个电容,都是用来调节关断时间,保证软关断的可靠性。
针对负偏压不足的问题,可以考虑提高负偏压。
一般采用的负偏压是-5V,可以采用-8V的负偏压(当然负偏压的选择受到IGBT栅射极之间反向最大耐压的限制),输人信号被接到15脚,EXB841正常工作驱动IGBT.图16 EXB841驱动IGBT设计图主要参数:电源电压:20V 最大输出功率:47mA 最高工作频率:10kHz2.6 锯齿波信号发生电路锯齿波信号发生器SG 的输出信号Us 与控制信号*CU 在PWM 转换器(SG3524)中进行比较,PWM 输出幅度恒定、宽度变化的方波脉冲序列,即PWM 波。
SG 电路可有UJT 或者PUT 构成。
UJT 锯齿波信号发生器基本电路如图17所示图17 锯齿波信号发生电路3 系统参数计算3.1电流调节器的设计(1)确定时间常数1) 整流装置滞后时间常数:三相桥式电路的平均时空时间s T s 0017.0 。
2)电流滤波时间常数:三相桥式电路每个波头的时间是 3.3ms,为了基本滤平波头,应有(1-2)s T oi m 33.3=,因此取s T oi 002.0ms 2==。
3)电流环小时间常数之和s T T T 0037.0i o s i =+=∑。
4)电动势系数Ce==-nRaId do *U 0.04转矩系数Cm=30Ce/3.14=0.38 电机时间常数CeCmRam 375014.0T ==0.084s(2)选择电流调节器结构根据设计要求:%5≤i σ,电磁时间常数s Ra a T 0178.0/L l == 可按典型Ⅰ型设计电流调节器。
电流环控制对象是双惯性型的,所以把电流调节器设计成PI 型的,其传递函数为1()i ACR ii s W s K sττ+=式中 i K ——电流调节器的比例系数; i τ——电流调节器的超前时间常数。
检查对电源电压的抗扰性能:8.40037.0/0178.0T ==∑s T li,对于Ⅰ型系统动态抗扰性能,各项指标都可以接受。