2013年中考数学解题方法及提分突破训练:反证法专题
- 格式:pdf
- 大小:252.79 KB
- 文档页数:8
初三反证法练习题反证法是数学中常用的一种证明方法,通过假设反面来推导出矛盾,从而证明命题的正确性。
下面是一些初三反证法练习题,通过解答这些题目,可以帮助同学们更好地理解和掌握反证法。
1. 证明:不存在最大的有理数。
假设存在一个最大的有理数,记为M。
根据有理数的性质,我们可以找到一个比M大的有理数N,即N=M+1。
显然,N>M,这与M是最大的有理数相矛盾。
因此,不存在最大的有理数。
2. 证明:根号2是无理数。
假设根号2是有理数,即可以表示为两个互质的整数p和q的比值,即根号2=p/q。
我们可以进一步假设p和q没有公因数,否则可以约分。
将等式两边平方得到2=p^2/q^2,整理得到p^2=2q^2。
这说明p^2是2的倍数,根据整数分解定理,p也是2的倍数。
设p=2k,代入等式得到(2k)^2=2q^2,整理得到2k^2=q^2。
这说明q^2是2的倍数,因此q也是2的倍数。
这与p和q没有公因数相矛盾,因此假设不成立,根号2是无理数。
3. 证明:不存在无限递增的整数序列。
假设存在一个无限递增的整数序列a1, a2, a3, ...。
我们可以取相邻的两个数ai和ai+1,如果ai>=ai+1,那么这个序列不是无限递增的;如果ai<ai+1,那么我们可以找到一个大于ai+1的整数,记为N,这与序列无限递增相矛盾。
因此,不存在无限递增的整数序列。
4. 证明:存在无限个素数。
假设只有有限个素数,记为p1, p2, p3, ..., pn。
我们考虑数N=p1*p2*p3*...*pn+1,显然N大于任意一个素数pi。
根据素数的定义,N只能是合数,即可被p1, p2, p3, ..., pn中的至少一个素数整除。
但是,N除以任意一个素数pi的余数都不为0,这与N是合数相矛盾。
因此,假设不成立,存在无限个素数。
通过这些反证法练习题的解答,我们可以看到反证法在数学证明中的重要作用。
通过假设反面来推导出矛盾,从而证明命题的正确性。
61学子 2017.05数学教学漫谈初中数学解题中的“反证法”王玉琴一、“反证法”解题方法在解题中,反证法一般分为三步:1.提出假设:做出与所要求证的结论相反的假定。
2.推理求证:由“假设”出发进行推理,得出与定义、定理、公理或与题设相矛盾的结论。
3.得出结论:根据“矛盾”得出假设不成立,原求证结论正确。
反证法的步骤好理解和掌握,关键是要反设正确,在结论的方面呈多种情况或比较隐晦时,在反设时就比较困难,现将其中常用的互为否定形式词语总结如下:其中,在至少有一个、至多有n 个、至多有一个等证明结论的反设上,需要更为细心的琢磨,让学生明白一个也没有、至多有二个、至多有n 个的深刻含义,从而顺利进行证明。
反证法的使用,使得一些数学试题的解决简单便捷。
二、“反证法”例题展示1.定理性命题的证明在数学的基本定理中,利用“反证法”来证明,更便捷、具有说服力。
案例1:勾股定理的证明如图所示,在直角三角形△ABC 中,∠C=90°,三个边长分别为a、b、c,求证:c2=a2+b2.证明:过C 点作斜边AB 上的垂线于D,假设a 2+b 2 ≠ c 2,即AC 2+BC 2≠AB 2,根据三角形的中垂线定理可得:AB 2=AB•AB=AB(AD+BD)=AB•AD+AB•BD 根据假设又知:AC2≠AB•AD,BC2≠AB•BD 即AD:AC ≠AC:AB,或者BD:BC ≠BC:AB,在△ADC 和△ACB 中,因为∠A=∠A,则当AD:AC ≠AC:AB 时,∠ADC ≠∠ACB;在△CDB 和△ACB 中,因为∠B=∠B,则当BD:BC ≠BC:AB 时,∠CDB ≠∠ACB,又因为∠ACB=90°,所以∠ADC ≠90°,∠CDB ≠90°,这与CD ⊥AB 是矛盾的,所以AC 2+BC 2≠AB 2不成立,则有:AC 2+BC 2=AB 2,即c 2=a 2+b 22.无限性命题的证明“无限”、“无穷”等概念,往往出现在求证命题中,正面证明缺乏一定的头绪,而“反证法”使得解题变得非常简单。
中考数学十大解题思路之反证法一、选择题1.否定结论“至多有两个解”的说法中,正确的是( )A.有一个解B.有两个解 C.至少有三个解 D.至少有两个解[答案] C[解析]在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”故应选C.2.否定“自然数a、b、c中恰有一个偶数”时的正确反设为( )A.a、b、c都是奇数 B.a、b、c或都是奇数或至少有两个偶数C.a、b、c都是偶数 D.a、b、c中至少有两个偶数[答案] B[解析] a,b,c三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一个奇数,两个偶数;④三个偶数.因为要否定②,所以假设应为“全是奇数或至少有两个偶数”.故应选B.3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是( )A.假设三内角都不大于60° B.假设三内角都大于60°C.假设三内角至多有一个大于60° D.假设三内角至多有两个大于60°[答案] B[解析]“至少有一个不大于”的否定是“都大于60°”.故应选B.4.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是( )A.假设a,b,c都是偶数 B.假设a、b,c都不是偶数C.假设a,b,c至多有一个偶数 D.假设a,b,c至多有两个偶数[答案] B[解析] “至少有一个”反设词应为“没有一个”,也就是说本题应假设为a,b,c都不是偶数.5.命题“△ABC中,若∠A>∠B,则a>b”的结论的否定应该是( )A.a<b B.a≤b C.a=b D.a≥b[答案] B[解析]“a>b”的否定应为“a=b或a<b”,即a≤b.故应选B.6.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是( ) A.甲B.乙C.丙D.丁[答案] C[解析]因为只有一人获奖,所以丙、丁只有一个说对了,同时甲、乙中只有一人说对了,假设乙说的对,这样丙就错了,丁就对了,也就是甲也对了,与甲错矛盾,所以乙说错了,从而知甲、丙对,所以丙为获奖歌手.故应选C.7.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°[答案] C[解析] 用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.8.用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中()A.有两个角是直角B.有两个角是钝角C.有两个角是锐角D.一个角是钝角,一个角是直角[答案] A[解析] 用反证法证明“一个三角形中不能有两个角是直角”,应先设这个三角形中有两个角是直角.9.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°[答案] D[解析] 用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设每一个锐角都大于45°.10.在证明“在△ABC中至少有两个锐角”时,第一步应假设这个三角形中()A.没有锐角B.都是直角C.最多有一个锐角D.有三个锐角[答案] C[解析] 用反证法证明同一三角形中至少有两个锐角时,应先假设同一三角形中最多有一个锐角.11.用反证法证明:“一个三角形中至多有一个钝角”时,应假设()A.一个三角形中至少有两个钝角B.一个三角形中至多有一个钝角C. 一个三角形中至少有一个钝角D.一个三角形中没有钝角[答案] A[解析] 从结论的反面出发进行假设,证明“一个三角形中至多有一个钝角”,应假设:一个三角形中至少有两个钝角.12.用反证法证明:在四边形中,至少有一个角不小于90°,应先假设()A.四边形中有一个内角小于90°B.四边形中每一个内角都小于90°C.四边形中有一个内角大于90°D.四边形中每一个内角都大于90°[答案] B[解析] 用反证法证明:在四边形中,至少有一个角不小于90°,应先假设:四边形中的每个角都小于90°.13.用反证法证明“一个三角形中至少有两个锐角”时,下列假设正确的是()A.假设一个三角形中只有一个锐角B.假设一个三角形中至多有两个锐角C.假设一个三角形中没有一个锐角D.假设一个三角形中至少有两个钝角[答案] D[解析] 用反证法应先假设“一个三角形中最多有一个锐角”或者假设一个三角形中至少有两个钝角.14.用反证法证明命题“三角形中最多有一个角是直角或钝角”时,下列假设正确的是()A.三角形中最少有一个角是直角或钝角B. 三角形中没有一个角是直角或钝角C.三个角全是直角或钝角D.三角形中有两个(或三个)角是直角或钝角[答案]D[解析] 假设正确的是:假设三角形中有两个(或三个)角是直角或钝角.二,填空题1.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.[答案]没有一个是三角形或四边形或五边形[解析]“至少有一个”的否定是“没有一个”.2.用反证法证明命题“a,b是自然数N,ab可被5整除,那么a,b中至少有一个能被5整除”,那么反设的内容是________________.[答案]a,b都不能被5整除[解析]“至少有一个”的否定是“都不能”.3.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立;②所以一个三角形中不能有两个直角;③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.正确顺序的序号排列为____________.[答案]③①②[解析] 由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②.4.若a∥b,b∥c,证明a∥c.用反证法证明的第一步是假设a与c不平行5.“对角线不互相平分的四边形不是平行四边形”,这个命题用反证法证明应假设对角线不互相平分的四边形是平行四边形6.用反证法证明“三角形中最多有一个是直角或钝角”时应假设三角形中至少有两个是直角或钝角7.用反证法证明“四边形的四个内角不能都是锐角”时,应首先假设四边形的四个内角都是锐角.8.用反证法证明:“多边形的内角中锐角的个数最多有三个”的第一步应该是:假设多边形的内角中锐角的个数最少是4个.9.用反证法证明命题“三角形中最多有一个是直角”时,可以假设为三角形中最少有两个角是直角.10.用反证法证明“在△ABC中,至少有一个内角小于或等于60°”时,第一步是假设△ABC中,每一个内角都大于60°.11.用反证法证明命题“一个三角形的三个内角中,至多有一个钝角”的第一步应假设一个三角形的三个内角中,至少有两个钝角.12.“反证法”证明命题“等腰三角形的底角是锐角”时,是先假设等腰三角形的两底都是直角或钝角.三、解答题1.已知:a+b+c>0,ab+bc+ca>0,abc>0.求证:a>0,b>0,c>0.证明:用反证法:假设a,b,c不都是正数,由abc>0可知,这三个数中必有两个为负数,一个为正数,不妨设a<0,b<0,c>0,则由a+b+c>0,可得c>-(a+b),又a+b<0,∴c(a+b)<-(a+b)(a+b)ab+c(a+b)<-(a+b)(a+b)+ab即ab+bc+ca<-a2-ab-b2∵a2>0,ab>0,b2>0,∴-a2-ab-b2=-(a2+ab+b2)<0,即ab+bc+ca<0,这与已知ab+bc+ca>0矛盾,所以假设不成立.因此a>0,b>0,c>0成立.2.用反证法证明:等腰三角形两底角必为锐角.证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.②设等腰三角形的底角∠B,∠C都是钝角,则∠B+∠C>180°,而∠A+∠B+∠C=180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐角.故等腰三角形两底角必为锐角3.用反证法证明:一条线段只有一个中点.证明:假设线段AB有两个中点M、N,不妨设M在N的左边,则AM<AN,又AM=AB=AN=AB,这与AM<AN矛盾,所以一条线段只有一个交点4.用反证法证明:“在一个三角形中,外角最多有一个锐角”.证明: 假设三角形中的外角有两个角是锐角.根据三角形的外角与相邻的内角互补,知:与这两个角相邻的两个内角一定是钝角,大于90°,则这两个角的度数和一定大于180度,与三角形的内角和定理相矛盾.因而假设错误.故在一个三角形中,外角最多有一个锐角.。
初中数学反证法在初中数学的学习中,我们会接触到各种各样的解题方法,其中反证法是一种独特而富有魅力的方法。
它就像是数学世界中的“逆向思维魔法”,常常能帮助我们在看似无解的困境中找到出路。
反证法,顾名思义,就是先假设命题的结论不成立,然后通过一系列的推理,得出与已知条件、定理、公理等相互矛盾的结果,从而证明原命题的结论是正确的。
这种方法听起来似乎有点绕,但其实只要我们深入理解,就能发现它的巧妙之处。
为了更好地理解反证法,让我们来看一个简单的例子。
假设要证明“在一个三角形中,最多只能有一个直角”。
我们先假设在一个三角形中可以有两个或三个直角。
如果有两个直角,那么三角形的内角和就会超过 180 度,这与三角形内角和是 180 度这个定理相矛盾。
同样,如果有三个直角,内角和更是远远超过 180 度,这显然是不可能的。
所以,我们的假设是错误的,从而得出在一个三角形中最多只能有一个直角的结论。
再比如,证明“根号 2 是无理数”。
如果假设根号 2 是有理数,那么它可以表示为一个既约分数 p/q(p、q 为整数,且互质),即根号 2 =p/q,两边平方得到 2 = p^2/q^2,即 p^2 = 2q^2。
由此可知 p^2 是偶数,因为只有偶数的平方才是偶数,所以 p 也是偶数。
不妨设 p = 2m,代入上式得到 4m^2 = 2q^2,即 2m^2 = q^2,这又说明 q 也是偶数。
但是 p、q 都是偶数,这与 p、q 互质矛盾。
所以,假设不成立,根号 2 是无理数。
反证法的应用范围非常广泛。
在几何证明中,当直接证明某个结论比较困难时,反证法常常能发挥意想不到的作用。
比如在证明“过直线外一点,有且只有一条直线与已知直线平行”时,就可以使用反证法。
假设过直线外一点有两条直线与已知直线平行,然后通过一系列的推理,会得出与平行公理相矛盾的结论,从而证明原命题的正确性。
在代数中,反证法也有很多用武之地。
例如,证明方程 x^5 + x 1=0 只有一个正实数根。
2.2.2 反证法教学要求:结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.教学重点:会用反证法证明问题;了解反证法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学过程:一、复习准备:1. 讨论:三枚正面朝上的硬币,每次翻转2枚,你能使三枚反面都朝上吗?(原因:偶次)2. 提出问题:平面几何中,我们知道这样一个命题:“过在同一直线上的三点A、B、C不能作圆”. 讨论如何证明这Array个命题?3. 给出证法:先假设可以作一个⊙O过A、B、C三点,则O在AB的中垂线l上,O又在B C的中垂线m上,即O是l与m的交点。
但∵A、B、C共线,∴l∥m(矛盾)∴过在同一直线上的三点A、B、C不能作圆.二、讲授新课:1. 教学反证法概念及步骤:①练习:仿照以上方法,证明:如果a>b>0,那么ba②提出反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.证明基本步骤:假设原命题的结论不成立→从假设出发,经推理论证得到矛盾→矛盾的原因是假设不成立,从而原命题的结论成立应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等).方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实.注:结合准备题分析以上知识.2. 教学例题:①出示例1:求证圆的两条不是直径的相交弦不能互相平分.分析:如何否定结论?→如何从假设出发进行推理?→得到怎样的矛盾?与教材不同的证法:反设AB、CD被P平分,∵P不是圆心,连结O P,则由垂径定理:O P ⊥AB , O P ⊥CD ,则过P 有两条直线与OP 垂直(矛盾),∴不被P 平分.② 出示例2. ( 同上分析 → 板演证明,提示:有理数可表示为/m n )/m n =(m ,n 为互质正整数),从而:2(/)3m n =,223m n =,可见m 是3的倍数.设m =3p (p 是正整数),则 22239n m p ==,可见n 也是3的倍数. 这样,m , n 就不是互质的正整数(矛盾)./m n 不可能,∴.③ 练习:如果1a +为无理数,求证a 是无理数.提示:假设a 为有理数,则a 可表示为/p q (,p q 为整数),即/a p q =. 由1()/a p q q +=+,则1a +也是有理数,这与已知矛盾. ∴ a 是无理数.3. 小结:反证法是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确. 注意证明步骤和适应范围(“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征的问题)三、巩固练习: 1. 练习:教材P 54 1、2题 2. 作业:教材P 54 A 组3题.。
中考数学解题方法:反证法专题
林冠华
【期刊名称】《理科考试研究(初中版)》
【年(卷),期】2015(022)012
【总页数】1页(P4)
【作者】林冠华
【作者单位】江西省于都中学 342300
【正文语种】中文
【相关文献】
1.数学解题方法讲座之五——反证法
2.初中数学选择题解题方法探析——以2014年苏州中考数学试卷为例
3.聚焦数学解题方法,创新专题复习课型——由一节“配方法专题复习课”说起
4.聚焦数学解题方法,创新专题复习课型
——由一节"配方法专题复习课"说起5.指向数学解题方法的中考试题研究——以2020年苏州市中考部分试题为例
因版权原因,仅展示原文概要,查看原文内容请购买。
初中几何反证法专题学习要求停了解反证法的意义,懂得什么是反证法。
® 理解反证法的基本思路,并掌握反证法的一般证题步骤。
知识讲解证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。
从而推岀命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提升推理论证的水平、探索新知识的水平都是非常必要的。
下而我们对反证法作一个简单介绍。
1.反证法的概念:不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。
2.反证法的基本思路:首先假设所要证明的结论不成立,然后再在这个假左条件下实行一系列的准确逻辑推理,直至得出一个矛盾的结论来,并据此否左原先的假设,从而确认所要证明的结论成立。
这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知立理、公理和定义相矛盾,还能够是与日常生活中的事实相矛盾,甚至还能够是从两个不同角度实行推理所得岀的结论之间相互矛盾(即自相矛盾)。
3.反证法的一般步骤:(1)假设命题的结论不成立:(2)从这个假设岀发,经过推理论证得出矛盾:(3)由矛盾判定假设不准确,从而肯左命题的结论准确。
简来说之就是“反设-归谬一结论"三步曲。
相平分。
证明:假设AB与CD互相平分于点M、则由已知条件AB. CD均非OO直径, 可判泄M不是圆心0,连结OA、OB. 0NLVOA=OB, M 是AB 中点.・.OM丄AB (等腰三角形底边上的中线垂直于底边)同理可得:OM丄CD,从而过点M有两条直线AB、CD都垂直于OM这与已知的泄理相矛盾。
故AB与CD不能互相平分。
例2.已知:在四边形ABCD中,M、N分别是AB、DC的中点,丄且MN= 2 (AD+BC)o求证:AD〃BC(2)证明:假设AD*BC,连结ABD,并设P是BD的中点,再连结NIP、PN。
在AABD中VBM=MA, BP=PD丄1_AMP= 2 AD,同理可证PN^ 2BC1_从而MP+PN= 2 (AD+BC)①这时,BD的中点不在MN上若不然,则由MN〃AD, MN〃BC,得AD〃BC与假设AD*BC矛盾, 于是M、P、N 三点不共线。
解题方法及提分突破训练:反证法专题对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。
从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。
一真题1.用反证法证明:圆的两条不是直径的相交弦不能互相平分。
已知:如图,在⊙O中,弦AB、CD交于点P,且AB、CD不是直径.求证:弦AB、CD不被P 平分.2.平面内有四个点,没有三点共线,证明:以任意三个点为顶点的三角形不可能都是锐角三角形3. 平面内有四个点,没有三点共线证明:以任意三个点为顶点的三角形不可能都是锐角三角形二名词释义反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n 一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。
推理必须严谨。
导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
例如:已知:a是整数,2能整除2a。
试证:2能整除a①探究:问题实际上是在讨论a是奇数,还是偶数。
已知中:说明2a是偶数,则()22=∈,此时)a m m Na m m N=±∈2②反思:条件已用完,结论还不能明确得证,可能结论自身有问题。
解题方法及提分突破训练:反证法专题
对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种
间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。
从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,
对于提高推理论证的能力、探索新知识的能力都是非常必要的。
一真题链接
1.用反证法证明:圆的两条不是直径的相交弦不能互相平分。
已知:如图,在⊙O中,弦AB、CD交于点P,且AB、CD不是直径.求证:弦AB、CD不被P 平分.
2.平面内有四个点,没有三点共线,
证明:以任意三个点为顶点的三角形不可能都是锐角三角形
3. 平面内有四个点,没有三点共线
证明:以任意三个点为顶点的三角形不可能都是锐角三角形
二名词释义
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用
1。