土压平衡盾构的渣土改良
- 格式:pdf
- 大小:942.87 KB
- 文档页数:40
浅谈泥质粉砂岩地层土压平衡盾构渣土改良试验摘要:泥质粉砂岩地层土压平衡盾构渣土改良试验对于实践具有重要的作用,通过试验能够把握泥质粉砂岩土的最佳坍落度,以此推算出坍落度,并且最终还能够得出包括了含水率以及泡沫比在内的函数关系,充分考虑盾构施工的因素具有重要意义。
利用泥质粉砂岩地层涂鸦平衡盾构渣土改良试验能够为渣土改良提供具体的方法,而且控制效果更好,本文对此试验作了详细介绍。
关键词:泥质粉砂岩地层;土压平衡盾构;渣土改良;试验;实施;实践引言土压平衡盾构属于地铁施工中非常常见的工具,由于它具有施工速度快的特点,所以应用价值较高,而且从其影响来看,对于环境的影响相较于其他方法来讲更小,这也是其近年来比较火的原因。
土压平衡盾构施工需要被满足相关要求。
国内外对渣土改良作了许多的试验,研究确定了物理力学指标测定对渣土改良具有重要意义。
一、泥质粉砂岩地层土压平衡盾构渣土改良试验1、渣土级配以及渣土的含水率结合相关研究发现,影响渣土状态的因素很多,其中渣土级配最明显。
因此实践中对于渣土的级配需要把握准确,可以通过现场调研的方式获得。
调研结果显示当渣土粒径大于20㎜的时候不影响其结泥饼。
结合统计的结果选择粒径不同但是性质相同的泥质粉砂岩渣土作为试验对象。
通过实践数据可以知道,当盾构结构应用到施工中的时候,渣土的含水率仍然处于变化的状态。
本文试验的时候选择了三组渣土作为对象,分别对他们的含水率进行了测验。
2、泡沫改良剂以及渣土改良的具体试验渣土改良中常见的有泡沫改良剂,本次试验同样选其作为对象,并对比了国内外流行的改良泡沫剂。
为了更好地记录数据和参数,针对渣土改良之后的状态设定了明确的评价指标,即坍落度。
由于这种方法比较常用而且成本较低,所以应用价值较高。
坍落度这一评价指标其实包括了多个内容,其中又以渣土的和易性以及稠度为主要内容。
最佳坍落度值的确定要根据具体的情况进行。
二、泥质粉砂岩地层土压平衡盾构渣土改良试验结果1、试验结果试验的过程中详细记录试验泥质粉砂岩地层土压平衡盾构渣土改良的结果,并且对于渣土的状态也作了详细的分析,并通过描述确定了样本。
土压盾构在粘土层中的渣土改良施工工法土压盾构是一种在地下开挖的隧道工法,它采用高压土压力推进机械,利用土壤的承载力来支持和稳定隧道施工过程。
在粘土层中进行渣土改良是土压盾构施工的重要环节之一。
本文将分别从前言、工法特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例等方面进行介绍。
一、前言随着城市化进程的加快,地下空间的需求越来越大,土压盾构在建设地铁、地下管廊等项目中起着重要作用。
而粘土层是隧道施工中常见的地质条件之一,对于土压盾构施工来说,如何在粘土层中实现渣土改良是一个重要的研究课题。
二、工法特点土压盾构在粘土层中的渣土改良施工工法具有以下特点:1. 以渣土为基础材料进行改良,无需添加额外的辅助材料,降低了成本;2. 通过渣土的填充和固结作用,提高了粘土的稳定性和承载力,减少了盾构施工中的沉降和地表破坏;3. 渣土改良可以有效地改善粘土的工程性质,提高施工效率和施工质量。
三、适应范围土压盾构在粘土层中的渣土改良适用于以下情况:1. 粘土层地质条件较差,土体稳定性低,需要增强地基承载力;2. 盾构施工过程中需要保持地表沉降和地面破坏控制在一定范围内;3. 地下隧道工程对地表变形要求较高,需要增加隧道施工的稳定性和安全性。
四、工艺原理土压盾构在粘土层中的渣土改良施工工法的基本原理是通过盾构推进机械将渣土注入粘土层中,实现对粘土的填充和固结。
具体的工艺原理分为以下几个步骤:1. 与施工工法联系:根据具体施工工程的要求,合理选择渣土注入的位置和注入量,保证施工效果;2. 采取的技术措施:通过渣土的填充和固结,提高粘土的强度和稳定性,减少施工过程中的地表沉降和地面破坏。
五、施工工艺在具体的施工过程中,土压盾构在粘土层中的渣土改良施工工艺包括以下几个施工阶段:1. 盾构机的准备和调试;2. 注浆管的安装和定位;3. 渣土的调配和输送;4. 注浆和固结;5. 地表处理和修复。
土压盾构在粘土层中的渣土改良施工工法土压盾构是一种应用广泛的隧道施工工法,可以有效地克服地层不稳定、水压较高等问题。
在特定的施工环境下,土压盾构也可以用于在粘土层中进行渣土改良施工工法。
本文将从前言、工法特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例等方面全面介绍土压盾构在粘土层中的渣土改良施工工法。
一、前言引入土压盾构在粘土层中的渣土改良施工工法的背景和意义。
二、工法特点介绍土压盾构在粘土层中渣土改良的特点,包括渣土改良的效果、施工速度快、施工安全性高等。
三、适应范围详细阐述土压盾构渣土改良施工工法适用的地质条件和范围,如粘土层的稳定性要求、水压情况等。
四、工艺原理通过对施工工法与实际工程之间的联系、采取的技术措施进行具体的分析和解释,让读者了解该工法的理论依据和实际应用。
包括土压盾构的结构和工作原理,以及渣土改良的基本原理和方法。
五、施工工艺对土压盾构在粘土层中渣土改良施工工法的各个施工阶段进行详细的描述,包括前期准备工作、渣土挖掘与处理、渣土改良、土压盾构推进等。
六、劳动组织介绍土压盾构渣土改良施工工法的劳动组织方式,包括施工人员的分工与配备、施工流程的安排等。
七、机具设备详细介绍土压盾构渣土改良施工工法所需的机具设备,包括土压盾构机、渣土处理设备等,介绍其特点、性能和使用方法。
八、质量控制对土压盾构渣土改良施工工法的质量控制方法和措施进行详细介绍,包括材料的选择与监控、施工质量的检验等,以确保施工过程中的质量达到设计要求。
九、安全措施介绍施工中需要注意的安全事项,特别是对施工工法的安全要求,包括人员安全、设备运行安全等,让读者清楚地了解施工中的危险因素和安全措施。
十、经济技术分析对土压盾构渣土改良施工工法的施工周期、施工成本和使用寿命进行分析,以便读者进行评估和比较。
十一、工程实例列举具体的工程实例,介绍该工法在实际工程中的应用和效果。
价值工程1概述南京某城际轨道交通工程为一站两区间,盾构区间隧道穿越地层主要有黏土、粉质黏土、粉土、含砾粉质黏土、全/强/中风化泥质粉砂岩、中风化砂砾岩,中风化岩岩石饱和单轴抗压强度最大值为9.74MPa ,最小值为1.89MPa ,平均值为4.39MPa ;区间地下水水位最高为地下1.8m ,以潜水和裂隙水为主,不具有承压性。
本工程区间隧道采用复合式土压平衡盾构掘进施工,其中渣土改良技术是非常重要的步骤,结合地质情况对渣土改良进行分析研究,根据实验室配合比调节提出改进方案,可以减少盾构机的磨损、降低渣土对盾构机的附着性,同时降低能耗,可以为同类型盾构施工提供参考及借鉴。
2渣土改良的材料在沙砾土层中,如果仅采用泡沫进行渣土改良,改善切削土体的流动性能力有限,加入量太少达不到改良的作用,加入量过大反而会造成土体的严重离析,可能出现渣土无法运输和压送的情况,造成盾构无法正常掘进。
因此,在加泡沫的基础上通过增加膨润土改善土体粒状构造,吸附在土体上的气泡和膨润土可以减少土体与刀盘的直接摩擦,改善土体的塑流性,增加切削下来的土体的黏聚力,同时又能降低土体的渗透性。
渣土改良剂能较好解决以上问题,在盾构机掘进时,向开挖面、土仓等处加注改良添加剂。
目前常用的渣土改良剂包括膨润土、泡沫剂、高分子聚合物、增粘剂等,不同种类改良剂的使用范围和改良效果有很大差别。
3影响盾构出渣的原因3.1地质原因盾构区间一穿越地层以强、中风化泥质粉砂岩、粉质黏土为主。
所涉及岩层均为软岩,遇水易软化,局部软岩和粉质黏土具有较高的黏粒含量,盾构掘进中有固结泥饼的风险。
盾构区间二穿越地层以沙砾岩、强风化闪长玢岩、粉砂岩为主。
产生的松散砂土易产生渣土离析、堵塞刀盘,盾构掘进中造成运渣困难的现象。
3.2掘进土体状态土体之间的相对运动决定了土体的流动性。
在盾构施工中,土体为流态时,螺旋输送机将无法运输,会发生土体管涌的风险;土体为固态时,易发生渣土堵塞现象。
盾构施工——粘土中的渣土改良方案一说到盾构施工,脑海中便浮现出那深深的地下通道,犹如一条巨大的蟒蛇,在泥土中缓缓前行。
而粘土,这种看似普通的土壤,却给盾构施工带来了不小的麻烦。
今天,就让我来为大家详细讲解一下如何在粘土中进行渣土改良,让盾构施工变得更加顺畅。
我们要了解粘土的特性。
粘土颗粒细腻,粘性强,水分含量高,这使得它在盾构施工过程中容易造成刀盘堵塞、土仓压力不稳定等问题。
为了解决这些问题,我们需要对渣土进行改良。
1.渣土改良材料的选择(3)水泥:可以增加渣土的强度,提高其稳定性。
2.渣土改良方法(1)直接添加法:将改良材料直接添加到渣土中,搅拌均匀。
(2)预混合法:将改良材料与水预混合,形成悬浮液,再与渣土混合。
(3)泡沫法:将改良材料与泡沫混合,形成泡沫悬浮液,再与渣土混合。
3.渣土改良工艺(1)对施工区域进行地质调查,了解粘土的性质和分布情况。
(2)根据地质调查结果,选择合适的渣土改良材料和方法。
(3)在施工过程中,实时监测渣土的性能,调整改良材料和方法的用量。
(4)加强渣土的排放管理,确保施工环境的安全。
我们来谈谈渣土改良在盾构施工中的应用。
1.刀盘堵塞的预防通过渣土改良,可以提高渣土的流动性,减少刀盘堵塞现象。
在施工过程中,要密切关注刀盘的运行情况,一旦发现堵塞迹象,及时调整渣土改良材料和方法的用量。
2.土仓压力的稳定渣土改良可以降低土仓压力的波动,提高施工效率。
在施工过程中,要实时监测土仓压力,根据压力变化调整渣土改良材料和方法的用量。
3.土体位移的控制渣土改良可以提高土体的稳定性,减少土体位移。
在施工过程中,要加强对土体位移的监测,发现异常情况及时采取措施。
4.施工安全渣土改良可以降低施工过程中的风险,提高施工安全性。
在施工过程中,要严格执行安全规程,确保施工人员的安全。
我们来谈谈渣土改良的成本和效益。
1.成本渣土改良的成本主要包括改良材料费、设备折旧费、人工费等。
在选择改良材料和方法时,要充分考虑成本因素,力求在保证施工质量的前提下降低成本。
编制依据(1)隧道施工图(2)铁路隧道工程施工技术指南(TZ204-2008)(3)公司《质量管理体系-要求》(GB/T19001-2000)一、工程概况本工程盾构区间总长度3566.5m ,附属工程包括7个联络通道、2 个防淹门、12 个洞门。
盾构区间采用德国进口的两台直径8.84 米的海瑞克土压平衡盾构机进行施工。
二、工程地质条件和水文地质条件2.1地形地貌本线地处广东省中部,沿线经过珠江三角洲海陆交互沉积平原区,地形平坦,地面高程多为0~10m,仅佛山西站附近有零星剥蚀残丘分布,高程10~20m。
区内道路纵横,水网发达,河流纵多,主要河流有汾江、东平水道、吉利涌、潭洲水道、陈村水道等,均为通航河道。
2.2工程地质条件(1)洞身地层本标段区间盾构隧道范围地层岩性按成因和时代分类主要有:第四系人工填土层<1-1>;第四系全新统海陆交互沉积层<2-1>、<2-2>、<3-1>、<3-2>、<3-3>、<3-4>、<4-1>;第四系全新统残积层<5>;白垩系下统基岩<7-1>、<7-2>、<7-3>。
在里程DK31+439~DK32+260洞身范围地层主要为上软下硬,上部为砂层或全风化或强风化砂质泥岩、砂岩W4、W3(821m);里程DK32+260~DK34+50洞0 身范围地层主要为弱风化砂质泥岩、砂岩W2(2240m);里程DK34+500~DK35+005.5洞身范围地层主要为上软下硬,上部为强风化砂质泥岩、砂岩W3,下部为弱风化砂质泥岩、砂岩W2(500.5m)。
(2)洞身地层分布统计根据目前提供的地质断面图,隧道洞身地层统计如下表所示:表隧道地层统计(3)岩层特性全风化砂质泥岩、砂岩W4:灰色,棕红色,原岩结构已经破坏,岩芯呈土状,水浸易软化崩解。
强风化砂质泥岩、砂岩W3:棕红色、深灰色,泥质、铁质胶结,裂隙很发育,岩芯呈碎块状、局部短柱状,锤击易碎。
弱风化砂质泥岩、砂岩W2:棕红色、深灰色,泥质、铁质胶结,中厚层状构造,裂隙稍发育,岩芯呈短柱状、柱状。
成都盾构施工渣土改良探讨1.渣土改良盾构机通过刀盘开挖下来的渣土,经输送设备输送出来,由于各个项目地质情况的不同,导致渣土不能顺利排出,为了能够正常排出开挖的渣土、降低磨损,必须要在开挖过程中通过添加剂对渣土进行改良。
1.1 土压平衡盾构机渣土改良目的A、提高开挖土体的塑流性,保证了土料能不断地流送到螺旋输送机,防止渣土卡住刀盘及大块卵石沉入土仓底部,造成出渣困难,渣土阻塞;B、开挖室内土料具有的软稠度和良好的塑性变形,使支撑压力能规则地作用于开挖面,保证开挖面平衡稳定,控制地表沉降;C、提高渣土的抗渗性,在螺旋输送机形成土塞效应,防止发生喷涌;D、降低刀盘和螺旋输送机的负荷,减少电力消耗;E、减小刀盘、刀具及螺旋输送机的磨损与破坏,控制工程成本;1.2 改良后理想的渣土(如右图)颗粒以粉砂及粉质粘土为主具有一定的c值较小的内摩擦角及摩擦系数具有一定的流塑性饱水性,并具有较高的抗渗性2.成都地质情况成都地铁1号线一期工程盾构2标(人民北路站至天府广场站)区间段隧道主要穿越砂卵石土层,卵、砾石成分以灰岩、砂岩、石英岩等为主,呈圆形~亚圆形,粒径大小不一,分选性差。
卵石含量约68%,粒径以30~100mm为主,初探揭示最大粒径180mm,根据试验段探井和天府广场基坑揭示最大粒径达530~550mm,圆砾含量约10%,兼夹漂石,漂石最大粒径270mm。
卵石硬,最大强度可达200MPa。
卵、砾石以中等风化为主。
充填物主要为中细砂、及少量粘性土。
卵石土层顶板埋深8.2~22.0m。
表区间隧道围岩分布统计表岩层左线(m) 所占比重(%) 右线(m) 所占比重(%)<2-8>卵石土581 24.3% 614 25.5%所做的饼状图。
量。
3. 成都地质分析成都地质下进行盾构施工在世界范围内也是没有太多的实例,根据现有的资源找到了几个类似项目,如西班牙巴塞罗那、法国里昂、意大利都灵地铁等都是土压平衡机,对地质进行对比,以及该些项目如何进行渣土改良。
土压平衡盾构施工中渣土改良技术的应用摘要:近年来,我国的工程建设越来越多,土压平衡盾构施工越来越多,在土压平衡盾构施工中,渣土改良技术的应用越来越广泛。
渣土改良效果的优劣是土压平衡盾构能否正常掘进的重要影响因素之一,不同的渣土改良方法对盾构推力、扭矩、地表沉降控制等产生不同结果。
为了进一步提高土压平衡盾构机施工的适应性,可对其渣土改良技术开展相应的研究,本文首先分析了常用渣土改良剂及特性,其次探讨了盾构机在砂卵石地层中掘进时可能出现的不利情况,最后就土压平衡盾构渣土改良精细化控制进行研究,以供参考。
关键词:土压平衡盾构;渣土改良;试验引言土仓内渣土改良是土压平衡盾构隧道工法的重要技术环节,渣土的改良效果直接影响着开挖面的稳定性和土仓内渣土的运输状态。
和易性是改良渣土的重要特性之一,反映了渣土自身的流动特征,改良渣土和易性差极易诱发刀盘扭矩大且磨损严重、千斤顶推力大、土体饼化堵仓、喷涌等问题,进而导致掌子面支护压力不足、甚至塌方等一系列事故。
因此,有必要针对改良渣土的和易特性及其评价指标进行深入研究。
1常用渣土改良剂及特性土压平衡盾构渣土改良所用改良剂多为泡沫、膨润土、聚合物等一种或几种材料的组合,并通过使用量的调整使盾构切削下来的渣土具有良好的流塑性、合适的稠度、较低的透水性和较小的摩擦力。
如一般黏土地层中多使用泡沫剂、分散剂、水组合作为改良剂,砂卵石地层多使用膨润土作为改良剂,岩石地层多使用泡沫剂、水作为改良剂,富水砂、砂砾地层多使用膨润土、聚合物为改良剂。
2盾构机在砂卵石地层中掘进时可能出现的不利情况(1)当砂卵石地层处于无水状态时,由于沙粒相互咬,内部摩擦就会发生,土壤流动性差,土仓填土时,随着渣土量的增加刀盘扭矩随即增大,导致仓土排出不良,严重情况下,刀盘泥饼现象,直接影响盾构掘进。
(2)无水砂卵石地层中未改良渣土的流动塑性较差,造成掘进过程中刀盘扭矩增大,盾构机的推力也随及增大,刀盘刀具因摩擦阻力增大而产生较多的热量,从而加剧刀具的磨损,同时其磨损加剧影响着盾构机的工作性能和传动效率。
盾构在富水含砂层中掘进施工的渣土改良技术措施摘要:土压平衡盾构法施工因其良好的适应性和安全性等优点,在地铁隧道、大型地下通道等基础设施建设中得到了广泛的应用。
然而,在富水砂层中,土压平衡盾构机掘进施工普遍存在螺旋机喷涌、摩阻力大、推力波动大等难点,影响施工质量并带来较大安全风险。
为解决这个问题,本文过项目实例中上海地区砂性土地质特点,通过合理使用适当比例的高分子聚合物对渣土进行改良,改善盾构施工参数、有效控制喷涌,使盾构法在富水砂性土层中掘进顺利实施。
关键词:盾构法、富水砂层、渣土改良0、引言土压平衡盾构机在富水含砂地层中施工有较大的风险,如处理不当,不仅会出现螺旋机喷涌造成涌水、涌砂工程事故,破坏既有隧道结构,同时,将大大缩减盾构机的使用寿命。
在该地层中掘进须对渣土性能进行改良,控制渣土流塑性满足出土要求。
随着盾构法施工配套技术的逐渐完善,渣土的管理和改良对改善盾构机在不良地层(特别是富水砂层)中推进性能的作用,越来越引起工程建设者们的重视。
1工程概况1.1、项目概况硬X射线自由电子激光装置项目主要由长约3.2km地下隧道、5个竖井及竖井附近的地面设施组成。
其中,一号井至二号井区间隧道里程范围SK0+000.000~SK1+430.000,长度1430m,隧道内径φ6300mm、外径φ7000mm。
采用一台直径φ7200土压平衡盾构机掘进施工,隧道最大纵坡为0.02%,顶覆土厚度26.0~32.4m。
图1项目平面布置图1.2、工程地质情况区间隧道主要位于⑦1草黄色砂质粉土,该土层主要力学性能参数为:含水量27.5%、重度19.0KN/m3、孔隙比0.778、地基承载力特征值418kPa、渗透系数Kv=4.21E-04cm/s。
⑦1草黄色砂质粉土为上海第一承压含水层,透水性强,在一定动水压力作用下易产生流砂现象。
图2盾构穿越富水含砂层地层图1.3、难点分析⑦1草黄色砂质粉土为承压水层,在水动力作用下,易产生流砂、管涌、坍塌等现象。