热力学与统计物理-第一章-热力学与统计物理
- 格式:ppt
- 大小:2.24 MB
- 文档页数:41
《热力学与统计物理》课程教学大纲课程英文名称:Thermodynamics and Statistical Physics课程编号:0312043002课程计划学时:48学分:3课程简介:《热力学与统计物理》课是物理专业学生的专业基础课,与理论力学、量子力学、电动力学共同构成物理专业重要的四门必修课,通常称为物理专业的四大力学课。
热力学和统计物理的任务是研究热运动的规律,研究与热运动有关的物性及宏观物质系统的演化。
本课程的作用是使学生掌握热力学与统计物理的基本原理和处理具体问题的一些重要方法,并初步具有用这些方法解决较简单问题的能力。
一、课程教学内容及教学基本要求第一章热力学的基本规律本章重点:热力学的基本规律,热力学的三个定律,掌握热力学函数内能、焓、熵、自由能、吉布斯函数的物理意义.难点:熵增加原理的应用及卡诺循环及其效率。
本章学时:16学时教学形式:讲授教具:黑板,粉笔第一节热力学系统的平衡状态及其描述本节要求:掌握:系统、外界、子系统,系统的分类,热力学平衡态及其描述。
1系统、外界、子系统(①掌握:系统与外界概念。
②了解:界面的分类。
③了解:系统与子系统的相对性)2系统的分类(掌握:孤立系、闭系、开系的概念。
)3热力学平衡态及其描述(①掌握:热力学平衡态概念。
②掌握:状态参量的描述及引入。
)第二节热平衡定律和温度本节要求:掌握:热接触与热平衡,热平衡定律、温度、热平衡的传递性,存在态函数温度的数学论证,温度的测量(考核概率50%)。
1热接触与热平衡(①掌握:系统间没有热接触时系统状态参量的变化。
②掌握:系统间热接触时系统状态参量的变化。
)2热平衡定律、温度、热平衡的传递性(①掌握:热平衡定律。
②掌握:温度的数学论证,温标的确定及分类)(重点)第三节物态方程本节要求:理解:广延量与强度量。
掌握:物态方程的得出,实验系数及由实验系数k 、、βα 求物态方程。
(重点,难点)(考核概率100%) 1物态方程(①掌握:独立参量的选择与态函数的相对性。
马红孺热力学与统计物理讲义热力学和统计物理是物理学的两个重要分支,牵涉到研究热量、能量和物质转化的规律以及微观粒子行为的统计规律。
本文将为您介绍马红孺教授编写的热力学与统计物理讲义。
马红孺教授是中国科学院理论物理研究所的研究员。
他在热力学和统计物理领域具有丰富的研究经验和卓越的教学能力。
他的讲义以清晰简洁、思路严谨著称,是学习和研究热力学与统计物理的重要参考资料之一。
1. 热力学基础热力学是研究宏观物质的宏观性质、宏观状态和宏观变化规律的物理学分支。
马红孺热力学讲义主要包括热力学基本概念、热力学过程和热力学定律的介绍。
其中,热力学基本概念包括系统、热平衡、热力学性质等方面的内容。
热力学过程涉及绝热过程、等温过程等过程的研究。
热力学定律包括热力学第一定律、热力学第二定律等热力学定律。
这些内容构成了热力学的基础理论。
2. 统计物理基础统计物理是研究微观粒子行为的系统物理学分支,通过统计方法描述微观粒子在宏观尺度上的表现。
马红孺热力学与统计物理讲义的统计物理基础部分主要包括微观粒子的统计分布、独立粒子模型、热力学极限等基础知识。
通过这些内容的学习,读者可以了解粒子在宏观尺度上的统计规律,并将其应用于具体问题的求解。
3. 平衡态统计物理在马红孺热力学与统计物理讲义中,平衡态统计物理是一个重要的部分。
平衡态统计物理研究的是处于平衡状态的统计系统的性质。
这部分内容主要包括正则系综、统计物理量的计算、磁介质的统计模型等。
通过这些内容的学习,读者可以了解统计系统在平衡状态下的性质,并且可以应用统计物理的方法进行计算和研究。
4. 非平衡态统计物理除了平衡态统计物理,马红孺热力学与统计物理讲义还介绍了非平衡态统计物理的内容。
非平衡态统计物理研究的是处于非平衡状态的统计系统的性质。
这部分内容主要包括非平衡态统计物理的基本概念、涨落定理、输运过程等。
通过这些内容的学习,读者可以了解统计系统在非平衡状态下的行为规律,并且可以了解非平衡态统计物理的基本方法。
第一章统计物理的基本概念(The Fundamental Concepts of Statistical Physics §1.1统计物理简介(Simple Introduction of Statistical Physics历史:源于气体分子运动论(Kinetic Theory of Gases 1738Daniel Bernoulli提出。
Ludwig Bottzmann, 1844~1906J. Willard Gibbs, 1839~1903等人做了统计物理奠基性的工作,发展了统计系综理论,从而真正开创了统计物理的系统理论。
爱因斯坦(Einstein (1879~1955 , 普朗克(Planck (1858~1947等发扬光大。
在 20世纪(约 1910年后才被科学界广泛接受。
对这一事实确立起决定作用的是爱因斯坦的布朗运动的理论解释(1905年和 Jean Perrin (皮兰的实验验证。
统计物理起源于气体分子运动论,分子运动论的主要思想有三点:(1(2原子、分子处于不断热运动中。
(3原子、分子间有相互作用。
相互作用 Æ有序热运动 Æ无序这是一对矛盾。
热力学方法与统计物理方法的优缺点 :热力学方法的优缺点:逻辑推理和严格的数学运算来研究宏观物体的热学性质以及和热现象有关的一切规律。
所以热力学的结果较普遍、可靠,但不能求特殊性质。
统计物理方法的优缺点:现象有关的一切规律。
所以统计物理方法可求特殊性质,但其可靠性依赖于结构的假设,计算较麻烦。
此二者体现了归纳与演译的不同应用,可互相补充。
在统计物理方法中反映了三个问题 :(1微观结构?(2微观粒子运动态的描述?(3统计平均?这些是我们今后要特别关注的内容。
§1.2 系统微观运动状态的经典描述(Classical Description for Microscopic Motion State of System 一、物质的微观结构这是 20世纪三大基本理论问题之一,可以从不同层次进行讨论,从统计物理讨论物质的客观性质,主要在分子、原子层次。