电气设备热故障分析及对策
- 格式:doc
- 大小:168.00 KB
- 文档页数:15
电气设备热故障分析及解决对策电气设备在工业生产中起着至关重要的作用,然而在长时间运行过程中,由于各种原因可能出现热故障,严重影响设备的运行效率和使用寿命。
对电气设备的热故障进行分析并提出相应的解决对策显得尤为重要。
本文将围绕电气设备热故障分析以及解决对策展开讨论。
一、电气设备热故障分析1. 电气设备热故障的成因电气设备在运行时会因为电流通过导线或器件而产生一定的损耗,这种损耗将会以热的形式释放出来。
如果设备长时间处于高负荷运行状态,或者器件本身质量存在问题,就会导致热故障的产生。
环境温度、湿度等因素也是导致电气设备热故障的重要因素。
2. 热故障的表现电气设备热故障通常会表现为设备温升过高、发出明显的异味、运行异常等现象。
有时甚至会导致设备直接烧毁,造成严重的后果。
3. 热故障对设备的影响热故障会导致电气设备的绝缘材料老化、绝缘强度降低,甚至引起绝缘击穿。
在严重的情况下,热故障可能会引发火灾,对设备和周围环境造成巨大损失。
1. 设备升级改造当发现电气设备长时间运行处于高负荷状态,应考虑对设备进行升级改造,增加设备的通风散热能力,提升设备的耐热性能。
2. 定期维护保养定期对电气设备进行维护保养,清洁设备表面灰尘,检查设备内部散热系统是否正常运行。
及时更换老化损坏的零部件,确保设备的正常运行。
3. 功能性改进对于一些特殊工况下运行的设备,可以考虑通过功能性改进来减少设备的运行负荷,从而避免热故障的产生。
4. 安全防护措施在设备周围建立警示标识,设立安全防护设施,确保工作人员能够及时发现设备的异常情况并采取相应的措施。
5. 温度监测系统在电气设备上设置温度监测系统,对设备的温升情况进行监控,及时发现热故障的迹象,并采取措施防止热故障的发生。
6. 紧急救援预案提前制定好电气设备热故障的紧急救援预案,明确各部门的责任和应急处置流程,保障在发生热故障时能够迅速做出反应,最大限度减少损失。
电气设备热故障是工业生产中不可忽视的问题。
电气设备热故障产生原因及对策电气设备,是电力系统重要的组成部分,其能否正常使用直接关乎整个电力系统的运行,甚至关乎整个社会的发展。
但是,随着电气设备应用的广泛化,随着时间的推移,其老化的现象越来越严重,经常会出现各种各样的电力故障,其中热故障是最常见的故障之一,直接影响电力系统的正常运行。
引起热故障产生的原因有很多,我们只有对这些热故障产生的原因进行分析,才能够及时提出解决热故障的策略,并及时处理,使电气设备恢复正常,促进电力系统的有效运行。
那么,引起电气设备热故障产生的原因有哪些呢?如何及时采取有效的策略解决电气设备热故障呢?电气设备热故障01外部热故障电气设备的外部故障,最常见的就是接触不良,如果电气裸接头长期暴露在大气中,就很容易出现接触不良的情况,因此会引起热故障的产生。
电气裸接头出现接触不良,并且在电流的巨大作用下造成接头处的温度持续升高,就会导致接触的电阻逐步增大,造成恶性循环,埋下安全隐患。
这种热故障是最常出现的热故障类型,几乎占到外部热故障的90%以上。
根据近几年的数据统计,可以看到一个明显的现象:线夹和刀闸触头出现热故障的情况比较严重,也比较频繁,几乎占整个外部热故障的77%左右。
由于线夹和刀闸触头的特殊属性,它们的平均温升较高,大约在30℃左右,与此同时他们的外部接头的平均温升也比较显著,在20℃~25℃之间的比率极大。
实际检测过程中,外部故障的等级划分主要是根据温升的多少,常规意义上主要分为三个等级:轻微、一般、严重,具体程度依据情况而定。
02内部热故障电气设备的内部热故障也比较明显,内部热故障主要指的是电气回路故障和绝缘体介质的恶化而引起的故障类型。
电气回路故障的产生主要指的是封闭在电气设备壳体内部、封闭在油绝缘、封闭在固体绝缘的电气回路故障。
由于内部热故障存在较大危害性,因而要及时分析并判断内部故障才能将损失降到最低。
判断内部热故障,需要仔细分析电气设备的内部结构特点、运行方式和状态,依据传热学的相关理论对金属导电回路进行分析,还需要关注由于绝缘油和气体等因素所引起的传导。
电气设备热故障原因与解决对策摘要随着社会经济的日益发展,电气设备的使用量也急剧增加,电气设备为保证人们正常的日常生活起到了重要作用。
电气设备在使用中经常会因为热故障而导致设备停止运行以及一些损坏事故,热故障的频繁发生对电气设备运行的安全稳定性造成了极大的隐患。
本文中主要通过对电气设备发热原因和热故障的分析,提出对热故障的相应解决对策。
关键词电气设备;热故障;分析;原因;解决对策1 电气设备发热原因及热故障连接点是电气设备非常重要的一个关键点,它是电气设备之间以及电气设备与母线或者电缆之间的电气连接部位。
连接点过热一直电力系统的老问题,电力企业的电气设备往往因为过热而发生故障,造成电气设备停机事故。
随着用设备荷的不断增加,用户对供电稳定性的要求越来越高,因此电气设备的缺陷管理成为一个不可忽略的问题,值得我们引起足够的重视。
1.1 电气设备发热原因电气设备在正常运转时,会因为电流通过电气设备内部导体和线圈产生电阻损耗以及导体内部的电子流动而产生热量。
由于电磁场的作用,在铁磁体内部会产生涡流和磁滞损耗,在绝缘体内会产生相应的介质损耗。
但是磁滞损耗和介质损耗最终都基本上转换成热能,这些热能中的一部分会直接使电气设备的温度升高。
电气设备还会由于外部条件而导致温度上升,当电气设备表面污秽或者有机械力作用造成外绝缘性能下降时,其发热功率取决于外绝缘的泄漏电流和绝缘电阻。
当电气设备长时间暴露在外环境中时,金属导体表面受化学腐蚀和热胀冷缩导致导体连接部分发生接触不良故障,如电气线路触点、接头部分螺丝松动等形成很大的接触电阻,这是其发热功率取决通过电气设备的电流与接触电阻的大小。
1.2 电气设备热故障电气设备的热故障可以分成内部故障和外部故障。
电气设备的内部故障是指由于被封闭在固体绝缘、油绝缘和设备机壳内部的电气回路故障和绝缘介质劣化所引起的故障。
电气设备的外部故障是指电气设备中由于长时间暴露在大气中的裸电气接头因为接触不良而引起的热故障。
电气设备热故障分析及其对策摘要随着科技与社会的进步,电气设备已经普遍进入到人生活当中,因此电气设备的安全可靠性得到了极大的重视。
电气设备在运行过程中,由于机器的运转会产生热量从而引起温度过高。
电气设备的发热现象是一种十分常见的现象,而且也是引发设备故障的重要因素之一。
除此之外,设备发热还会影响设备的运行状况。
此文着重介绍电气设备发热的分类以及发热的因素产生的消极影响,此外还分析介绍了电气设备产生故障的因素,并提出了相对应的解决措施。
关键词:电气设备,热故障型,原因,负面影响,对策第1章电气设备热故障概述1.1发热故障的类型外部热故障:电气设备的外部故障,简而言之就是从外部可以直接看到的故障。
由于电流的通过。
一般的输电线中外部包有绝缘材料,具有一定的耐热作用,但如果长时间超负荷工作而超过了阈值,则会由于绝缘材料老化的原因,而使热量在达到一定程度时引起火灾。
除此之外,还有电力设备,由于电线长期扩散、风力疏散,或因通讯不及时而及时发生粉尘故障,容易造成外部故障。
1.2介质性故障—电介质损耗在强大的电气设备中,各种系统被视为各种设备设计的基本要素。
要按照事先设计的计划适当分配电力,必须有一个防御者。
否则,电力将是最短的已知方式,未按计划丢失的电力将造成人类危险,在严重的情况下。
简言之,在电气设备发生故障后,如果设备在电气设备的性质发生变化后不正确,设备可以验证该设备是否为错误。
使用摄像机获取电气设备的温度变化和相关错误信息是使用设备视觉方法的先决条件。
第2章发热故障原因及危害分析2.1发热故障原因2.1.1负荷过大我国的人口基数大,电器负荷也就大。
如果某一处发生电路损坏或者故障,该处的电流则会迅速增加,从而导致该处的工作负荷快速增加,从而导致该处发热.时间一久则会由于该处的温度过高,给电路造成更大的经济损失,也对人们的生活产生了巨大的影响。
2.1.2维修管理工作不到位电器接头处的故障,并没有从根源上解决。
电气设备热故障分析及解决对策1. 引言1.1 研究背景热故障在电气设备中是一个非常常见的问题,它会造成设备的性能下降甚至完全失效,给生产和工作带来不必要的损失和困扰。
随着现代工业的发展,电气设备的复杂性和工作条件的恶劣程度也在不断提高,导致电气设备热故障的发生频率逐渐增加。
对电气设备热故障进行深入分析并找出解决对策就显得尤为重要。
研究电气设备热故障不仅能够帮助我们更好地了解热故障的形成机制和影响因素,还能为我们提供有效的解决方案和预防措施,从而减少生产中热故障带来的损失,提高设备的稳定性和可靠性。
通过对电气设备热故障的研究,我们可以不断提升设备的性能和工作效率,为工业生产的发展做出更大的贡献。
本文旨在对电气设备热故障进行深入分析,探讨热故障的定义、原因分析、常见解决对策、预防措施以及应急处理措施,旨在为相关行业提供更好的参考和指导,减少热故障带来的损失,提高设备的可靠性和稳定性。
1.2 研究目的研究目的是通过对电气设备热故障进行深入分析,找出其产生的原因,并提出有效的解决对策和预防措施,从而提高电气设备的稳定性和可靠性,减少故障发生的可能性,保障设备的安全运行。
通过本研究,我们旨在为工程技术人员提供一种更直观、更系统、更可靠的热故障分析和解决对策方法,为电气设备的维护保养和故障排除提供参考依据,推动电气设备运行管理水平的提高,促进电力行业的发展和进步。
通过研究电气设备热故障的预防措施和应急处理措施,提高工程技术人员对电气设备热故障的认识和应对能力,为电力设备提供更加可靠和稳定的运行环境,为电力系统的安全运行提供有力的保障。
1.3 研究意义电气设备在工业生产中起着至关重要的作用,而热故障是电气设备常见的故障之一。
研究电气设备热故障的分析及解决对策具有重要的意义。
通过深入研究电气设备热故障的原因和解决对策,可以有效提高电气设备的运行可靠性和稳定性,减少故障带来的停机时间和损失,提高生产效率和经济效益。
低压电气设备发热故障分析及其处理措施摘要:新时期,低压电气设备的数量不断增加,在使用过程中,由于热故障造成的设备运转问题不在少数,这在很大程度上影响电气设备实际效益的发挥,给人们的生活带来安全隐患。
所以,相关单位和使用人员应该加强对低压电气设备发热故障的关注,充分了解造成这种故障的原因,并找出电气发热所具有的规律变化,及时发现、及时处理,降低发热对电气设备造成的损伤。
关键词:低压电气设备;发热故障分析;处理一、低压电气设备发热故障分类1.内部致热对于低压电气设备的内部构造和工作原理来说,通常都是依靠电来进行基本的操作和使用,其具体的设备使用过程里,会产生一定的电流,而电流又会通过内部的导体和线圈而出现电阻损耗情况,而且有关电子的流动也会对电气设备内部产生热量,因此在电气设备相关的产能损耗和能量转换方面,都会最终以热能的形式来呈现,如果不能让低压电气对自身的散热效果进行增强,将内部产生的热量进行散发的话,可能会由于热量的激发和积累,导致低压电气设备内部的温度越来越高,达到一定数值时会造成电气设备发生故障,轻则会影响人们的正常使用,重则会产生一系列危害人身安全等事故或危机。
根据相关的物理原理也不难发现,一般低压电气设备内部产生的发热情况,也与自身所使用的电压有着紧密的联系,也会受内部电流的影响而出现发热情况的。
2.外部致热除了低压电气设备的内在因素之外,外部因素也会使低压电气设备产生较高的热量,进而引发一定的故障,而这些外部因素一般可能是低压电气设备表面积压的灰尘或污垢较多,导致散热受到影响,也可能受到一定机械运行力量的影响,让电气设备外部的绝缘能力不是非常良好。
同时,也有一部分原因是由于低压电气设备使用年限较久,而且也没有得到良好的保养和维护,让部分电器的接头暴露在空气中,这样就会使内部的金属导体表面受到电化学的腐蚀影响,产生接触不良等问题,这样在电器具体使用和运行的过程中,会使相关的电阻值增大从而造成产生的热量值也随之增大,由此造成电气设备发热故障的出现。
电气设备热故障分析及对策因为经济全球化的不断深入,国家与国家之间的交流越来越频繁,我国的科技水平也在吸收其他国家验后得到提高,尤其是电力系统方面的科技水平。
现在大部分设备都是电气设备,需要电来催动,而电气设备是电力系统的主要部分,虽然我国的电气系统水平得到了提高,但是处理电气设备热故障能力不够,不能确定电气设备的安全性和高效性。
电气设备热故障是影响电气设备使用的一个重要原因,在电气设备故障时采用科学的方法才能更快的解决问题,保证电气系统的正常工作。
标签:电气设备;热故障;分析电气设备是一个国家电力系统的主要组成部分,完好的电力设备的质量和维护措施是电力系统正常运行的保证。
但是随着电气设备使用时间的增长和更新换代的加快,旧的设备和新的设备之间存在着一些接通的问题,会引起一些电力故障,热故障就是其中比较严重的一项,热故障会直接导致电力设备无法使用,影响电力系统的运行。
要降低热故障对电力系统的影响,首先要找出热故障产生的原因,从根本上展出解决热故障的方法。
1 电气设备热故障的分类在我们的生活中,电气设备热故障引发的事故很多,其中主要分为外部故障和内部故障这两种。
外部故障是由于电气设备长时间暴露在空气中,风化严重,导致电线接头接触不良而引起的热故障;内部故障主要是因为电气设备被长时间封存在绝缘的环境中导致设备电气回路出现问题而引发的故障。
在解决电气设备热故障问题时首先要分析是哪种故障,其中引起外部故障的原因主要有:(1)因为外力或者表面某些物质导致电线变成的绝缘性降低;(2)长时间暴露在空气中,电线接头因氧化或者酸腐蚀等原因接触不良,出现热故障。
引起内部故障的原因有:(1)电气设备因年久失修,内部接线出现故障;(2)封存环境中介质消耗的能量增大或者铁损增大引起故障;(3)构成绝缘环境的材料因外界因素出现问題引起的故障。
上述出现热故障的原因都是“后天原因”,电气设备自身设计的不合理或者材料选择的不合理是出现热故障的“先天原因”。
电气设备热故障分析及解决对策电气设备是现代工业生产中必不可少的关键组成部分,因此,如果设备出现热故障,将会对生产效率和安全带来极大的影响。
本文将就电气设备热故障分析及解决对策进行探讨。
一、热故障的常见原因1.负载过重设备承受负载过大、电流过高的情况时,电气零部件容易产生过热和烧毁的现象。
2.接触不良设备线路的接触不牢固,容易导致接触不良并引起电气部件的过热。
3.内部线路老化或断路设备长时间使用,内部线路积累了许多热量,会导致设备的运行异常,并且还可能会形成电气部件短路。
4.环境过于潮湿环境过于潮湿也是引起电气设备热故障的一个原因。
湿气会导致电气设备的电气连接物质氧化,导致过热,照成故障。
1.接线端子过热当设备运行时,如果接线端子电流过大,会导致接线端子过热,这种情况下,可能引发了设备内部的短路,直接影响设备的使用效果。
2.电阻器过热电阻器是电路中最常见的部件之一,如果电阻器所在的线路过载时,可能导致电阻器过热,甚至会发生炸开,照成设备热故障。
在设备的使用过程中,如果电路中的电容器失效或使用温度过高,可能会导致电容器过热,破裂或者泄漏电容液等各种情况。
三、热故障的解决对策1.合理使用负载为了避免电气设备承受过大的负载,可以在设计时合理设计负载。
在实际使用时,必须根据不同参数的要求对负载进行严格的控制。
2.保持电路的接触状态良好保持电路的接触状态良好,尤其是在设备运转过程中要监测线路,避免接触断路现象发生。
如发现线路松动等现象,应及时加以处理。
3.加强维护热故障常常由于设备内部线路老化、松脱导致。
所以,对设备进行周期性检查和维护,对设备电路进行整备和硬化,能够有效避免热故障的发生。
4.控制环境应尽量保持工作环境干燥、清洁。
在设备周围设置通风设备,保证设备周边的空气循环,将能有效避免因潮湿引起的热故障。
综上所述,电气设备热故障是电气设备运行中的一种常见故障,可能会影响设备的运行效率和使用寿命,但是我们只需要从以上几个方面加以考虑,就能够有效避免电气设备热故障的发生。
电气设备热故障分析及解决对策
电气设备在运行过程中,由于各种因素的影响,可能会出现热故障。
热故障不仅对设备本身造成损坏,还可能对生产线正常运行产生严重影响。
及时分析热故障原因并采取有效对策是非常重要的。
下面将从电气设备热故障的常见原因分析以及解决对策方面进行探讨。
一、热故障的常见原因分析
1. 过载操作:设备长时间处于超负荷运行状态,容易导致设备发热,甚至引发热故障。
过载操作可能是因为设备本身设计容量不足,也可能是由于操作人员对设备正常运行负载不清楚而导致的。
2. 电气元件老化:长期使用会导致电气元件的老化,电阻增大,产生热量。
尤其是高温环境下,老化速度会更快。
3. 隐患未及时发现:设备的接线端子松动、绝缘老化等隐患如果得不到及时发现和处理,会导致局部发热,进而引发热故障。
4. 环境温度过高:设备运行环境温度过高会使设备自身散热受阻,导致发热严重,从而引发热故障。
5. 负载不平衡:设备负载不平衡会使某些元件负载过重,产生过多热量,引发热故障。
二、解决对策
1. 设备设计合理:在设备选型和设计阶段,应综合考虑设备的实际工作负荷,确保设备容量充足,避免过载操作的发生。
2. 定期维护保养:对电气设备进行定期的检查和维护保养,及时更换老化的电气元件,确保设备各部件的正常运行。
3. 定期检测:定期对设备进行电气连接的检测,确保设备的接线端子牢固可靠,及时发现并处理隐患。
4. 提高环境温度:在设备运行区域适当增加通风设施,降低环境温度,提高设备的散热效果。
电气设备热故障分析及解决对策电气设备在运行过程中,由于电流过大、电线接触不良、绝缘材料老化等原因,容易发生热故障。
热故障的出现不仅会影响设备的正常运行,还可能引起火灾等严重后果。
及时分析热故障的原因,并制定相应的解决对策,对于确保电气设备的安全运行至关重要。
要对电气设备热故障的原因进行分析。
主要包括以下几个方面:1. 电流过大:电气设备在使用过程中,如果负载过大,电流就会超过设备所能承受的范围,从而引起热故障。
2. 电线接触不良:电气设备中的电线如果接触不良,会造成电阻增加,从而产生过多的热量。
3. 绝缘材料老化:长期使用的电气设备,由于外界环境和工作条件的影响,绝缘材料容易老化,绝缘性能下降,从而引起热故障。
针对以上原因,可以采取以下解决对策:1. 合理设计负载:在选购电气设备时,要根据实际需求和工作环境,选择合适的设备和额定电流,避免电流过大引起的热故障。
2. 定期检查维护:定期对电气设备进行维护和检查,及时发现接触不良和绝缘材料老化等问题,并及时处理,避免发生热故障。
3. 提高绝缘性能:对于老化的绝缘材料,可以使用绝缘改性剂进行处理,提高其绝缘性能,减少热故障的发生。
4. 安装散热设备:对于容易产生热量的电气设备,可以安装散热器、风扇等散热设备,及时排除热量,防止热故障的发生。
5. 增强监控系统:对于重要的电气设备,可以安装温度传感器和报警装置,实时监测设备的温度变化,并在温度超过安全范围时及时报警,以避免热故障的发生。
电气设备热故障分析及解决对策是确保电气设备安全运行的重要环节。
只有通过分析热故障的原因,并采取相应的解决对策,才能有效预防和消除热故障,保证电气设备的正常运行和安全使用。
电气设备热故障分析及对策摘要:电气设备的发热故障一直是电力系统的一个老问题,严重影响供电设备正常的负荷输送,甚至酿成事故。
电气设备发热问题必须引起重视,认真研究其发生的原因,以便彻底解决。
关键词:热故障分析;热故障的影响及危害;故障的处理预防及处理对策;故障的红外线诊断技术引言电气设备发热在设备缺陷管理中成为一个越来越突出的问题。
运行早发现,设备进货严把质量关,检修加强工艺是关键。
只有把各方面工作都做好,才能杜绝设备过热故障的发生。
电气发热是电气设备最常见的运行故障,造成电气设备发热故障的原因很多。
我们可以根据不同的起因采用不同的办法来预防发热故障,治本的方法是接触电阻测量法,接触面平整度检查法,横向比较法,纵向比较法,开展季节性检修等。
治标的方法是改善电气设备运行环境的通风散热条件。
随着大容量高电压电气设备的不断运行,热故障已成为影响电力设备正常运行的主要原因,电压等级的不断提高使得发现热故障显得格外困难,正确的应用红外线技术将彻底改变传统的测温困难的情况,及时发现电气设备热故障源能有效的避免重大事故的发生,是保证电力设备稳定运行的有效办法。
红外诊断技术在电力系统广泛应用后,过去主要靠定期停运检修的制度必将逐步由预报警式的检修制度所代替,如果电气设备的温度一旦出现异常,应根据测出的电气设备的温度和热像图谱,配合运行、检修情况以及其他电气试验进行综合分析,判断缺陷的性质和部位,以便从安全和经济性考虑,及时排除隐患,这样既可防止事故发生,又不盲目停电检修,从而提高了电气设备的可靠性和利用率。
(一)电气设备热故障分析1、电气设备发热原因电气设备在工作的时候,由于电流、电压的作用,将产生电阻损耗发热、介质损耗发热、铁损发热。
允许负荷下的发热在电气设备的运行故障中占有很大的比重,是电气设备的主要故障之一。
发热故障会导致电气设备的绝缘热击穿、导体连接部位的热变形、甚至熔焊,严重危及电气设备的安全运行。
根据焦耳定律:2Q I RT可知造成设备发热的原因有两个:一是电流I,另一个是电路的电阻R。
电气设备运行时电流增大的主要原因是短路引起的电流增大。
电气设备运行时回路电阻R 增大的主要原因为:导体连接部位的压紧螺栓或压紧弹簧的压紧力不恰当,导致连接部位的压紧螺栓部位的接触电阻增大;导体相互连接的接触面不平整,造成接触面的通流量降低、相对正常负荷电阻R 增大;导体相互连接的接触面氧化、积灰,造成接触面电阻增大;设备存在制造缺陷,个别环节的电气连接方式不正当,造成流通量较小的“卡脖子”环节。
2、电气设备发热来源电气设备在工作的时候,由于电流、电压的作用,将产生电阻损耗发热、介质损耗发热、铁损发热。
(1)电阻损耗发热:电力系统导电回路的金属导体都具有相应的电阻,当通过负荷电流时,必然有一部分电能按焦—楞次定律以热损耗的形式消耗在电阻上。
这部分发热功率为:2f P K I R =式中:P —发热功率(W )f K —附加损耗系数I —通过的负荷电流(A )R —载流导体的直流电阻(Ω)对于多股绞线和空心导体,通常可认为1f K =(2)电介质损耗发热:由固体,液体或气体等电介质材料构成的绝缘结构是高压电气设备中不可缺少的重要部分。
金属导电材料和电介质绝缘材料是所有电气设备不可缺少的两个组成部分。
同样导电体周围的电介质在作交变场的作用下会产生能量损耗,通常称为介质损耗,其损耗功率用下式表示:2tan P U C ωδ=式中:P —电介质的有功损耗(W )ω—交变电源的角功率C —介质的等值电容值(F ) tan δ—绝缘介质损耗因数或介质损耗角正切值由上式可知,介质损耗与承受的电压的平方成正比,与导体所通过的电流无关。
由此可知,电气设备只要加上电压,即使不输送电流也会产生介质损耗。
当绝缘介质的绝缘性能变坏时,会引起介质损耗增大,有功损耗增加,设备运行温度升高。
(3)铁磁损耗发热:载流导体周围的铁磁物质在交变磁场反复磁化作用下,将产生磁滞、涡流损耗。
铁磁物质在交变磁化下由于内部的不可逆过程而使铁磁物质发热所造成的一种损耗,称为磁滞损耗。
磁滞损耗与频率的一次方成正比,与最大磁感应强度B 的n 次方成正比。
众所周知,当铁磁物质放置在变化着的磁场中,或者在磁场中运动时,铁磁物质内部会产生感应电动势(或感应电流)。
从图1中可见,涡流是感应电流的一种,在铁芯内围绕着感应强度B 呈旋涡状流动,其方向可按楞次定律来决定。
涡流的产生要消耗一定的能量,并随即转变为热能。
涡流对许多电气设备来说是极其有害的,它消耗电能,使铁芯发热,不仅会引起额外的大量功率损失,更严重的是还会使线圈温度过高,甚至损坏线圈的绝缘,造成设备的过热损坏酿成事故。
图1 涡流的产生交变磁通在铁芯中产生磁滞损耗cz P 和涡流损耗w P 合起来叫做铁磁损耗,简称铁损。
把从电源吸收的能量转化为热量,使铁芯发热。
3、电气设备发热分类连接点是指电气设备之间以及它们与母线或电缆之间的电气连接部位。
连接点过热已经是电力系统的一个老问题,但随着设备负荷的增加,用户对供电可靠性要求的提高,在设备缺陷管理中成为一个越来越突出的问题,值得我们引起重视,认真研究其发生发展的原因,以便彻底解决。
1、电气设备发热源。
电气设备在工作的时候,由于电流、电压的作用,将产生电阻损耗发热、介质损耗发热、铁损致热等3种热故障。
ﻫ2、电气设备热故障。
电气设备的热故障可分为外部故障和内部故障。
外部故障是以局部过热,各种裸露接头、连接件的热故障;内部故障的发热过程一般都较长,且为稳定发热,与故障点接触的固体、液体和气体,都将发生热传导、对流和辐射,从而有许多与设备相距不很远的内部故障所产生的热量,能不断地达到外壳,改变了设备外表面的热场分布。
(1)外部故障主要是指从外界可以直接观测到的设备部位发生的故障,一类是长期暴露在大气中的各种裸露电气接头因接触不良等原因引起的过热故障。
电气设备外部热缺陷或热故障主要是各种电气引流的裸露接头,包括高压设备或线路中的连接件等由于压接不良或因受到氧化、腐蚀及灰尘的影响,或因材质和加工、安装工艺的问题,或冲击负荷的影响和机械振动等各种原因造成的接触电阻增大而出现的局部过热等。
另一类是由于表面污秽或在机械力的作用下引起的绝缘性能降低而造成的过热故障。
(2)内部故障主要是指封闭在固体绝缘、油绝缘以及设备壳体内部的电气回路故障和绝缘介质劣化引起的各种故障:a 内部电气连接不良或触头不良故障:如各种高压电气设备内部导电体连接不良,断路器接触不良,高压釜电力电缆出线鼻端连接不良等。
b 介质损耗增大故障:各种以油做绝缘介质的高压电气设备,一旦出现绝缘介质劣化或进水受潮都会因介质损耗增加而发热,发热功率2p U Ctgωδ=,其中C是介质两端的等值电容,此类故障的发热机理属于电压效应发热;c 绝缘老化、开裂或者脱落故障:许多高压电气设备中的导电体绝缘材料因材质不佳或使用老化引起局部放电而发热,这种故障也属于电压效应发热;d铁损增大故障:对由绕组电阻和磁路组成的高压电气设备,因设计不合理,运行效果不佳和磁路工作不正常引起的磁滞、磁饱和漏磁;或由于铁芯片间绝缘破损造成短路、均可引起局部发热或铁制箱体发热,发热机理为涡流或磁滞损耗发热;e缺油故障:油浸高压电气设备因漏油造成油位低下,严重者可引起油面放电,导致表面温度分布异常。
这种热特征,除放电时引起发热外,主要是由于设备内部油面上下介质的热特性不同所致。
4、检查电机发热原因及处理一、电机发热的原因电气巡检检查发热时我们需注意以下几个通常导致设备电机发热的原因,并及时处理,防止造成严重的后果及影响。
(1)设备大修时接头未拧紧,当电流通过后可能会发热,甚至发红、冒火、断线;(2)长期运行的铜铝接头,接触面没有镀银或没有挂锡的接头,因接触面严重氧化,电阻增大,也会成为发热点;(3)平时流经小电流的接点,因系统突然变化,电流突增,导致接点发热;(4)系统发生短路故障,过电流使容量不足的接点或有缺陷的接点,发生瞬间冒火等。
由此看来,发热主要是因为接触电阻变大造成的。
严重发热时,首先联系值长减少该点的负荷电流,然后研究处理方案。
这是紧急减少发热的有效办法。
二、检查发热的方法和技巧运行中的电气设备,要求温度不大于80℃。
超过80℃时,一定要进行处理。
检查发热点的方法很多,下面我介绍几种电气巡检检查发热技巧:(1)用蜡触试验法:将试温蜡片粘接在绝缘拉杆端头上触试接点,如缓慢熔化,温度约在55℃;如很快熔化流淌,温度约在80℃以上;如速熔并冒油烟,温度约在200℃以上。
(2)雨天看发热点法:下雨天看发热点处干燥,温度约50℃以上;如雨滴立即汽化蒸发,温度约在100℃以上;如发出“嗤啦”声,大雨滴呈滚落状,温度约在200℃以上。
下雨天检查接点发热,易发现,效率高。
(3)雪天看雪熔化法:接点上雪熔化,温度在0℃以上;如接点干燥,温度在50℃以上。
(4)使用红外线测温仪:我厂现在正使用的红外线测温仪是先进仪器,使用较方便,检查发现发热点效果良好,为我厂的安全生产作出很大的贡献。
(5)观察热气流法:发热体与空气温差达到20℃,如气温20℃,发热点的温度50℃以上时,即能看到微小气流;如接头温度达到100℃时,“热气流”就非常明显;如发热点温度达到200℃以上,“热气流”就非常容易被看到。
要想清楚地看到“热气流”的存在,必须借助气流后面的“背景”来观察。
被选择的“背景”要求是黑色、灰色等深色,线条状、网状等都可以。
配电室内的构架、导线及设备等都可以做“背景”,距离远近都可以。
检查某发热点时,巡检人员要不断变换站立位置,使发热点形状与“背景”的形状和角度尽量一致,呈平行状态,再慢慢使接点上方靠近“背景”,只留一点小缝隙,观察缝隙处是否晃动。
如有晃动,该接点发热;晃动大,发热就很严重了。
(二)电气设备热故障的影响及危害1、电气设备热故障的影响发热对电气设备的影响,主要表现在绝缘材料性能降低、机械强度下降和导体接触部分性能变坏等三个方面。
(1)绝缘性能降低导体和电器绝缘的耐热性是决定其绝缘性能的主要因数。
导体的允许电流,电器的额定功率实际上决定于绝缘在运行中所能承受的最高温度。
绝缘材料的耐热性可用耐热温度来衡量。
所谓绝缘材料的耐热温度,是该类材料所能承受而不致使其机械特性和电气特性降低的最高温度。
按我国的标准,电气绝缘材料按其耐热温度分为七级,其长期工作下的极限温度列入表1内,材料应在该温度下能工作20000h而不致损坏。
表1 各级绝缘材料的耐热温度对大部分绝缘材料来说,可以用所谓的“八度规则”经验规律来估算其寿命,即温度每上升8度,则其寿命降低一半。
(2)机械强度降低当温度高达一定的允许值后,金属材料的机械强度将显著下降,这是因为载流体长期处于高温状态,会使其慢性退火,亦可丧失其机械强度。