熊伟运筹学课后习题答案1-4章
- 格式:doc
- 大小:21.42 MB
- 文档页数:55
第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
运筹学(第3版)习题答案P36 P74 P88 P105 P142 P173 P195 P218 P248 P277 P304 品P343 P371全书420页第1章 线性规划工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.产品 资源 A B C 资源限量 材料(kg) 4 2500 设备(台时) 3 1400 利润(元/件)101412310和130.试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:型号A 型号B 每套窗架需要材料长度(m ) 数量(根)长度(m) 数量(根)A 1:2 2B 1: 2 A 2:3 B 2:23需要量(套)300400问怎样下料使得(1)用料最少;(2)余料最少. 【解 方案 一 二 三 四 五 六 七 八 九 十 需要量 B1 2 1 1 1 0 0 0 0 0 0 800 B2 2 0 1 0 0 2 1 1 0 0 0 1200 A1 2 0 0 1 0 0 1 0 2 1 0 600 A2120 2 3 900 余料(m) 0 1 1 1 01设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为10112342567368947910min 28002120026002239000,1,2,,10jj j Z x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩∑ (2)余料最少数学模型为2345681012342567368947910min 0.50.50.52800212002*********0,1,2,,10j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩某企业需要制定1~6月份产品A 的生产与销售计划。
运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。
它包括数学模型的建立、问题求解方法的设计等方面。
b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。
它可以帮助组织提高效率、降低成本、优化资源分配等。
c)运筹学主要包括线性规划、整数规划、指派问题等方法。
习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。
它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。
运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。
1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。
在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。
在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。
在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。
在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。
习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。
在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。
在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。
在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。
第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。
其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。
习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。
习题四4.1工厂生产甲、乙两种产品,由A、E二组人员来生产。
A组人员熟练工人比较多,工作效率高,成本也高;E组人员新手较多工作效率比较低,成本也较低。
例如,A组只生产甲产品时每小时生产10件,成本是50元有关资料如表4.21所示。
表 4.21二组人员每天正常工作时间都是8小时,每周5天。
一周内每组最多可以加班10小时,加班生产的产品每件增加成本5元。
工厂根据市场需求、利润及生产能力确定了下列目标顺序:P1:每周供应市场甲产品400件,乙产品300件P2:每周利润指标不低于500元P3:两组都尽可能少加班,如必须加班由A组优先加班建立此生产计划的数学模型。
4.1【解】解法一:设X1, X2分别为A组一周内正常时间生产产品甲、乙的产量,X3, X4分别为A组一周内加班时间生产产品甲、乙的产量;X5, X6分别为B组一周内正常时间生产产品甲、乙的产量,X7, X8分别为B组一周内加班时间生产产品甲、乙的产量。
总利润为80(X1 X3 X5 X7) (5055X3 45X5 50X7)75(X2 X X6 X s) (45X2 50X4 40X6 45x030X1 30X2 25X3 25X4 35X5 35X6 30X7 30X8生产时间为A 组:0.1捲0.125X20.1X30.125X4B 组:0.125x50.2X60.125X70.2沧数学模型为:min Z p1(d1d2) P2d3 P3(d 4 d5) P4(d6 2d?)X1 X3 X5 X7 d1 d1 400X2 X4 X6 X8 d2 d2 30030为30X225X325X435X535X630X730XS d3500400.1X10.125X2 d4d4400.125X5 0.2X6 d5d50.1X3 0.125x4 d6d6 100.125X70.2X8 d7d7 10X j 0,d i ,d i 0,i 1,2丄,7; j 1,2,L ,8解法二:设X1, X2分别为A组一周内生产产品甲、乙的正常时间,X3, X4分别为A组一周内生产产品甲、乙的加班时间;X5, X6分别为B组一周内生产产品甲、乙的正常时间,X7, X8分别为B组一周内生产产品甲、乙的加班时间。
运筹学(第2版)习题答案1--3习题一1.1 讨论下列问题:(1)在例1.2中,如果设x j (j=1,2,…,7)为工作了5天后星期一到星期日开始休息的营业员,该模型如何变化.(2)在例1.3中,能否将约束条件改为等式;如果要求余料最少,数学模型如何变化;简述板材下料的思路. (3)在例1.4中,若允许含有少量杂质,但杂质含量不超过1%,模型如何变化.(4)在例1.6中,假定同种设备的加工时间均匀分配到各台设备上,要求一种设备每台每天的加工时间不超过另一种设备任一台加工时间1小时,模型如何变化.(5)在单纯形法中,为什么说当00(1,2,,)k ik a i m λ>≤=并且时线性规划具有无界解。
1.2 工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.根据市场需求,试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为1.3 建筑公司需要用6m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:问怎样下料使得(1【解】 设x j (j =1,2,…,14)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为用单纯形法求解得到两个基本最优解X (1)=( 50 ,200 ,0 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=534 X (2)=( 0 ,200 ,100 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,150 ,0 ,0 );Z=534 (2)余料最少数学模型为用单纯形法求解得到两个基本最优解X (1)=( 0 ,300 ,0 ,0,50 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料550根 X (2)=( 0 ,450 ,0 ,0,0 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料650根 显然用料最少的方案最优。
目录教材习题答案 ................................................. 错误!未定义书签。
习题一 ................................................... 错误!未定义书签。
习题二 ................................................... 错误!未定义书签。
习题三 ................................................... 错误!未定义书签。
习题四 ................................................... 错误!未定义书签。
习题五 ................................................... 错误!未定义书签。
习题六 ................................................... 错误!未定义书签。
习题七 ................................................... 错误!未定义书签。
习题八 ................................................... 错误!未定义书签。
部分有图形的答案附在各章PPT文档的后面,请留意。
习题一讨论下列问题:(1)在例中,假定企业一周内工作5天,每天8小时,企业设备A有5台,利用率为,设备B有7台,利用率为,其它条件不变,数学模型怎样变化.(2)在例中,如果设x j(j=1,2,…,7)为工作了5天后星期一到星期日开始休息的营业员,该模型如何变化.(3)在例中,能否将约束条件改为等式;如果要求余料最少,数学模型如何变化;简述板材下料的思路.(4)在例中,若允许含有少量杂质,但杂质含量不超过1%,模型如何变化.(5)在例中,假定同种设备的加工时间均匀分配到各台设备上,要求一种设备每台每天的加工时间不超过另一种设备任一台加工时间1小时,模型如何变化.工厂每月生产A、B、C三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-22所示.表1-22130.试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 建筑公司需要用6m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-23所示:表1-23 窗架所需材料规格及数量问怎样下料使得(1【解】 第一步:求下料方案,见下表。
设x j (j =1,2,…,14)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为14112342567891036891112132347910121314min 2300322450232400232346000,1,2,,14jj j Z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪++++++≥⎪⎪++++++≥⎨⎪++++++++≥⎪⎪≥=⎩∑ 用单纯形法求解得到两个基本最优解X (1)=( 50 ,200 ,0 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=534 X (2)=( 0 ,200 ,100 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,150 ,0 ,0 );Z=534 (2)余料最少数学模型为134131412342567891036891112132347910121314min 0.60.30.70.40.82300322450232400232346000,1,2,,14j Z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x j =+++++⎧+++≥⎪++++++≥⎪⎪++++++≥⎨⎪++++++++≥⎪⎪≥=⎩ 用单纯形法求解得到两个基本最优解X (1)=( 0 ,300 ,0 ,0,50 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料550根 X (2)=( 0 ,450 ,0 ,0,0 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料650根 显然用料最少的方案最优。
A 、B 两种产品,都需要经过前后两道工序加工,每一个单位产品A 需要前道工序1小时和后道工序2小时,每一个单位产品B 需要前道工序2小时和后道工序3小时.可供利用的前道工序有11小时,后道工序有17小时.每加工一个单位产品B 的同时,会产生两个单位的副产品C ,且不需要任何费用,产品C 一部分可出售赢利,其余的只能加以销毁.出售单位产品A 、B 、C 的利润分别为3、7、2元,每单位产品C 的销毁费为1元.预测表明,产品C 最多只能售出13个单位.试建立总利润最大的生产计划数学模型.【解】设x 1,x 2分别为产品A 、B 的产量,x 3为副产品C 的销售量,x 4为副产品C 的销毁量,有x 3+x 4=2x 2,Z 为总利润,则数学模型为123412122343maxZ=3+7+2211231720130,1,2,,4j x x x x x x x x x x x x x j -+≤⎧⎪+≤⎪⎪-++=⎨⎪≤⎪≥=⎪⎩某投资人现有下列四种投资机会, 三年内每年年初都有3万元(不计利息)可供投资:方案一:在三年内投资人应在每年年初投资,一年结算一次,年收益率是20%,下一年可继续将本息投入获利;方案二:在三年内投资人应在第一年年初投资,两年结算一次,收益率是50%,下一年可继续将本息投入获利,这种投资最多不超过2万元;方案三:在三年内投资人应在第二年年初投资,两年结算一次,收益率是60%,这种投资最多不超过万元; 方案四:在三年内投资人应在第三年年初投资,一年结算一次,年收益率是30%,这种投资最多不超过1万元.投资人应采用怎样的投资决策使三年的总收益最大,建立数学模型. 【解】是设x ij 为第i 年投入第j 项目的资金数,变量表如下数学模型为112131122334111211212312213134122334max 0.20.20.20.50.60.3300001.2300001.5 1.2300002000015000100000,1,,3;1,4ij Z x x x x x x x x x x x x x x x x x x x i j =+++++⎧+≤⎪-++≤⎪⎪--++≤⎪⎪≤⎨⎪≤⎪⎪≤⎪≥==⎪⎩最优解X=(30000,0,66000,0,109200,0);Z =84720IV 发展公司是商务房地产开发项目的投资商.公司有机会在三个建设项目中投资:高层办公楼、宾馆及购物中心,各项目不同年份所需资金和净现值见表1-24.三个项目的投资方案是:投资公司现在预付项目所需资金的百分比数,那么以后三年每年必须按此比例追加项目所需资金,也获得同样比例的净现值.例如,公司按10%投资项目1,现在必须支付400万,今后三年分别投入600万、900万和100万,获得净现值450万.公司目前和预计今后三年可用于三个项目的投资金额是:现有2500万,一年后2000万,两年后2000万,三年后1500万.当年没有用完的资金可以转入下一年继续使用.IV 公司管理层希望设计一个组合投资方案,在每个项目中投资多少百分比,使其投资获得的净现值最大.表1-24【解】以1%为单位,计算累计投资比例和可用累计投资额,见表(2)。
表(2)设x j 为j 项目投资比例,则数学模型:123123123123123max 457050408090025001001601404500190240160650020031022080000,1,2,3j Z x x x x x x x x x x x x x x x x j =++⎧++≤⎪++≤⎪⎪++≤⎨⎪++≤⎪⎪≥=⎩ 最优解X =(0,,);Z=万元年份实际投资项目1比例:0项目2比例:项目3比例:累计投资(万元) 00102030净现值0图解下列线性规划并指出解的形式:(1)12 121212max2131,0Z x x x xx xx x=-++≥⎧⎪-≥-⎨⎪≥⎩【解】最优解X=(1/2,1/2);最优值Z=-1/2(2)12 121212min3 22 23120,0Z x xx xx xx x=---≥-⎧⎪+≤⎨⎪≥≥⎩【解】最优解X=(3/4,7/2);最优值Z=-45/4(3)12 1212121212min32211410 2731,0Z x x x xx xx xx xx x=-++≤⎧⎪-+≤⎪⎪-≤⎨⎪-≤⎪⎪≥⎩【解】最优解X=(4,1);最优值Z=-10(4) 121212112max 3812223,0Z x x x x x x x x x =++≤⎧⎪+≤⎪⎨≤⎪⎪≥⎩ 【解】最优解X =(3/2,1/4);最优值Z=7/4(5) ⎪⎪⎩⎪⎪⎨⎧≥≤≥≥-+=0,6322min 21212121x x x x x x x x Z 【解】最优解X =(3,0);最优值Z=3(6) ⎪⎪⎩⎪⎪⎨⎧≥≤≥≥-+=0,6322max 21212121x x x x x x x x Z【解】无界解。
(7)12121212min 25262,0Z x x x x x x x x =-+≥⎧⎪+≤⎨⎪≥⎩【解】无可行解。
(8)12 1211212max 2.52 280.5 1.5210,0Z x x x xxx xx x=++≤⎧⎪≤⎪⎨+≤⎪⎪≥⎩【解】最优解X=(2,4);最优值Z=13将下列线性规划化为标准形式 (1)123123123123123max 423205743103650,0,Z x x x x x x x x x x x x x x x =+-++≤⎧⎪-+≥⎪⎨++≥-⎪⎪≥≥⎩无限制【解】(1)令654''3'33,,,x x x x x x -=为松驰变量 ,则标准形式为'''1233'''12334'''12335'''12336'''1233456max 42332057443103665,,,,,,0Z x x x x x x x x x x x x x x x x x x x x x x x x x x =--+⎧++-+=⎪-+--=⎪⎨---++=⎪⎪≥⎩ (2) 123123112123min 935|674|205880,0,0Z x x x x x x x x x x x x =-++-≤⎧⎪≥⎪⎨+=-⎪⎪≥≥≥⎩ 【解】(2)将绝对值化为两个不等式,则标准形式为123123412351612123456max 9356742067420588,,,,,0Z x x x x x x x x x x x x x x x x x x x x x '=-+-+-+=⎧⎪--++=⎪⎪-=⎨⎪--=⎪⎪≥⎩ (3)1211212max 231510,0Z x x x x x x x =+≤≤⎧⎪-+=-⎨⎪≥≥⎩【解】方法1:121314121234max 23151,,,0Z x x x x x x x x x x x x =+-=⎧⎪+=⎪⎨-=⎪⎪≥⎩ 方法2:令111111,1,514x x x x x '''=-+≤-=有= 1211212max 2(1)34(1)1,0Z x x x x x x x '=++'≤⎧⎪'-++=-⎨⎪≥⎩则标准型为121312123max 22340,,0Z x x x x x x x x x '=++'+=⎧⎪'-+=⎨⎪'≥⎩(4) 12123123123123123max min(34,)2304215965,0Z x x x x x x x x x x x x x x x x x =+++++≤⎧⎪-+≥⎪⎨++≥-⎪⎪≥⎩无约束、【解】令1212311134,,y x x y x x x x x x '''≤+≤++=-,线性规划模型变为11211231123112311231123max 3()42304()2159()65,,0Z yy x x x y x x x xx x x x x x x x x x x x x x x x ='''≤-+⎧⎪'''≤-++⎪⎪'''-++≤⎪⎨'''--+≥⎪⎪'''-++≥-⎪'''≥⎪⎩、 标准型为112411235112361123711238112345678max 33400230442159965,,,,,,,,0Z yy x x x x y x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ='''-+-+=⎧⎪'''-+--+=⎪⎪'''-+++=⎪⎨'''--+-=⎪⎪'''-+--+=⎪'''≥⎪⎩设线性规划⎪⎩⎪⎨⎧=≥=+-=+++=4,,1,06024503225max 42132121 j x x x x x x x x x Z j取基11322120(P )4041B B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,P 、=,分别指出B B 12和对应的基变量和非基变量,求出基本解,并说明B B 12、是不是可行基.【解】B 1:x 1,x 3为基变量,x 2,x 4为非基变量,基本解为X=(15,0,20,0)T,B 1是可行基。