飞机的运动方程
- 格式:pptx
- 大小:1.57 MB
- 文档页数:22
飞机飞行原理范文飞机的飞行原理是基于伯努利定律和牛顿第三定律的理论基础上的。
伯努利定律是描述流体在沿程动态流动时,其动能和压力之间的关系。
牛顿第三定律则规定在相互作用的物体间,作用力与反作用力大小相等、方向相反。
这两个定律共同解释了飞机的飞行原理。
一、伯努利定律伯努利定律指出,在稳态、不可压缩流体中,沿流体流动的任意一条流线,总的动压等于常数。
所谓动压,即流体流动所带来的压强变化。
伯努利定律的数学公式为:P + 1/2ρv² + ρgh = 常数其中,P表示压强,ρ表示密度,v表示流速,g表示重力加速度,h 表示高度。
根据伯努利定律,当飞机飞行时,通过改变飞机外形和控制飞机的速度,可以产生不同的气流和压力变化。
将流体视为通过飞机上下表面的空气,我们可以解释以下几个关键点:1.翼型设计飞机的翼型设计采用了空气动力学原理,以使翼面上方的气流速度相对较快,下方的气流速度相对较慢,因此上面的压力较小,下面的压力较大。
这样,产生一个向上的升力,支持整个飞机的重量。
2.扰流器和襟翼扰流器和襟翼是用于改变飞机翼面形状的可动部件。
当它们打开时,导致上方和下方气流速度之间的差异更大,从而增加了升力。
这种升力调节对飞机的起降和低速飞行非常重要。
3.推进系统推进系统通常由涡轮引擎或喷气发动机提供动力。
发动机通过喷出高速气流,使得飞机得到向前推进的力。
这里应用了牛顿第三定律:喷出气流向后发生的反作用力作用在飞机上,使飞机得到向前的推力。
二、牛顿第三定律牛顿第三定律规定,在任何两个物体之间的相互作用中,两个物体所受的作用力相等、方向相反。
在飞机的飞行中,按照牛顿第三定律,我们可以看到以下几个关键点:1.升力和重力飞机的升力是由于飞机底部所受的气压大于顶部所受的气压,而产生的一个向上的力。
按照牛顿第三定律,产生升力的同时,飞机受到一个向下的重力,将其与地球牢牢连接。
2.推力和阻力推力是由发动机喷出的气流反作用在飞机上,使飞机前进。
第三章飞行器的运动方程 刚体动力学方程的推导 1.刚体飞行器运动的假设1)认为飞行器不仅是刚体,而且质量是常数;2)假设地面为惯性参考系,即假设地面坐标为惯性坐标; 3)忽略地面曲率,视地面为平面; 4)假设重力加速度不随飞行高度而变化;5)假设机体坐标系的z o x --平面为飞行器对称平面,且飞行器不仅几何外形对称,而且内部质量分布亦对称,惯性积0==zy xy I I 2.旋转坐标系中向量的导数设活动坐标系b b b z y Ox 具有角速度ω (见图)。
向量ω在此坐标系中的分量为r q p ,,,即k r j q i p++=ω () 其中i 、j、k 是b x 、b y 、b z 轴的单位向量。
图设有一个可变的向量)(t a,它在此坐标系中的分量为z y x a a a ,,,即k a j a i a a z y x++= ()由上式求向量)(t a对时间t 的导数:b xωb yb zOijkdtkd a dt j d a dt i d a k dt da j dt da i dt da dt a d z y x z y x +++++= () 从理论力学知,当一个刚体绕定点以角速度ω旋转时,刚体上任何一点P的速度为r dt r d⨯=ω () 其中r是从O 点到P 点的向径。
现在,把单位向量i看作是活动坐标系中一点P 的向径,于是可得:i dtid⨯=ω () 同理可得: j dtj d⨯=ω () k dtkd⨯=ω () 将式()、()及()代入式()中,可得:)(k a j a i a k dtda j dt da i dt da dt a d z y x z y x ++⨯+++=ω () 或写为: a t a dt a d⨯+=ωδδ () 其中k dt da j dt da i dt da t a z y x++=δδ taδδ 称为在活动坐标系中的“相对导数”,相当于站在此活动坐标系中的观察者所看到的向量a 的变化率。
固定翼动力计算公式固定翼飞机是一种利用动力装置产生的推力来进行飞行的飞行器。
在设计和制造固定翼飞机时,需要对其动力进行精确的计算和分析,以确保飞机能够正常起飞、飞行和着陆。
固定翼动力计算公式是对飞机动力进行精确计算的数学表达式,它包括了飞机的速度、推力、空气动力学参数等多个因素,通过这些公式可以计算出飞机在不同飞行状态下的动力需求,为飞机设计和运行提供重要的参考依据。
在固定翼飞机的动力计算中,最基本的公式就是牛顿第二定律,即F=ma,其中F表示合外力,m表示物体的质量,a表示物体的加速度。
在飞机的动力计算中,合外力即为推力,而加速度则与飞机的速度和加速度有关。
因此,飞机的动力计算公式可以简化为推力和速度的关系。
推力是飞机飞行所需的动力来源,它可以通过飞机的发动机产生。
在计算飞机的推力时,需要考虑到飞机的速度、气压、空气密度等多个因素。
根据空气动力学理论,飞机的推力与速度呈线性关系,即推力随着速度的增加而增加。
这一关系可以用以下公式来表示:T = D + (W sin(γ))。
其中,T表示飞机的推力,D表示飞机的阻力,W表示飞机的重量,γ表示飞机的飞行角度。
在这个公式中,飞机的阻力是一个与速度和空气动力学参数有关的复杂函数,一般可以通过实验或计算得到。
飞机的重量是一个固定值,而飞机的飞行角度则是飞机的飞行状态决定的。
因此,通过这个公式可以计算出飞机在不同速度和飞行角度下所需的推力。
除了推力和速度的关系外,飞机的动力计算还需要考虑到飞机的爬升率。
爬升率是飞机在垂直方向上的速度变化率,它可以用以下公式来表示:Vz = (T D) / W。
其中,Vz表示飞机的爬升率,T表示飞机的推力,D表示飞机的阻力,W表示飞机的重量。
通过这个公式可以计算出飞机在不同推力和阻力下的爬升率,从而为飞机的爬升性能提供重要的参考数据。
除了上述的基本公式外,固定翼飞机的动力计算还涉及到许多其他因素,如飞机的气动特性、发动机的性能、飞机的机动性能等。
飞机运动方程及小扰动方程推导飞机是一种重要的交通工具,它的运动可以通过一系列的方程来描述。
其中,飞机的运动方程是指描述飞机在空气中运动的基本方程,而小扰动方程是指描述飞机在受到微小扰动时的动力学方程。
飞机的运动方程是通过对牛顿运动定律的应用得到的。
根据牛顿第二定律,飞机的运动可以用以下方程来描述:F = ma在这个方程中,F代表飞机所受到的合力,m代表飞机的质量,a 代表飞机的加速度。
根据牛顿第二定律,飞机所受到的合力等于质量乘以加速度。
飞机所受到的合力可以分解为重力和气动力两部分。
重力是指地球对飞机的引力,可以用以下方程来描述:Fg = mg在这个方程中,Fg代表重力,m代表飞机的质量,g代表重力加速度。
重力的大小与飞机的质量成正比。
气动力是指飞机在空气中运动时所受到的阻力和升力。
阻力是指空气对飞机运动的阻碍力,可以用以下方程来描述:Fr = 0.5 * ρ * V^2 * Cd * A在这个方程中,Fr代表阻力,ρ代表空气密度,V代表飞机的速度,Cd代表阻力系数,A代表飞机的参考面积。
阻力的大小与空气密度、速度、阻力系数和参考面积有关。
升力是指空气对飞机垂直方向上的支持力,可以用以下方程来描述:Fl = 0.5 * ρ * V^2 * Cl * A在这个方程中,Fl代表升力,ρ代表空气密度,V代表飞机的速度,Cl代表升力系数,A代表飞机的参考面积。
升力的大小与空气密度、速度、升力系数和参考面积有关。
小扰动方程是指在飞机受到微小扰动时,飞机的动力学方程。
小扰动方程可以用以下方程来描述:m * δa = δF在这个方程中,m代表飞机的质量,δa代表飞机的微小加速度,δF代表飞机所受到的微小合力。
小扰动方程描述了飞机在受到微小扰动时的运动情况。
通过对飞机的运动方程和小扰动方程的推导,我们可以更好地理解飞机在空中的运动规律。
这些方程为飞机的设计、控制和性能评估提供了重要的理论基础。
同时,这些方程也为飞机的飞行安全和效率提供了指导,使得飞机能够更加稳定、安全地在空中飞行。
航空飞行器飞行动力学航空飞行器飞行动力学是研究飞行器在空气中运动的力学原理和规律的学科。
它涉及到飞行器的姿态稳定、操纵性能、飞行性能以及空气动力学等方面的内容。
本文将从航空飞行器的基本原理、力学模型、飞行动力学方程和相关应用等方面进行介绍。
一、航空飞行器的基本原理航空飞行器的基本原理是以牛顿运动定律为基础的。
根据牛顿第一定律,飞行器如果没有外力作用,将保持静止或匀速直线运动。
而根据牛顿第二定律,飞行器所受的合力等于质量乘以加速度,即F=ma。
根据牛顿第三定律,任何作用力都会有相等大小、方向相反的反作用力。
二、航空飞行器的力学模型航空飞行器的力学模型可以分为刚体模型和弹性模型。
刚体模型假设飞行器是一个刚体,不考虑其变形和挠曲;弹性模型考虑飞行器的变形和挠曲,可以更准确地描述飞行器的运动。
三、飞行动力学方程飞行动力学方程是描述飞行器运动的重要工具。
常用的飞行动力学方程包括牛顿定律、欧拉角运动方程、质心动力学方程等。
牛顿定律可以描述飞行器的平动运动,欧拉角运动方程可以描述飞行器的转动运动,质心动力学方程可以描述飞行器的整体运动。
四、航空飞行器的飞行性能航空飞行器的飞行性能包括速度性能、高度性能、加速性能等。
其中速度性能是指飞行器的最大速度、巡航速度和爬升速度等;高度性能是指飞行器的最大飞行高度、最大升限和最大下降高度等;加速性能是指飞行器的爬升率、加速度和制动性能等。
五、航空飞行器的操纵性能航空飞行器的操纵性能是指飞行器在各种操作条件下的控制性能。
它包括飞行器的稳定性、操纵性和敏感性等。
稳定性是指飞行器在受到扰动后能够自动恢复到平衡状态的能力;操纵性是指飞行器在操纵杆或操纵面的控制下实现各种机动动作的能力;敏感性是指飞行器对操纵输入的敏感程度。
六、航空飞行器的空气动力学航空飞行器的空气动力学是研究飞行器在空气中运动的力学学科。
它涉及到飞行器的升力、阻力、侧向力和滚转力等。
升力是飞行器在垂直方向上的支持力,阻力是飞行器在运动过程中受到的阻碍力,侧向力是飞行器在横向方向上的支持力,滚转力是飞行器的转动力。
飞机飞行性能计算1、飞机动态建模飞机在铅垂面内飞行,是指飞机对称面式中与某个给定的空间铅垂面重合且飞行航迹式中在铅垂面内运动。
这种飞行状态又称为对称飞行,此时有质心运动方程:()cos()sin sin cos sin p p g g dv m P X mg dt d mV P dt dx V dt dy dH V dt dt a j q q a j q q ìïï=+--ïïïïïï=+ïïíïï=ïïïïïï==ïïïî最大平飞速度读,最小平飞速度和升限,估算中一般取飞机质量为平均飞机质量(50%),飞机处于基本构型,发动机处于(加力、最大、额定)工作状态。
2、平飞所需推力计算;平飞:飞机作等速直线水平飞行。
在某一高度,平飞所需推力则需要根据飞机作等速水平直线飞行时的质心运动方程。
飞机平飞时,0q =。
则运动方程为: P X Y G ìï=ïíï=ïî平飞中为使飞行速度保持不变必须使发动机推力等于飞行阻力。
平飞中为克服飞行阻力所需的发动机推力就叫做平飞所需推力,记为r P ,即212r xP X C V S r == 式中0x x xi xh C C C C =++D0x C 为零升阻力系数,一般为飞行马赫数的函数;xi C 为诱导阻力系数。
一般在迎角较小时2xi y C A C =,A 为马赫数的函数;当迎角较大时xi C 除随a M 而变化外,还是迎角的复杂函数,在某些飞机说明书中以诱导阻力曲线的形式给出;xh C D 是考虑到不同高度的雷诺数影响系数。
3、最大/最小平飞速度计算 由所需推力公式:212r xP X C V S r ==计算出所需推力,将不同高度上的发动机推力与所需推力绘制到一幅图上,根据所需推力和发动机所提供的推力曲线的相交情况来确定最大最小速度。
飞行动力学内容绪论1.1 作用在飞机上的外力1.3 常用坐标系及其转换1.4 飞机质心运动方程小结本章作业1.1;1.2;1.3;1.4;1.5;1.7;1.8;1.9飞行动力学=飞行性能+飞行品质研究飞机的飞行性能和飞行轨迹特性时,可将飞机视为一可控的质点来处理。
可控:是指飞机的飞行轨迹是可以人为改变的,而轨迹的改变取决于作用于飞机上的外力的改变。
质点运动:通过偏转操纵机构,使飞机的合力矩为零;研究飞机的飞行轨迹和飞行性能时可以把飞机视为质点运动。
力矩平衡作为运动的约束条件。
质点系运动:合力矩不为零。
研究飞机飞行品质时将其视为质点系运动。
1.1.1 升阻特性1.1.2 发动机推力从飞行性能的角度,假设操纵面偏转可使力矩平衡,但将其最大平衡能力作为约束。
实际还常忽略操纵面偏转对力平衡的影响。
作用在飞机上的外力?W m g =K K (,,)T V H n J G F W T A =++J J G J G J G K 合外力 外力矩平衡及约束外力一般不通过质心,它将引起绕质心转动的力矩A L D C =++J G J G J G J G L J G D JG W JJ G TJ G 'LJ G 1.1作用在飞机上的外力V K L J G D JG T J G 'L J G W JJ G 重力给定;侧力不计;升力?阻力?发动机推力?重力发动机推力空气动力1.1作用在飞机上的外力在常规飞行性能问题中,假设飞行无侧滑,视侧力为零升力系数阻力系数侧力系数2L L V SC ρ=2D D V SC ρ=2CC V S C ρ=升力和阻力系数主要取决于马赫数、雷诺数、迎角、侧滑角以及飞机的外形马赫数的物理含义?雷诺数的物理含义?迎角的定义?侧滑角的定义?9马赫数:指空气的压缩性效应;低速空气流场不相互影响,高速时则前后相互影响。
9雷诺数:惯性力和粘性力的比值。
¾飞机的尺寸效应;即飞机的尺寸大小会影响飞机的气动特性,一般飞机在真实大气中飞行时,其雷诺数在1000万以上。
伯努利方程原理以及在实际生活中的运用2011444367 陈高威在我们传输原理学习当中有很多我们实际生活中运用到的原理,其中伯努利方程是一个比较重要的方程。
在我们实际生活中有着非常重要广泛的作用,下面就伯努利方程的原理以及其运用进行讨论下。
伯努利方程p+ρgh+(1/2)*ρv ²=c 式中p、ρ、v分别为流体的压强,密度和速度;h为铅垂高度;g为重力加速度;c为常量。
它实际上流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差说做的功。
伯努利方程的常量,对于不同的流管,其值不一定相同。
相关应用(1)等高流管中的流速与压强的关系根据伯努利方程在水平流管中有p+(1/2)*ρv ²=常量故流速v大的地方压强p就小,反之流速小的地方压强大。
在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,所以管细处压强小,管粗处压强大,从动力学角度分析,当流体沿水平管道运动时,其从管粗处流向管细处将加速,使质元加速的作用力来源于压力差。
下面就是一些实例伯努利方程揭示流体在重力场中流动时的能量守恒。
由伯努利方程可以看出,流速高处压力低,流速低处压力高。
三、伯努利方程的应用:1.飞机为什么能够飞上天?因为机翼受到向上的升力。
飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。
由伯努利方程可知,机翼上方的压强小,下方的压强大。
这样就产生了作用在机翼上的方向的升力。
伴随着科学技术的高速发展,给交通事业也带来了蓬勃的生机。
特别是航天事业的发展。
自1877年,在美国的代顿地区,莱特兄弟驾驶人类历史上第一架飞机飞行成功开始,到现在航天飞机宇宙飞船的上天,都给历史留下了美好的一页。
但是,现今还有许许多多的人不理解飞机为什么能飞?为了让人们更好的了解飞机起飞原理,更好的接受科学知识,我特别制作了飞机起飞的模型。
一、模型的结构图和尺寸飞机起飞模型的结构图飞机起飞模型的结构图二、实验模型的原理说明飞机能起飞依靠的是伯努力原理和机翼的升力。