第8章 分布式数据库
- 格式:ppt
- 大小:997.00 KB
- 文档页数:90
分布式数据库复习要点第一章1、分布式数据库的定义(P4)物理上分散而逻辑上集中的系统,它使用计算机网络将地理位置分散而管理和控制又需要不同程度集中的多个逻辑单位(通常是集中式数据库系统)连接起来,共同组成一个统一的数据库系统。
分布式数据库系统可以看成是计算机网络和数据库系统的有机结合。
2、分布式数据库的两种分类方法(P7)●按局部DBMS的数据模型分同构型DDBS:各个站点上数据库使用同一数据模型同构同质型-数据模型相同,且是同一种DBMS(同一厂家)同构异质型-数据模型相同,不是同一种DBMS异构型DDBS :各站点上数据库的数据模型类型不同全局控制集中型DDBS:全局控制机制和全局数据词典位于中心站点全局控制分散型DDBS:全局控制机制和全局数据词典分散在网络的各个站点上。
全局控制可变型DDBS:也称主从型DDBS。
分成两组站点,一组包含全局控制机制和全局控制词典,另外一组不包含。
3、分布式数据库的组成成分(两部分)(P9)●数据:分布式数据库的主体,包括局部数据和全局数据。
●数据目录:数据结构的定义、全局数据的分片、分布、授权、事务恢复等描述,包括局部和全局数据目录。
4、分布式数据库的数据分片的定义和类型(3种)(P10)数据分片:又称数据分割、数据分段,局部数据库是由全局数据库分割而成。
三种类型:●水平分片:按特定条件把全局关系的所有元组划分成若干个互不相交的子集,对全局关系施加选择运算。
●垂直分片:把全局关系的属性集分成若干个子集,对全局关系施加投影运算。
●混合分片:以上两种方法的混合。
5、分布式数据库的分布策略(4条)(P11)数据分布:根据某种策略把数据分片所得的逻辑片断分散地存储在各个站点上.●集中式:所有数据都安排在同一站点上●分割式:所有数据只有一份,被分割成若干个逻辑片段,每个片段被放置在特定的站点●复制式:所有数据有多个副本,每个站点都有一个完整的数据副本●混合式:分割式和复制式的混合6、分布式数据库的模式结构(P13)分四层:●全局外层:全局外模式---全局应用的用户视图。
分布式数据库原理在计算机科学领域,分布式数据库是一个非常重要的概念,它在现代大型系统中扮演着至关重要的角色。
分布式数据库是指将数据存储在多个物理位置的数据库系统,这些物理位置可以是在同一台计算机上,也可以是在不同的计算机、服务器或数据中心上。
分布式数据库系统可以提供高性能、高可用性和可伸缩性,因此被广泛应用于互联网、云计算和大数据领域。
分布式数据库的原理可以总结为以下几个关键点:1. 数据分片,分布式数据库将数据分成多个片段,每个片段存储在不同的节点上。
这样做可以提高查询性能,因为每个查询可以并行地在多个节点上执行,同时也可以提高系统的可伸缩性,因为可以动态地增加或减少节点来调整系统的容量。
2. 数据复制,为了提高系统的可用性,分布式数据库通常会对数据进行复制,将数据存储在多个节点上。
这样即使某个节点发生故障,系统仍然可以继续提供服务。
数据复制还可以提高系统的读取性能,因为可以从就近的节点读取数据。
3. 一致性协议,分布式数据库需要解决数据一致性的问题,即保证不同节点上的数据是一致的。
为了实现一致性,分布式数据库通常会采用一致性协议,如Paxos、Raft或ZAB协议,来保证数据的一致性和可靠性。
4. 分布式事务,在分布式数据库中,跨多个节点的事务处理是一个复杂的问题。
分布式事务需要解决事务的原子性、一致性、隔离性和持久性等问题,通常会采用两阶段提交(2PC)或三阶段提交(3PC)等协议来保证事务的正确执行。
5. 数据分布策略,在设计分布式数据库时,需要考虑如何将数据分布在不同的节点上。
数据分布策略可以影响系统的性能和可扩展性,因此需要根据实际情况选择合适的数据分布策略。
总的来说,分布式数据库的原理涉及到数据分片、数据复制、一致性协议、分布式事务和数据分布策略等方面。
了解这些原理可以帮助我们更好地设计、部署和维护分布式数据库系统,提高系统的性能、可用性和可扩展性,从而更好地满足现代大型系统的需求。
《分布式数据库原理与应用》课程教案第一章:分布式数据库概述1.1 课程介绍介绍分布式数据库课程的基本概念、目的和意义。
1.2 分布式数据库基本概念解释分布式数据库的定义、特点和分类。
1.3 分布式数据库系统结构介绍分布式数据库系统的常见结构及其组成。
1.4 分布式数据库系统的研究和发展概述分布式数据库系统的研究背景和发展历程。
第二章:分布式数据库的体系结构2.1 分布式数据库的体系结构概述介绍分布式数据库的体系结构及其功能。
2.2 分布式数据库的体系结构类型讲解分布式数据库的体系结构类型及其特点。
2.3 分布式数据库的体系结构设计原则探讨分布式数据库的体系结构设计原则和方法。
2.4 分布式数据库的体系结构实现技术分析分布式数据库的体系结构实现技术及其应用。
第三章:分布式数据库的数据模型3.1 分布式数据库的数据模型概述解释分布式数据库的数据模型及其重要性。
3.2 分布式数据库的分布式数据模型介绍分布式数据库的分布式数据模型及其特点。
3.3 分布式数据库的分布式数据模型设计方法讲解分布式数据库的分布式数据模型设计方法及其应用。
3.4 分布式数据库的分布式数据模型实现技术分析分布式数据库的分布式数据模型实现技术及其应用。
第四章:分布式数据库的查询处理4.1 分布式数据库的查询处理概述介绍分布式数据库的查询处理及其重要性。
4.2 分布式数据库的查询处理策略讲解分布式数据库的查询处理策略及其特点。
4.3 分布式数据库的查询优化技术分析分布式数据库的查询优化技术及其应用。
4.4 分布式数据库的查询处理实现技术探讨分布式数据库的查询处理实现技术及其应用。
第五章:分布式数据库的安全性与一致性5.1 分布式数据库的安全性概述解释分布式数据库的安全性及其重要性。
5.2 分布式数据库的安全性机制介绍分布式数据库的安全性机制及其特点。
5.3 分布式数据库的一致性概述解释分布式数据库的一致性及其重要性。
5.4 分布式数据库的一致性机制讲解分布式数据库的一致性机制及其特点。
分布式数据库的概念
分布式数据库是指将数据存储在多个不同的地理位置上,并通过网络连接这些位置上的数据节点,以实现数据的分布式存储和处理。
在分布式数据库中,数据被分割成多个部分,并存储在不同的节点上。
这些节点可以分布在不同的服务器、数据中心或云平台上。
每个节点都具有自己的处理器、内存和存储设备,可以独立地执行数据操作和处理。
分布式数据库的主要优点包括:
1. 可伸缩性:分布式数据库可以通过增加节点数量来提高系统的存储和处理能力,从而满足不断增长的数据量和业务需求。
2. 高可用性:分布式数据库可以通过冗余存储和自动故障转移等技术来提高系统的可用性,减少单点故障对系统的影响。
3. 性能提升:分布式数据库可以通过将数据分布在多个节点上,提高数据的查询和处理速度,从而提高系统的性能。
4. 数据安全:分布式数据库可以通过数据加密、备份和恢复等技术来提高数据的安全性,保护数据免受攻击和丢失。
分布式数据库的实现需要考虑数据的分布、一致性、容错性、性能优化等多个方面。
同时,分布式数据库的管理和维护也需要专业的技术知识和经验。
总之,分布式数据库是一种高效、可靠、安全的数据库管理系统,适用于大规模数据存储和处理的应用场景。
数据库系统概论第五版PDF简介《数据库系统概论第五版PDF》是一本介绍数据库系统的入门教材,旨在帮助读者理解数据库系统的基本概念、原理和应用。
本书由柯里斯·李(Morris R. Li)和布鲁斯·斯图尔特(Bruce G. Lindsay)合著,是数据库领域的经典教材之一。
内容概述本书共分为八个章节,每章介绍了数据库系统的不同方面。
下面是各章节的简要概述。
第一章:引论该章节介绍了数据库的基本概念和发展历程。
通过对数据库系统的定义和优势的解释,给读者提供了对数据库系统的初步了解。
第二章:关系数据模型该章节介绍了关系数据模型,包括关系模型的构成要素、关系数据库设计和关系代数。
通过对关系数据模型的详细介绍,读者可以理解关系数据库的基本原理和数据组织方式。
第三章:SQL语言该章节介绍了SQL语言,包括SQL的基本语法、数据的查询和修改操作。
通过对SQL语言的学习和实践,读者可以掌握数据库操作的基本技巧。
第四章:数据库设计该章节介绍了数据库设计的基本原理和方法。
包括数据模型的设计、关系模式的规范化和数据库的物理组织方式。
通过对数据库设计的学习,读者可以理解如何设计一个高效稳定的数据库系统。
第五章:数据库编程该章节介绍了数据库编程的基本概念和技术。
包括存储过程、触发器和函数的编写,以及数据库事务的管理。
通过对数据库编程的学习,读者可以掌握如何编写高效的数据库应用程序。
第六章:关系数据库标准化及数据完整性该章节介绍了关系数据库的标准化和数据完整性保证。
包括关系数据模式的规范化、实体完整性和参照完整性的实现。
通过对数据库标准化和数据完整性的学习,读者可以设计出符合标准和完整性要求的数据库系统。
第七章:物理数据库设计和调优该章节介绍了物理数据库设计和调优的基本原理和方法。
包括数据库索引的设计、查询优化和数据存储方式的选择。
通过对物理数据库设计和调优的学习,读者可以设计出高效的数据库系统和查询方案。
分布式数据库由于分布式数据库克服了集中式数据库的许多缺点,并且自然地适应于许多单位地理上分散而逻辑上统一的组织结构,因此,20多年以来从理论到实践都得到了迅速发展,并取得了决定性成果。
分布式数据库结构分布式数据库的典型定义是:分布式数据库是一个数据集合,这些数据在逻辑上属于同一个系统,但物理上却分散在计算机网络的若干站点上,并且要求网络的每个站点具有自治的处理能力,能执行本地的应用。
每个站点的计算机还至少参与一个全局应用的执行。
所谓全局应用,要求使用通讯子系统在几个站点存取数据。
这个定义强调了分布式数据库的两个重要特点:分布性和逻辑相关性。
图1给出了典型的分布式数据库系统(DDBS)的物理结构。
其中在不同地域的3台计算机分别控制本地数据库及各终端用户T;每台计算机及其本地数据库组成了此分布式数据库的一个站点,各站点用通讯网络连接起来,可以是局域网或广域网。
图1 DDBS的物理结构图图2给出了分布式数据库的逻辑结构。
其中,DDBMS是分布式数据库管理系统,用来支持分布式数据库的建立和维护。
LDBMS是局部数据库管理系统,也就是通常的集中式数据库管理系统,用来管理本站的数据。
图2 DDBS的逻辑结构DDBS的工作原理DDBMS是分布式数据库系统的核心部分,就其性质可分为匀质和异质两种。
若每个站点的LDBMS相同,则是匀质的;若至少有两个LDBMS不同,则是异质的。
异质DDBMS要在不同LDBMS的不同数据模型间进行转换,因而比匀质DDBMS更复杂。
一般来说,若从头开始研制一个DDBS,则选择匀质较方便,且通常都选用关系模型。
这是由于关系模型易于分布管理,但若DDBS是建立在已有的若干数据库之上,则这些数据库很可能有的是基于关系模型的,有的是基于层次或网络模型的,即它们是不同质的,因此要建立异质的DDBMS。
图3给出了分布式数据库管理系统DDBMS的工作原理的参考模型。
图3 DDBMS工作原理参考模型用户处理器根据外模式和概念模式把用户命令翻译成格式更适合于机器的规范化命令,并实施完整性约束,同时它负责将规范化格式的数据转换成用户结果格式。
8.2 分布式数据库管理系统DDBMS(Distribute DBMS )分布式数据库意味着一个应用程序可以对数据库进行透明操作,数据库中的数据分布在不同的数据库中存储、由不同的DBMS进行管理、在不同的机器上运行、由不同的操作系统支持、被不同的通讯网络连接在一起。
一个一分布式数据库由一个逻辑数据库组成,这个逻辑数据库的数据分布存贮在由计算机网络相连的不同场地的计算机中,每一场地都有自治能力完成局部应用。
每一场地也参与至少两个结点以上的全局应用程序的执行,全局应用可以存取若干场地的数据。
从应用程序看来,就好象数据是存储在一台计算机上,由单个DBMS管理一样。
8.2.1 分布式数据库系统的产生分布式数据库由一组数据集合组成,这些数据属于一个逻辑数据库,但数据存贮在多个物理计算机结点上,通过网络连接在一起。
分布式数据库系统是在集中式数据库系统的基础上发展起来的,是数据库技术与计算机网络技术结合的产物。
分布式数据库系统是具有管理分布数据库功能的计算机系统。
一个分布式数据库是由分布于计算机网络上的多个逻辑相关的数据库组成的集合,网络中的每个结点具有独立处理的能力(称为场地自治),可执行局部应用,同时,每个结点通过网络通讯系统也能执行全局应用。
所谓局部应用即仅对本结点的数据库执行某些应用。
所谓全局应用(或分布应用)是指对二个以上结点上的数据库执行某些应用。
支持全局应用的系统才能称为分布式数据库系统。
对用户来说,一个分布式数据库系统逻辑上看如同集中式数据库系统一样,用户可在任何一个场地执行全局应用。
分布式数据库系统适合于单位分散的部门,允许各个部门将其常用数据存储在本地,实施就地存放就地使用,降低通讯费用,并可提高响应速度。
因为这些企业实际上已经把数据分散在不同的位置或不同的物理计算机上。
例如,一个公司的不同部门的数据,银行系统的各个分行数据等。
企业的信息资源已经是被划分为许多信息资源孤岛,分布式数据库系统是适应企业的结构现状,满足企业的应用要求,把所有的信息资源孤岛连接起来,实现数据的异地存取。
分布式数据库管理系统简介一、什么是分布式数据库:分布式数据库系统是在集中式数据库系统的基础上发展来的。
是数据库技术与网络技术结合的产物。
分布式数据库系统有两种:一种是物理上分布的,但逻辑上却是集中的。
这种分布式数据库只适宜用途比较单一的、不大的单位或部门。
另一种分布式数据库系统在物理上和逻辑上都是分布的,也就是所谓联邦式分布数据库系统。
由于组成联邦的各个子数据库系统是相对“自治”的,这种系统可以容纳多种不同用途的、差异较大的数据库,比较适宜于大范围内数据库的集成。
分布式数据库系统(DDBS)包含分布式数据库管理系统(DDBMS)和分布式数据库(DDB)。
在分布式数据库系统中,一个应用程序可以对数据库进行透明操作,数据库中的数据分别在不同的局部数据库中存储、由不同的DBMS进行管理、在不同的机器上运行、由不同的操作系统支持、被不同的通信网络连接在一起。
一个分布式数据库在逻辑上是一个统一的整体:即在用户面前为单个逻辑数据库,在物理上则是分别存储在不同的物理节点上。
一个应用程序通过网络的连接可以访问分布在不同地理位置的数据库。
它的分布性表现在数据库中的数据不是存储在同一场地。
更确切地讲,不存储在同一计算机的存储设备上。
这就是与集中式数据库的区别。
从用户的角度看,一个分布式数据库系统在逻辑上和集中式数据库系统一样,用户可以在任何一个场地执行全局应用。
就好那些数据是存储在同一台计算机上,有单个数据库管理系统(DBMS)管理一样,用户并没有什么感觉不一样。
分布式数据库中每一个数据库服务器合作地维护全局数据库的一致性。
分布式数据库系统是一个客户/服务器体系结构。
在系统中的每一台计算机称为结点。
如果一结点具有管理数据库软件,该结点称为数据库服务器。
如果一个结点为请求服务器的信息的一应用,该结点称为客户。
在ORACLE客户,执行数据库应用,可存取数据信息和与用户交互。
在服务器,执行ORACLE软件,处理对ORACLE 数据库并发、共享数据存取。
分布式数据库原理、架构与实践
1 分布式数据库的概念
随着互联网应用的大规模化普及,传统的单机数据库已经无法满
足系统的高并发、高可靠性、高容量等需求,分布式数据库应运而生。
分布式数据库指将系统数据分散存放在多台服务器上,并通过网络进
行数据交换和协调,实现数据共享、负载均衡等功能的数据库。
2 分布式数据库的原理
分布式数据库的实现原理主要分为三个方面:数据分片、数据复
制和数据一致性控制。
数据分片指将数据按照一定规则划分成多个片段,存储在不同的节点上;数据复制指将数据在多个节点上进行备份,以提高系统的可靠性和可用性;数据一致性控制指各个节点之间通过
协议保证数据的读写一致性。
3 分布式数据库的架构
分布式数据库的架构可以分为两种:主从架构和P2P架构。
主从
架构中,一个节点作为主节点,向其他从节点分发数据,从节点负责
读写数据;P2P架构中,各个节点平等地共享数据,通过协作实现数据一致性。
4 分布式数据库的实践
分布式数据库在实践时需要考虑多方面的问题,例如负载均衡、
数据安全、数据备份与恢复、数据一致性控制等。
同时,分布式数据
库的性能测试也需要进行细致的规划和实施,以保证系统的稳定性和可靠性。
常用的分布式数据库包括MySQL Cluster、MongoDB、Cassandra等。
5 总结
分布式数据库的应用已经逐渐普及,具有非常重要的意义。
在实践中,需要根据应用场景选择适当的架构和实现方式,并考虑合理的性能测试和性能优化策略,以达到系统的稳定性和可靠性要求。
分布式数据库原理、架构与实践 pdf1 分布式数据库的定义和特点分布式数据库是指把数据分散存储于多个计算机节点上,数据节点之间可以互相通信和协作,以便快速响应用户请求并提高数据安全性和可用性。
分布式数据库有以下几个特点:- 可扩展性:可以添加或删除节点以应对数据量增大或缩小的需求;- 数据安全性:通过多副本存储和备份策略可以防止数据丢失或损坏;- 高可用性:节点之间互相备份和协作可以确保系统的高可用性;- 高并发处理能力:多个节点可以同时处理用户请求,提高系统的并发处理能力;- 易于维护:可以通过集中和分布式管理方法来优化系统的维护效率。
2 分布式数据库的架构和组成部分分布式数据库架构包括以下三个部分:- 分布式数据存储:将数据存储在多个节点上以提高数据安全性和可用性;- 分布式数据处理:将请求分配到多个节点以提高系统的并发处理能力;- 分布式数据管理:集中或分散管理节点,以提高系统维护效率。
分布式数据库的组成部分包括以下内容:- 数据节点:存储分布式数据库的数据,可以分为主节点和备份节点;- 数据存储引擎:管理数据存储和查询请求的软件;- 数据通信机制:节点之间通信的软件或协议,如TCP/IP协议;- 数据路由器:将请求路由到指定的数据节点;- 分布式锁管理器:管理分布式锁,防止同时修改或删除同一份数据;- 监控系统和日志:用于管理集中或分布式的数据库系统,并记录操作日志。
3 分布式数据库的实践应用分布式数据库已经成为大型互联网公司和金融行业等领域的重要技术,以下是几个分布式数据库的实践案例:- Google Spanner:是Google自主研发的分布式数据库,可以同时保证数据的强一致性和高可用性,被广泛用于Google的内部应用;- MyCat:是中国自主研发的开源分布式数据库中间件,可以提供MySQL、MariaDB等数据库的访问和高可用性等功能;- Hadoop Distributed File System(HDFS):是Apache Hadoop 生态系统的重要组成部分,是一个分布式文件系统,可以提高数据的可靠性和扩展性;- Amazon DynamoDB:是Amazon Web Services的一种NoSQL数据库,可以提供高可用性、强一致性和分布式数据存储和处理等功能。
数据库原理及应用教程电子教案第一章:数据库基础知识1.1 数据库概念数据库的定义数据库的用途数据库的发展历程1.2 数据模型概念模型关系模型面向对象模型1.3 数据库体系结构数据库三级模式结构数据库二级映像第二章:关系数据库2.1 关系数据库概述关系数据库的基本概念关系数据库的组成2.2 关系运算选择投影连接2.3 关系数据库设计关系模型规范化第三章:SQL语言3.1 SQL概述SQL的定义SQL的特点3.2 数据定义语言创建表修改表删除表3.3 数据操作语言插入数据查询数据更新数据第四章:数据库设计4.1 需求分析收集需求分析需求4.2 概念设计实体-关系模型实体属性的确定4.3 逻辑设计视图设计4.4 物理设计文件组织索引设计第五章:数据库安全与保护5.1 数据库安全用户权限管理数据加密5.2 完整性约束实体完整性参照完整性5.3 数据库备份与恢复备份策略恢复策略5.4 数据库性能优化查询优化索引优化数据库原理及应用教程电子教案第六章:数据库管理系统的使用6.1 数据库管理系统的功能数据定义数据操纵数据查询6.2 常见数据库管理系统OracleMySQLMicrosoft SQL Server6.3 数据库管理系统的使用实例Oracle SQLPlus的使用MySQL命令行的使用第七章:事务管理7.1 事务概述事务的定义事务的属性7.2 事务管理事务的并发控制事务的隔离级别7.3 事务的持久化事务日志事务恢复第八章:分布式数据库8.1 分布式数据库概述分布式数据库的概念分布式数据库的优点8.2 分布式数据库的体系结构客户机/服务器结构对等网络结构8.3 分布式数据库的数据一致性数据复制数据分片第九章:大数据技术9.1 大数据概述大数据的定义大数据的特点9.2 大数据技术架构HadoopSpark9.3 大数据处理技术数据采集数据存储数据分析第十章:数据库发展趋势10.1 数据库技术的未来新型数据库技术数据库技术与其他技术的融合10.2 数据库技术在领域的应用机器学习自然语言处理10.3 数据库技术在物联网领域的应用物联网的数据管理物联网的数据分析重点和难点解析重点环节1:数据库概念与用途数据库的定义:重点掌握数据库作为一种长期存储在计算机内的、有组织的、可共享的数据集合。