大学物理第13章
- 格式:doc
- 大小:675.50 KB
- 文档页数:9
第十三章热力学基础一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。
2、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。
3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。
比如加热固体,吸收的热量全部转换为内能升高温度;4、简述热力学第二定律的两种表述。
答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。
克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。
5、什么是熵增加原理?答:一切不可逆绝热过程中的熵总是增加的,可逆绝热过程中的熵是不变的。
把这两种情况合并在一起就得到一个利用熵来判别过程是可逆还是不可逆的判据——熵增加原理。
6、什么是卡诺循环? 简述卡诺定理?答案:卡诺循环有4个准静态过程组成,其中两个是等温线,两个是绝热线。
卡诺提出在稳度为T1的热源和稳度为T2的热源之间工作的机器,遵守两条一下结论:(1)在相同的高温热源和低温热源之间工作的任意工作物质的可逆机,都具有相同的效率。
(2)工作在相同的高温热源和低温热源之间的一切不可逆机的效率都不可能大于可逆机的效率。
7、可逆过程必须同时满足哪些条件?答:系统的状态变化是无限缓慢进行的准静态过程,而且在过程进行中没有能量耗散效应。
二、选择题1、对于理想气体的内能,下列说法中正确的是( B ):( A ) 理想气体的内能可以直接测量的。
(B) 理想气体处于一定的状态,就有一定的内能。
第13章 光学一 选择题*13-1 在水中的鱼看来,水面上和岸上的所有景物,都出现在一倒立圆锥里,其顶角为( )(A)48.8(B)41.2(C)97.6(D)82.4解:选(C)。
利用折射定律,当入射角为1=90i 时,由折射定律1122sin sin n i n i = ,其中空气折射率11n =,水折射率2 1.33n =,代入数据,得折射角2=48.8i ,因此倒立圆锥顶角为22=97.6i 。
*13-2 一远视眼的近点在1 m 处,要看清楚眼前10 cm 处的物体,应配戴的眼镜是( )(A)焦距为10 cm 的凸透镜 (B)焦距为10 cm 的凹透镜 (C)焦距为11 cm 的凸透镜 (D)焦距为11 cm 的凹透镜解:选(C)。
利用公式111's s f+=,根据教材上约定的正负号法则,'1m s =-,0.1m s =,代入得焦距0.11m =11cm f =,因为0f >,所以为凸透镜。
13-3 在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明纹位于图中O 处,现将光源S 向下移动到图13-3中的S ′位置,则[ ] (A) 中央明纹向上移动,且条纹间距增大(B) 中央明纹向上移动,且条纹间距不变(C) 中央明纹向下移动,且条纹间距增大 (D) 中央明纹向下移动,且条纹间距不变解:选(B)。
光源S 由两缝S 1、S 2到O 处的光程差为零,对应中央明纹;当习题13-3图向下移动至S ′时,S ′到S 1的光程增加,S ′到S 2的光程减少,为了保持光程差为零,S 1到屏的光程要减少,S 2到屏的光程要增加,即中央明纹对应位置要向上移动;条纹间距dD x λ=∆,由于波长λ、双缝间距d 和双缝所在平面到屏幕的距离D 都不变,所以条纹间距不变。
13-4 用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射。
若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为[ ](A) 3个 (B) 4个 (C) 5个 (D) 6个解:选(B)。
第13章 静电场中的导体和电介质13.1一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E r πε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04c q U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl . 设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为 ⎰⋅=ΦSdD d 012d d d 2S S S rlDπ=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少? [解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离图13.3球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q q U r a b πεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q =3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少? (2)A 板电势为多少? [解答](1)设A 的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为σ1S 和q 2 = σ2S ,q 1 = 在B 、C 板上分别感应异号电荷-q 1和-q 2,由电荷守恒得方程q = q 1 + q 2 = σ1S + σ2S . ① A 、B 间的场强为 E 1 = σ1/ε0, A 、C 间的场强为 E 2 = σ2/ε0.设A 板与B 板的电势差和A 板与C 板的的电势差相等,设为ΔU ,则ΔU = E 1d 1 = E 2d 2, ②即 σ1d 1 = σ2d 2. ③解联立方程①和③得σ1 = qd 2/S (d 1 + d 2),所以 q 1 = σ1S = qd 2/(d 1+d 2) = 2×10-8(C);q 2 = q - q 1 = 1×10-8(C).B 、C 板上的电荷分别为q B = -q 1 = -2×10-8(C); q C = -q 2 = -1×10-8(C). (2)两板电势差为ΔU = E 1d 1 = σ1d 1/ε0 = qd 1d 2/ε0S (d 1+d 2), 由于 k = 9×109 = 1/4πε0, 所以 ε0 = 10-9/36π,因此 ΔU = 144π = 452.4(V). 由于B 板和C 板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A ,带电量为q ,在它的附近放一块与A 平行的金属导体板B ,板B 有一定的厚度,如图所示.则在板B 的两个表面1和2上的感应电荷分别为多少?[解答]由于板B 原来不带电,两边感应出电荷后,由电荷守恒得 0. ①q 1 + q 2 = 虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S ,则面电荷密度分别为σ1 = q 1/S 、σ2 = q 2/S 、σ = q/S ,图13.42 图13.5它们产生的场强大小分别为E 1 = σ1/ε0、E 2 = σ2/ε0、E = σ/ε0.在B 板内部任取一点P ,其场强为零,其中1面产生的场强向右,2面和A 板产生的场强向左,取向右的方向为正,可得E 1 - E 2 – E = 0,即 σ1 - σ2 – σ = 0,或者说 q 1 - q 2 + q = 0. ② 解得电量分别为q 2 = q /2,q 1 = -q 2 = -q /2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V ,两板间相距为 1.2mm ,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0. 由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0. 由于两板带等量异号的电荷,所以 σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d , 所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m -2),σ2 = -σ3 = -8.84×10-7(C·m -2).13.7一球形电容器,内外球壳半径分别为R 1和R 2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214R C R R πε=-表示. (提示:可看作两个球电容器的并联,且地球半径R >>R 2)[一:并联电容法.在外球外面再接一个半径为R 3壳,外壳也接地.内球壳和外球壳之间是容为 104C πε=壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-图13.6202214R R R πε=-.方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-.根据高斯定理可得两球壳之间的场强为122002`44R q q E r R r πεπε==-,负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r=⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰1212021202()11()44R q R R q R R R R πεπε-=-=球面间的电容为202214R q C U R R πε==-.13.8球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为12012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为 ε1S/d 1和C 2 = ε2S/d 2. C 1 = 总电容的倒数为122112*********d d d d C C C S S S εεεεεε+=+=+=,总电容为122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍? [解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为 ⎰⋅=ΦS d S D d12d d d 2S S S rlDπ=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl ,根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLRU E r r r λπε=⋅==⎰⎰⎰E l21ln 2R R λπε=.电容为212ln(/)q l C U R R πε==.在真空时的电容为00212ln(/)l q C U R R πε==,所以倍数为C/C 0 = ε/ε0.13.11在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布;(2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为 Dr S D SSd 24d d π==⋅=Φ⎰⎰S D高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P ,所以 P = D - ε0E =031(1)4rQ r επ-r .在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以 D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0.(2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为`101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1.两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2.13.13一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d .13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d .(2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U .当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为 W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d .(3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ; 介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ①由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ②解联立方程得01112211/C U C Q Q C C C C ==++,真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S d εσε===++.同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S d εεσε==++.13.15平行板电容器极板面积为200cm 2,板间距离为 1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少? [解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=-20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2V V W w V E Vε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰. 当R = b 时,能量为210ln4l b W a λπε=;当R =22200ln48l l b W a λλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l , 根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln44bV aQ Q bW W r lr l a πεπε===⎰⎰. (3)由公式W = Q 2/2C 得电容为222ln(/)Q l C W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=,得1212120PFC C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U 1 = Q/C 1 = CU/C 1 = 600(V); 第二个电容器两端的电压为U 2 = Q/C 2 = CU/C 2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。
第 13章振动13-1如图13-23所示,质量为m 的密度计,放在密度为的液体中。
已知密度计圆管的直径为 d 。
试证明:推动密度计后,证明它在竖直方向的振动为简谐振动,并计算其振动周期。
解:平衡位置:当 F 浮=G 时,平衡点为 C 处。
设此时进入水中的深度为 a:gSa mg可知浸入水中为 a 处为平衡位置。
以水面作为坐标原点O,以向上为x 轴,质心的位置为x,则:分析受力:不管它处在什么位置,其浸没水中的部分都可以用a-x 来表示,所以力Fg(a x) S gaS gSx kxF gSx d 2 x令 2 gS g d 2am dt 2 m 4m m可得到: d 2 x 2 x 0 可见它是一个简谐振动。
dt 2周期为:T 2/4 md g13-2证明图13-24所示系统的振动为简谐振动。
其频率为:1k1k22( k1k2 ) m图 13-24 习题 13-2 图证明:两根弹簧的串联之后等效于一根弹簧,所以仍为简谐振动(证明略),其劲度系数满足: K 1 x1 K 2 x2 Kx 和 x1 x2 x可得:11 1 所以: K K1K2 K K 1 K 2 K 1 K 2代入频率计算式,可得:1 k 1 k1k22 m 2 (k1 k2 )m13-3如图13-25所示,有一截面积为S 的空心管柱,配有质量为 m 的活塞,活塞与管柱间的摩擦略去不计。
在活塞处于平衡状态时,柱内气体的压强为p,气柱高为h。
若使活塞有一微小位移,活塞将上下振动,证明它在竖直方向的振动为简谐振动,并计算其振动频率。
设气体温度不变。
图 13-25 习题 13-3 图解:在静平衡时:p0 S mg pS当活塞下降x (任意位置 )时:p0S p1 S mg d 2 xm2dt由上两式得到:pS p1 S m d2x dt 2过程是等温的pV p1V1即: phS p1 (h x)S得出: p1 ph p 1 (1 x) p (x h)h x x h1h所以pS (1 x) pS m d 2 x 或 d 2 x pS x 0h dt 2 dt 2 hm说明活塞的上下振动为简谐振动,其振动频率pS p0 S mghm hm13- 4 设地球是一个半径为R 的均匀球体,密度 5.5 103 kg m-3。
现假定沿直径凿一条隧道。
若有一质量为m 的质点在此隧道内做无摩擦运动。
( 1)证明此质点的运动是简谐振动;( 2)计算其周期。
解:(l )取图所示坐标。
当质量为m 的质点位于 x 处时,它受地球的引力为F G m x m x 2式中G 为引力常量,m x是以x 为半径的球体质量,即m x4x 3 / 3 。
令k 4 Gm / 3 ,则质点受力F 4 Gmx / 3kx因此,质点作简谐运动。
(2)质点振动的周期为T 2 m / k3 / G5.07 10 3 s13-5 两质点作同方向、同频率的简谐振动,振幅相等。
当质点 1 在 x1 = A/2 处,且向左运动时,另一个质点 2 在 x2 = - A/2 处,且向右运动。
求这两个质点的相位差。
解:由旋转矢量图可知:当质点 1 在 x 1 A / 2 处,且向左运动时,相位为π /3,而质点 2 在 x 2A / 2 处,且向右运动,相位为 4π /3 。
所以它们的相位差为π。
13-6 一竖直悬挂的弹簧下端挂一物体, 最初用手将物体在弹簧原长处托住, 然后放手, 此系统便上下振动起来,已知物体最低位置是初始位置下方 10.0cm 处,求:( 1)振动频率;( 2)物体在初始位置下方 8.0cm 处的速度大小。
解:( 1)由题知 2A=10cm ,所以 A=5cm ;K g9 . 8196又ω =kmx510 2196 14, 即m1 k72m(2)物体在初始位置下方8.0cm 处,对应着是 x=3cm 的位置,所以: cosx 3A 5那么此时的 sin0 v 4 A 5那么速度的大小为v 4 A0.56513- 7 一物体沿 x 轴做简谐运动, 振幅为 0.06m ,周期为 2.0s ,当 t = 0 时位移为 0.03m , 且向x 轴正方向运动。
求: ( 1)t = 0.5s 时,物体的位移、速度和加速度; ( 2)物体从 x =- 0.03m处向 x 轴负向运动开始,到平衡位置,至少需要多少时间?解:( 1)由题意知A = 0.06m 、2 / Ts 1由旋转矢量图可确定初相则3 ,振动方程为x0 .06 cos(t)3当 t = 0.5s 时质点的位移、速度、加速度分别为x 0.06 cos( ) 0.052mdx2 30.06 sin( ) 0.094 m/s vdt 2 3a d2x0.06 2 cos()0.513 m / s2 dt 22 3(2)质点从x = 0.03 m 运动到平衡位置的过程中,旋转矢量从图中的位置M 转至位置N,矢量转过的角度(即相位差 )5/ 6 。
该过程所需时间为t0.833s13-8 一物体放在水平木板上,此板沿水平方向作简谐振动,频率为2Hz,物体与板面间的静摩擦系数为 0.50。
问: (1) 要使物体在板上不致滑动,振幅的最大值为多少? (2)若令此板改作竖直方向的简谐振动,振幅为0.05m,要使物体一直保持与板接触的最大频率是多少?解: (1) 为使物体和板不发生相对滑动,由最大静摩擦力带动物体和板一起振动,所以有:mg ma m m 2 A m所以A m g 0.5 9.80.031m 2 (2 2)2(2)物体作垂直振动时有:mg N ma为使物体不脱离板必须满足N 0 ,在极限情况时有:N=0因而mmg ma m m m2 Ag 1 g 1 9.82.2 HZ A或A 2 5.0 10 2213- 9 如本题图所示,一劲度系数为k 的轻弹簧,其下挂有一质量为m1的空盘 .现有一质量为 m2的物体从盘上方高为h处自由落到盘中,并和盘粘在一起振动.问:(1)此时的振动周期与空盘作振动的周期有何不同?(2)此时的振幅为多大?分析:原有空盘振动系统由于下落物体的加入,振子质量由m1变为 m1 +m2,因此新系统的角频率(或周期)要改变。
由于 A x0 2 (v0 ) 2因此,确定初始速度 v0和初始位移 x0 是求解振幅 A 的关键。
物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘与物体的共同初速度v0 ,这也是该振动系统的初始速度。
在确定初始时刻的位移x0 时,应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置。
因此,本题中初始位移 x0,也就是空盘时的平衡位置相对新系统的平衡位置的位移。
解:( l)空盘时和物体落入盘中后的振动周期分别为T 22m1 kT2 2 ( m1m2 ) k习题 13-9 图可见 T'T ,即振动周期变大了。
(2)如图所示,取新系统的平衡位置为坐标原点O 。
则根据分析中所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置的位移,即x 0l 1 l 2 m 1 g m 1 m 2 gm 2 gk kk式中 l 1 m 1 g k 为空盘静止时弹簧的伸长量,l 2 (m 1 m 2 )g k 为物体粘在盘上后,静止时弹簧的伸长量。
由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后的速度v 0 m 2vm 22ghm 1m 1m 2m 2式中 v 2gh 是物体由 h 高下落至盘时的速度。
故系统振动的振幅为Ax 0 2 (v 0)2 m 2 g 1 (m 1 2khkm 2 ) g 本题也可用机械能守恒定律求振幅 A 。
13-10 如图 13-27 所示,轻质弹簧的一端固定,另一端系一轻绳,轻绳绕过滑轮连接一质量为m 的物体,绳在轮上不打滑,使物体上下自由振动。
已知弹簧的劲度系数为 k ,滑轮半径为 R 转动惯量为 J 。
(1) 证明物体作简谐振动;(2) 求物体的振动周期; (3) 设 t = 0 时,弹簧无伸缩, 物体也无初速,写出物体的振动表式。
解:( 1)在静平衡时有:图 13-27 习题 13-10 图T 1 T 2 kb mg取平衡位置为坐标原点, 在任意位置 x 时有:T 1 k(bx)T 2R T 1R J2d xdt 2R求出d 2 x kx 0dt2m J / R2物体的振动是简谐振动。
(2)振动的圆频率为k m J / R 2周期2 m J/R2 T 2 k(3)由初始条件:t 0 时,x0b mg, v 0 0,得: A mg ,k k振动方程为:x mgcos( k 2t) k m J / R13- 11 若在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长l 0 = 1.2cm 而平衡,经推动后,该小球在竖直方向作振幅为 A = 2cm 的振动,试证明此振动为谐振动;若选小球在正最大位移处开始计时,写出此振动的数值表达式。
解:设小球的质量为m,由弹簧的倔强系数k = m g / l 0选平衡位置为原点,向下为正方向,小球在x 处,根据牛顿定律得2 2m g k ( l 0 + x ) = m d x / d t将倔强系数 k = m g / l 0代入整理后得d 2 x / d t 2 + g x / l 0 = 0∴此振动为谐振动令ωg / l . π0 910解得x = A c o s (ωt + φ) A = 2×10 -2由题意:t = 0 时, x 0 = A,v0 = 0,∴φ = 0∴ x = 2× 10 -2 c o s (9.1π t ) (SI)13- 12 一台摆钟的等效摆长l=0.995m ,摆锤可上、下移动以调节其周期,该钟每天快1 分 27 秒,假如将此摆当作质量集中在摆锤中心的一个单摆来考虑,则应将摆锤向下移动多少距离,才能使钟走得准确?解:钟摆周期的相对误差△T / T = 钟的相对误差△t / t ,等效单摆的周期T 2πl / g设重力加速度g 不变,则有 2 d T / T = d l / l令△ T = d T,△ t = d l,并考虑到△T/T= △ t / t,则摆锤向下移动的距离△ l = 2 l △ t / t = 2.00 mm摆锤应向下移 2.00mm ,才能使钟走得准确。
13- 13 一质点作简谐振动,其振动方程为:x = 6.0-2π / 4) (SI)10× cos ( tπ/3( 1)当 x 值为多大时,系统的势能为总能量的一半?( 2)质点从平衡位置移动到此位置所需最短时间为多少?解:( 1)势能 W p= k x 2 / 2 ,总能 E = k A 2 /2 由题意2 2 -2k x / 2 = k A / 4, x = ± 4.24×10 m(2) 周期T = 2 π / ω = 6 s从平衡位置运动到x A / 2 的最短时间为 T / 8∴ 6 / 8 = 0.75 s13- 14 试证明:( 1)在一个周期中,简谐运动的动能和势能对时间的平均值都等于22 2kA /4;(2)在一个周期中,简谐运动的动能和势能对位置的平均值分别等于 kA /3 和 kA /6。