初二级数学第二学期第一单元复习卷1
- 格式:doc
- 大小:100.50 KB
- 文档页数:2
初二级数学第二学期第一单元复习卷1一、填空题1、2)21(-的平方根是 ,算术平方根是 ; 2、64-的立方根是 ;3、若x 的平方根是±2,则x= ;4、32-的相反数是 ,绝对值是 ,倒数是 ;5、在实数范畴内,若1|5|-+-+x y x =0,则xy= ;6、若22)()(y x y x -=-,则x 、y 应满足的条件是 ;7、化简:55= ,320a = ;8、比较实数的大小:-3; 9、长方形的面积为30,若宽为5,则长为 ;10、三角形的三边长分别为20、40、 45,那个三角形的周长是 。
二、选择题11、在实数范畴内的数0,312-,8,2)3(-中,有平方根的有( )A 、1个B 、2个C 、3个D 、4个12、若一个数的平方根等于它的立方根,则那个数是( )A 、1B 、-1C 、±1D 、013、下列叙述正确的是( )A 、0.4的平方根是±0.2;B 、3)2(--的立方根不存在;C 、±6是36的算术平方根;D 、3)3(-的立方根是-314、使式子23+x 有意义的实数x 的取值范畴是( )A 、x ≥0B 、x >32-C 、x ≥23-D 、x ≥32- 15、下列二次根式中,与35-是同类二次根式的是( )A 、18B 、3.0C 、30D 、30016、下列运算正确的是( )A 、171251251252222=+=+=+;B 、1234949=-=-=-;C 、20)4()5(1625)16()25(=-⨯-=⨯-=-⨯-;D 、1535)3()5(22=⨯=-⨯-;17、下列说法正确的是( )A 、实数分为正实数和负实数;B 、没有绝对值最大的实数,有绝对值最小的实数;C 、两个无理数的和依旧无理数;D 、不带根号的数差不多上有理数;18、若a 是2003的算术平方根,则1002003的平方根是( ) A 、0.01a B 、0.1a C 、-0.1a D 、±0.1a三、解答题19、将下列各数由小到大重新排成一列,并用“<”号连接起来。
一、选择题1.下列计算正确的是( )A 1BCD ±2.下列二次根式中,是最简二次根式的是( )ABC .D 3.下列各式中,运算正确的是( )A =﹣2B +C 4D .=24.下列运算中,正确的是( )A =3B .=-1C D .35.a b =--则( ) A .0a b +=B .0a b -=C .0ab =D .220a b +=6.已知226a b ab +=,且a>b>0,则a ba b+-的值为( )A B C .2D .±27.下列各式中,不正确的是( )A ><C > D 5=8.有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限C .第三象限D .第四象限9.以下运算错误的是( )A =B .2= CD 2=a >0)10.下列运算中正确的是( )A .=B===C 3===D 1==二、填空题11.已知412x =-,则()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________ 12.已知2216422x x ---=,则22164x x -+-=________. 13.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 32016p q =()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 14.120654010144152118+++235a b c +的形式(,,a b c 为正整数),则abc =______.15222a a ++的最小值是______. 16.计算:200820092+323⋅-=_________.17.4102541025-+++=_______.18.若a 、b 都是有理数,且2222480a ab b a -+++=ab .19.1+x有意义,则x 的取值范围是____.20.函数y =42xx --中,自变量x 的取值范围是____________. 三、解答题21.(1111242-=112393-=113416-=;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想. 【答案】(11142=52555-=1156366-=;(22111n n n n--=;(3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④=25,(2)如果n 为正整数,用含nn, (3)证明:∵n 是正整数,n .n.故答案为5=256;n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.22.解:设x222x =++2334x =+,x 2=10 ∴x =10.0.【分析】根据题意给出的解法即可求出答案即可. 【详解】设x两边平方得:x 2=2+2+即x 2=4+4+6, x 2=14∴x =.0,∴x.【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.23.小明在解决问题:已知2a2﹣8a+1的值,他是这样分析与解的:∵=2∴a﹣2=∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a-=-=,∴2212a a-+=,即221a a-=∴原式=24(2)14115a a-+=⨯+=解法二∴原式=24(211)1a a-+-+24(1)3a =-- 24(211)3=+--4235=⨯-=点睛:(1)把分母+a b 有理化的方法:分子分母同乘以分母的有理化因式a b -, 得22()()()()+-=-=-a b a b a b a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.24.阅读下列材料,然后回答问题: 在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==--- . 以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-. (1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1. 【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案. 【详解】 (1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.25.-10 【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可 【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10. 【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.26.先化简,再求值:24224x xx x x x ⎛⎫÷- ⎪---⎝⎭,其中2x =.【答案】22x x +-,1 【分析】先把分式化简,然后将x 、y 的值代入化简后的式子求值即可. 【详解】 原式(2)(2)22(2)2x x x x x x x x +-+=⋅=---,当2x =时,原式1==.【点睛】本题考查了分式的化简求值这一知识点,把分式化到最简是解题的关键.27.已知a ,b (1)求a 2﹣b 2的值; (2)求b a +ab的值.【答案】(1);(2)10 【分析】(1)先计算出a+b 、a-b 的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.【详解】(1)∵ab,∴a+ba﹣b=,∴a2﹣b2=(a+b)(a﹣b)==;(2)∵ab,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.28.计算:(1;(2)))213【答案】(1)2)1-.【分析】(1)根据二次根式的混合运算法则可以算得答案.(2)结合整式的乘法公式和二次根式的运算法则计算.【详解】(1)原式==(2)原式=212---=1-.【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】2÷故选A.2.D解析:D 【分析】根据最简二次根式的特点解答即可. 【详解】A ,故该选项不符合题意;B =C 、=3,故该选项不符合题意;D 不能化简,即为最简二次根式, 故选:D . 【点睛】此题考查最简二次根式,掌握最简二次根式的特点:①被开方数中不含分母;②被开方数中不含能再开方的因式或因数,牢记特点是解题的关键.3.C解析:C 【分析】根据二次根式的性质对A 进行判断;根据二次根式的加减法法则对B 、D 进行判断;根据二次根式的乘法法则对C 进行判断. 【详解】A 、原式=2,故该选项错误;B =,故该选项错误;C 4,故该选项正确;D 故选:C . 【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式乘法、性质及加减法运算法则是解题关键.4.D解析:D 【分析】根据二次根式的加减乘除法则逐项判断即可得.【详解】A 314=+=,此项错误B 、2==,此项错误C 2428===⨯=,此项错误D 、3=,此项正确故选:D . 【点睛】本题考查了二次根式的加减乘除运算,熟记二次根式的运算法则是解题关键.5.C解析:C 【分析】直接利用二次根式的性质 ,将已知等式左边化简,可以得到a 与b 中至少有一个为0,进而分析得出答案即可. 【详解】解:∵a b =--, ∴a-b=-a-b , 或b-a=-a-b∴a= -a ,或b=-b, ∴a=0,或b=0, ∴ab=0, ∴0ab =. 故选:C . 【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.6.A解析:A 【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案. 【详解】∵a 2+b 2=6ab , ∴(a+b )2=8ab ,(a-b )2=4ab , ∵a >b >0,∴∴a b a b +-= 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a、b的大小关系以及本身的正负关系.7.B解析:B【解析】=-3,故A正确;=4,故B不正确;根据被开方数越大,结果越大,可知C正确;=,可知D正确.5故选B.8.A解析:A【解析】试题分析:根据二次根式的概念,可知a≥0,ab>0,解得a>0,b>0,因此可知A(a,b)在第一象限.故选A9.C解析:C【分析】利用二次根式的乘法法则对A、B进行判断;利用二次根式的化简对C、D进行判断.【详解】A.原式=所以A选项的运算正确;B.原式=所以,B选项的运算正确;C.原式==5,所以C选项的运算错误;D.原式=2,所以D选项的运算正确.故选C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.B解析:B【分析】根据二次根式的乘除法则求出每个式子的值,再判断即可.【详解】=⨯==42,故本选项不符合题意;解: A. 67===,故本选项,符合题意;===,故本选项不符合题意;D. ==3,故本选项不符合题意;故选B .【点睛】本题考查二次根式的性质和二次根式的乘除法则,能灵活运用二次根式的乘除法则进行计算是解题关键.二、填空题11.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x ===== ()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 12.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.13.(1)2a -2b +1;(2)3;(3)130°或50°. 【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1, ∴222(1)4a a ab b +--+=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵32016p q +=, ∴20163p q =-,p=2016-62016+9q,∴p=14x 3(其中x 为正整数),同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数)∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩, ∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。
初二人教版数学第一单元试卷一、选择题(每题3分,共30分)1. 下列各数中,是无理数的是()A. √(4)B. 3.14C. sqrt[3]{-8}D. √(5)2. 面积为4的正方形的边长是()A. 整数B. 分数C. 无理数D. 以上都不对。
3. 下列说法正确的是()A. 无限小数都是无理数。
B. 带根号的数都是无理数。
C. 无理数是无限不循环小数。
D. 实数包括正实数和负实数。
4. 与数轴上的点一一对应的是()A. 有理数B. 无理数C. 整数D. 实数。
5. 在实数0,π,(22)/(7),√(2),- √(9)中,无理数的个数有()A. 1个B. 2个C. 3个D. 4个。
6. 下列计算正确的是()A. √(9)=±3B. sqrt[3]{ - 8}= - 2C. √(( - 3)^2)=-3D. ±√(16)=47. 若一个数的算术平方根等于它本身,则这个数是()A. 1B. -1C. 0D. 0或1。
8. 已知√(a + 2)+| b - 1| = 0,则(a + b)^2023的值为()A. -1B. 1C. 3^2023D. - 3^20239. 比较大小:2√(3)___3√(2)()A. >B. <C. =D. 无法确定。
10. 若√(x - 1)有意义,则x的取值范围是()A. x>1B. x≥1C. x<1D. x≤1二、填空题(每题3分,共18分)11. 4的平方根是___。
12. √(16)的算术平方根是___。
13. 计算:√(25)-sqrt[3]{27}=___。
14. 写出一个比√(3)大且比4小的无理数___。
15. 若x^2=9,则x =___。
16. 若sqrt[3]{a}= - 2,则a =___。
三、解答题(共52分)17. (8分)计算:√(4)+sqrt[3]{ - 8}-| - 3|;2√(3)-3√(3)+5√(3)。
一、选择题(每题2分,共20分)1. 下列各数中,有理数是()A. √9B. √-9C. √16D. √-162. 若a,b是实数,且a + b = 0,则a和b的关系是()A. a > bB. a < bC. a = bD. a和b无关系3. 下列各数中,绝对值最大的是()A. -3B. 3C. -2.5D. 2.54. 已知a,b是实数,且a > b,则下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 05. 下列各式中,能被因式分解的是()A. x^2 + 2x + 1B. x^2 - 2x + 1C. x^2 + 2x - 1D. x^2 - 2x - 16. 下列各式中,最简二次根式是()A. √18B. √32C. √50D. √757. 已知方程x^2 - 5x + 6 = 0,则方程的解是()A. x = 2 或 x = 3B. x = 1 或 x = 4C. x = 2 或 x = 4D. x = 1 或 x = 38. 下列各式中,表示直角三角形斜边长的二次根式是()A. √(3^2 + 4^2)B. √(5^2 - 3^2)C. √(5^2 + 3^2)D. √(3^2 - 4^2)9. 下列各数中,不是有理数的是()A. 1/2B. -3/4C. √2D. 0.333...10. 若a,b是实数,且a < b,则下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 0二、填空题(每题2分,共20分)11. 完成下列等式:(1) √(16 + 9) = ______(2) (√2)^2 = ______(3) (√-1)^2 = ______(4) (√9)^3 = ______12. 已知方程2x^2 - 4x + 2 = 0,求x的值。
一、选择题(每题4分,共20分)1. 下列数中,不是有理数的是()A. 2.5B. -3C. √4D. √-12. 若a,b为相反数,且a+b=0,则a的倒数是()A. bB. -bC. 1D. -13. 下列各组数中,互为倒数的是()A. 2和1/4B. 0和1C. 1/2和2D. -1和14. 已知m和n是两个实数,且m+n=0,那么下列结论正确的是()A. m=0,n=0B. m和n互为相反数C. m和n互为倒数D. m和n都是05. 在数轴上,点A表示的数是-3,点B表示的数是2,那么点A和点B之间的距离是()A. 5B. 3C. 2D. -5二、填空题(每题4分,共20分)6. 若a和b互为相反数,且a-b=5,则a+b=______。
7. 一个数的倒数是它的相反数,这个数是______。
8. 在数轴上,-2到-1的距离是______。
9. 若a=√4,则a的倒数为______。
10. 若一个数的倒数是它本身,这个数是______。
三、解答题(每题10分,共30分)11. (10分)计算下列各式的值:(1)-3/5 + 4/5 - 2/5;(2)2/3 × (-3/4);(3)-√9 / √16。
12. (10分)已知m和n是两个实数,且m+n=5,m-n=1,求m和n的值。
13. (10分)在数轴上,A点表示的数是-3,B点表示的数是2,C点表示的数是4,求点C关于点A的对称点D表示的数。
四、应用题(每题10分,共20分)14. (10分)某商店卖出一批商品,如果每件商品降价10元,则可以多卖50件;如果每件商品涨价10元,则可以少卖20件。
问:原来每件商品的价格是多少?如果保持原来价格不变,那么要卖出这批商品需要多少天?15. (10分)一辆汽车从甲地出发,以每小时60公里的速度行驶,3小时后到达乙地。
然后以每小时80公里的速度返回甲地,2小时后到达甲地。
求甲乙两地之间的距离。
专题06 一网打尽动点及折叠类型题目1动点类、折叠类题目是初中学生头疼的问题,也是教师教学过程中最烦心的问题,本专题将八年级下册所遇到的动点问题、折叠问题进行分类,并选取一些有代表性的题目供大家研讨,帮助学生们理清一些思路,掌握做题方法.(1)折叠类题目:借助圆规、直尺作出图形,利用勾股定理、方程等手段求解;(2)动点类题目:其中的等腰三角形、直角三角形、平行四边形等存在性问题要分类讨论,并作出图形;用时间、速度表示线段的长要准确;根据图形列出方程求解.基本图形图形条件结论ABCD为平行四边形A(x A,y A)、B(x B,y B)、C(x C,y C)、D(x D,y D) x A+ x C= x B+ x D y A+ y C= y B+ y D题1. 一次函数与平行四边形存在性问题综合(解题核心点:基本图形的运用)在平面直角坐标系xoy中,A(1,2)、B(-1,1)、C(3,m),D点是直线y=x上的一个动点,是否存在实数m使得以A、B、C、D为顶点的四边形是平行四边形.若存在,求出m值,若不存在说明理由.题2. 一次函数与最短路径综合(解题核心点:待定系数法、勾股定理及转化思想)如图2-1所示,直线l1 :y=-3x+3与x轴交于点D,直线l2经过A(4,0)、B(3,-1.5)两点,直线l1 与直线l2交于点C.(1)求直线l2的解析式和点C的坐标;(2)在y轴上是否存在一点P,使得四边形PDBC的周长最小?若存在,请求出点P的坐标,若不存在,请说明理由.图2-1题3. 一次函数与全等三角形综合如图3-1所示,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC≌△ABP;由此你发现什么结论?(2)求点C在x轴上移动时,点P所在函数图象的解析式.题4. 一次函数与等腰三角形存在性综合如图4-1所示,在平面直角坐标系中,矩形ABCD的顶点A、B、C的坐标分别为(0,5)、(0,2)、(4,2),直线l的解析式为y=kx+5-4k(k>0).(1)当直线l经过点B时,求一次函数的解析式;(2)通过计算说明:不论k为何值,直线l总经过点D;(3)直线l与y轴交于点M,点N是线段DM上的一点,且△NBD为等腰三角形,试探究:当函数y=kx+5-4k 为正比例函数时,点N的个数有______个.图4-1题5. 已知C坐标为(2,0),P坐标为(x,y),直线y=-x+4与x轴、y轴分别交于A、B两点.若点P(a,b)在直线y=-x+4上.(1)求出A、B坐标,并求出△AOB的面积;(2)若点P在第一象限内,连接PC,OP,△OPC的面积为S,请找出S与a之间的函数关系式,并求出a的取值范围;(3)当△OPC的面积等于2时,求P点坐标.(4)点P在移动的过程中,若BC=BP,求出满足条件的点P坐标.(直接写出答案)图5-1题6. 如图6-1所示,在平面直角坐标系中,直线l1:y=kx+b与直线l2:y=x交于点A(2,a),与y轴交于点B(0,6),与x轴交于点C.(1)求直线l1的函数表达式;(2)求△AOC 的面积;(3)在平面直角坐标系中有一动点P (5,m ),使得AOP AOC S S △△,请求出点P 的坐标;图6-1题7. 平行四边形及三角形存在性问题综合 (解题核心:勾股定理、一次函数的性质应用)如图7-1所示,已知点A 从点(1,0)出发,以1个单位每秒的速度沿x 轴正方形运动,以O 、A 为顶点作菱形OABC ,使得点B 、C 在第一象限,且∠AOC =60°.同时点G 从点D (8,0)出发,以2个单位长度每秒的速度沿x轴向负方向运动,以D、G为顶点在x轴的上方作正方形DEFG.若点P的坐标为(0,3),设点A的运动时间为t(s),求:(1)点B的坐标(用含t的代数式表示);(2)当点A在运动的过程中,当t为何值时,点O、B、E在同一直线上;(3)在点A的运动过程中,是否存在t值,使得△OCP为等腰三角形,若存在,求出t值;若不存在,说明理由.图7-1专题06 一网打尽动点及折叠类型题目1动点类、折叠类题目是初中学生头疼的问题,也是教师教学过程中最烦心的问题,本专题将八年级下册所遇到的动点问题、折叠问题进行分类,并选取一些有代表性的题目供大家研讨,帮助学生们理清一些思路,掌握做题方法.(1)折叠类题目:借助圆规、直尺作出图形,利用勾股定理、方程等手段求解;(2)动点类题目:其中的等腰三角形、直角三角形、平行四边形等存在性问题要分类讨论,并作出图形;用时间、速度表示线段的长要准确;根据图形列出方程求解.基本图形图形条件结论ABCD为平行四边形A(x A,y A)、B(x B,y B)、C(x C,y C)、D(x D,y D) x A+ x C= x B+ x D y A+ y C= y B+ y D题1. 一次函数与平行四边形存在性问题综合(解题核心点:基本图形的运用)在平面直角坐标系xoy中,A(1,2)、B(-1,1)、C(3,m),D点是直线y=x上的一个动点,是否存在实数m使得以A、B、C、D为顶点的四边形是平行四边形.若存在,求出m值,若不存在说明理由.【答案】见解析.【解析】解:存在.设D点坐标为(n,n)①当四边形ACBD是平行四边形时,可得:x A+ x B= x C+ x D,y A+ y B= y C+ y D即1+(-1)=3+n,2+1=m+n,解得:n=-3,m=6;②当四边形ABCD是平行四边形时,可得:x A+ x C= x B+ x D,y A+ y C= y B+ y D即1+3=(-1)+n,2+m=1+n,解得:n =5,m =4;③当四边形ABDC 是平行四边形时, 可得:x A + x D = x B + x C ,y A + y D = y B + y C 即1+n =(-1)+3,2+n =1+m , 解得:n =1,m =2;综上所述,m 的值为6、4、2. 题2. 一次函数与最短路径综合(解题核心点:待定系数法、勾股定理及转化思想)如图2-1所示,直线l 1 :y =-3x +3与x 轴交于点D ,直线l 2经过A (4,0)、B (3,-1.5)两点,直线l 1 与直线l 2交于点C .(1)求直线l 2的解析式和点C 的坐标;(2)在y 轴上是否存在一点P ,使得四边形PDBC 的周长最小?若存在,请求出点P 的坐标,若不存在,请说明理由.图2-1【答案】见解析.【解析】解:(1)设直线l 2的解析式为y =kx +b , 将A (4,0)、B (3,-1.5)代入,得:40332k b k b +=⎧⎪⎨+=-⎪⎩, 解得:326k b ⎧=⎪⎨⎪=-⎩即直线l2的解析式为y=32x-6.联立y=32x-6,y=-3x+3,解得:23xy=⎧⎨=-⎩,即点C的坐标为(2,-3)(2)在y=-3x+3中,当y=0时,x=1,即D(1,0),由勾股定理,得BD=52,BC=132,因为四边形PDBC的周长等于PD+DB+BC+CP,所以当PD+CP最小时,四边形PDBC的周长最小,作点D关于y轴的对称点D’(-1,0),连接D’C交y轴于点P,如图2-2所示,此时即为所求P点位置,图2-2设直线B’P的解析式为y=mx+n,将(-1,0),(3,-1.5)代入,得:332k bk b-+=⎧⎪⎨+=-⎪⎩,解得:3838kb⎧=-⎪⎪⎨⎪=-⎪⎩所以P点坐标为(0,38-).题3. 一次函数与全等三角形综合如图3-1所示,在直角坐标系中,点A 的坐标是(0.3),点C 是x 轴上的一个动点,点C 在x 轴上移动时,始终保持△ACP 是等边三角形.当点C 移动到点O 时,得到等边三角形AOB (此时点P 与点B 重合).(1)点C 在移动的过程中,当等边三角形ACP 的顶点P 在第三象限时(如图),求证:△AOC ≌△ABP ;由此你发现什么结论?(2)求点C 在x 轴上移动时,点P 所在函数图象的解析式.【答案】见解析. 【解析】解:(1)证明:∵△AOB 与△ACP 都是等边三角形, ∴AO =AB ,AC =AP ,∠CAP =∠OAB =60°, ∴∠CAP +∠PAO =∠OAB +∠PAO , 即∠CAO =∠PAB , 在△AOC 与△ABP 中,AO AB CAO PAB AC AP =⎧⎪=⎨⎪=⎩∠∠ ∴△AOC ≌△ABP ∴∠COA =∠PBA =90°,∴点P 在过点B 且与AB 垂直的直线上或PB ⊥AB 或∠ABP =90°. 故结论是:点P 在过点B 且与AB 垂直的直线上或PB ⊥AB 或∠ABP =90°; (2)解:由(1)知点P 在过点B 且与AB 垂直的直线上. ∵△AOB 是等边三角形,A (0,3),∴B点坐标为(332,32).当点C移动到点P在y轴上时,得P(0,﹣3).设点P所在的直线方程为:y=kx+b(k≠0).将点B、P的坐标分别代入,得:333=223k bb⎧+⎪⎨⎪=-⎩,解得:=33kb⎧⎪⎨=-⎪⎩,故所求的函数解析式为:y=3x﹣3.题4. 一次函数与等腰三角形存在性综合如图4-1所示,在平面直角坐标系中,矩形ABCD的顶点A、B、C的坐标分别为(0,5)、(0,2)、(4,2),直线l的解析式为y=kx+5-4k(k>0).(1)当直线l经过点B时,求一次函数的解析式;(2)通过计算说明:不论k为何值,直线l总经过点D;(3)直线l与y轴交于点M,点N是线段DM上的一点,且△NBD为等腰三角形,试探究:当函数y=kx+5-4k 为正比例函数时,点N的个数有______个.图4-1【答案】见解析.【解析】解:(1)将(0,2)代入y=kx+5-4k中,得:k=34,即当直线l经过点B时,一次函数的解析式为y=34x+2;(2)由题意可得:点D坐标为(4,5)把x=4代入y=kx+5-4k,得y=5,∴不论k为何值,直线l总经过点D;(3)2;理由如下:y=kx+5-4k为正比例函数时,可得5-4k=0,即k=54,函数解析式为y=54x,如图4-2所示,图4-2N点在PD的垂直平分线上时,符合要求;以D为圆心以PD长为半径画弧与MD的交点N符合要求;以P为圆心,以PD长为半径画弧与线段DM交点为D,不符合要求,即共2个N点.题5. 已知C坐标为(2,0),P坐标为(x,y),直线y=-x+4与x轴、y轴分别交于A、B两点.若点P(a,b)在直线y=-x+4上.(1)求出A、B坐标,并求出△AOB的面积;(2)若点P在第一象限内,连接PC,OP,△OPC的面积为S,请找出S与a之间的函数关系式,并求出a的取值范围;(3)当△OPC的面积等于2时,求P点坐标.(4)点P在移动的过程中,若BC=BP,求出满足条件的点P坐标.(直接写出答案)图5-1【答案】见解析.【解析】解:(1)在y=-x+4中,x=0时,y=4;y=0时,x=4,即A(4,0),B(0,4),OA=OB=4△AOB的面积为8;(2)∵P在直线y=-x+4上,所以P坐标为(a,-a+4),OC=2,∵P在第一象限,∴-a+4>0,∴S=12×OC×(-a+4)=-a+4,其中,0<a<4;(3)S=2时,①-a+4=2,解得a=2,即P点坐标为(2,2);②-a+4=-2,解得a=6,即P点坐标为(6, -2);综上所述,P点坐标为(2,2)或(6, -2);(4)以点B为圆心,以BC长为半径画弧,交直线AB于点P1,P2,即为所求,过点P1作P1H⊥y轴于H,如图5-2所示,图5-2由勾股定理,得:BC=BP1=5∵OA=OB,∴∠OAB=∠OBA=45°,∴∠BP1H=45°∴HP1=22BP110,即P 1坐标为(10,4-10),同理得:P 2点坐标为(-10,4+10).题6. 如图6-1所示,在平面直角坐标系中,直线l 1:y =kx +b 与直线l 2:y =x 交于点A (2,a ),与y 轴交于点B (0,6),与x 轴交于点C .(1)求直线l 1的函数表达式;(2)求△AOC 的面积;(3)在平面直角坐标系中有一动点P (5,m ),使得AOP AOC S S =△△,请求出点P 的坐标;图6-1【答案】见解析. 【解析】解:(1)∵y =kx +b 与直线y =x 交于点A (2,a ),∴a =2,即A (2,2),将(2,2),(0,6)代入y =kx +b 得:226k b b +=⎧⎨=⎩,解得:26k b =-⎧⎨=⎩即直线l 1的函数表达式为y =-2x +6;(2)在y =-2x +6中,当y =0时,x =3,所以C (3,0),△AOC 的面积为1232⨯⨯=3; (3)∵AOP AOC S S =△△,∴当两三角形等底等高时面积相等,平移直线OA,如6-2所示,图6-2求得直线CD的解析式为y=x-3,当x=5时,y=2,即P点坐标为(5,2)同理,得另一条直线的解析式为y=x+3,当x=5时,y=8,即P点坐标为(5,8).综上所述,点P的坐标为(5,2)、(5,8).题7. 平行四边形及三角形存在性问题综合(解题核心:勾股定理、一次函数的性质应用)如图7-1所示,已知点A从点(1,0)出发,以1个单位每秒的速度沿x轴正方形运动,以O、A为顶点作菱形OABC,使得点B、C在第一象限,且∠AOC=60°.同时点G从点D(8,0)出发,以2个单位长度每秒的速度沿x轴向负方向运动,以D、G为顶点在x轴的上方作正方形DEFG.若点P的坐标为(0,3),设点A的运动时间为t(s),求:(1)点B的坐标(用含t的代数式表示);(2)当点A在运动的过程中,当t为何值时,点O、B、E在同一直线上;(3)在点A的运动过程中,是否存在t值,使得△OCP为等腰三角形,若存在,求出t值;若不存在,说明理由.图7-1【答案】见解析.【解析】解:(1)如图7-2所示,过B 作BH ⊥x 轴于H ,∵OA =AB =t +1,OABC 是菱形∴∠BAH =∠AOC =60°,∴∠ABH =30°,∴AH =12AB =12(t +1),由勾股定理得:BH =32(t +1), ∴点B 的坐标为(()312t +,()312t +); (2)由题意得:E 点坐标为(8,2t ),设直线OE 的解析式为y =kx ,将E 点坐标代入,得: 2t =8k ,即k =4t , 直线OE 解析式为y =4t x 若O 、B 、E 三点共线,则B 点在直线OE 上,将B 点坐标代入得:()312t +=4t ×()312t + 解得:t =-1(舍)或t =433, 即当t 为43时,点O 、B 、E 在同一直线上.(3)过C 作CM ⊥x 轴于M ,如图4-2所示,则C 点坐标为(()112t +)1t +),OC =t +1,OP =3, 在图7-3中,若△OCP 是等腰三角形,①当OC =OP 时,即t +1=3,解得t =2;②当OP =PC 时,∠PCO =∠POC =30°,∴OC = ,即:t t 1;③当OC =PC 时,此时,C 在线段OP 的垂直平分线上,即P 点纵坐标为32,32)1t +,解得:t -1;综上所述,当t 为2或-11时,△OCP 为等腰三角形.。
第1单元三角形的证明复习教案一、复习目标1.在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法,尺规作图等.2.进一步体会证明的必要性,发展学生的初步的演绎推理能力;进一步掌握综合法的证明方法,结合实例体会反证法的含义;提高学生用规范的数学语言表达论证过程的能力.二、课时安排1课时三、复习重难点重点:线段垂直平分线与角平分线的性质和判定.难点:线段垂直平分线与角平分线的综合应用.四、教学过程(一)知识梳理1.直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的.2.勾股定理及其逆定理勾股定理:直角三角形两条直角边的平方和等于斜边的.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是三角形3.线段的垂直平分线的性质定理及判定定理性质定理:线段的垂直平分线上的点到这条线段两个端点的距离.判定定理:到一条线段两个端点距离相等的点,在这条线段的上.4.三线共点三角形三条边的垂直平分线相交于,并且这一点到三角形三个顶点的距离.5.角平分线的性质定理及判定定理性质定理:角平分线上的点到这个角两边的距离.判定定理:在一个角的内部,且到角的两边相等的点,在这个角的平分线上.[注意] 角的平分线是在角的内部的一条射线,所以它的逆定理必须加上“在角的内部”这个条件.6.三角形三条角平分线的性质三角形的三条角平分线相交于一点,并且这一点到三条边的距离.(二)题型、技巧归纳考点一勾股定理及逆定理的应用例1如图,在△ABC中,∠C=90°,∠B=30°,点P在BC上,PD⊥AB于点D,PD=2,PC=11,求AP的长.考点二线段垂直平分线的性质及判定例2、如图,△ABC中,DE是AC边的垂直平分线,交AC边于点E,交BC边于点D,且△ABC的周长为19,△ABD的周长为13,求AE的长为多少?例3、如图,△ABC中,AB=AC,直线l经过△ABC的顶点A,点D在直线l上,且∠1=∠2.求证:直线l是线段BC的垂直平分线考点三角平分线的性质及判定例4、如图,已知∠1=∠2,P为BN上一点且PD⊥BC于D,AB+BC=2BD,求证:∠BAP+∠BCP=180°例5、如图,CE⊥AB于E,BF⊥AC于F,BF于CE交于点D,BE=CF.求证:AD平分∠BAC(三)典例精讲1.下列命题中,是真命题的是()A.相等的角是对顶角B.两直线平行,同位角互补C.等腰三角形的两个底角相等D.直角三角形中两锐角互补2.若三角形三边长之比为12,则这个三角形中的最大角的度数是()A.60° B.90°C.120° D.150°3.在△ABC中,若∠A∶∠B∶∠C=3∶1∶2,则其各角所对边长之比等于()A∶1∶2 B.1∶2C.1∶2 D.2∶14.到线段AB两个端点距离相等的点,在.5.直角三角形ABC中,∠C=90°,AC的垂直平分线交AB于D,若AD=2 cm,则BD =cm.6.如图1-80所示,△ABC中,AB,AC的垂直平分线分别交BC于点D,E,已知△ADE 的周长为12 cm,求BC的长.7.如图1-81所示,A,B是公路l(l为东西走向)两旁的两个村庄,A村到公路l的距离AC=1 km,B村到公路l的距离BD=2 km,B村在A村的南偏东45°方向上.(1)求A,B两村之间的距离;(2)为方便村民出行,计划在公路边新建一个公共汽车站P,要求该站到两村的距离相等,请用尺规在图中作出点P的位置.(保留清晰的作图痕迹,并简要写明作法)(四)归纳小结1.本节课学习了哪些主要内容?2.勾股定理,垂直平分线以及角平分线的性质与判定的应用。
八年级数学第二学期 第一次质量检测测试卷含答案一、选择题1.下列计算正确的是( ) A .=1212⨯B .4-3=1C .63=2÷D .8=2±2.下列运算正确的是( ) A .732-= B .()255-=-C .1232÷=D .03812+=3.计算()21273632÷+⨯--的结果正确的是( ) A .3B .3C .6D .33-4.下列各式一定成立的是( ) A .2()a b a b +=+ B .222(1)1a a +=+ C .22(1)1a a -=-D .2()ab ab =5.要使2020x -有意义,x 的取值范围是( ) A .x≥2020B .x≤2020C .x> 2020D .x< 20206.已知m 、n 是正整数,若2m +5n是整数,则满足条件的有序数对(m ,n )为( ) A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是7.给出下列结论:①101+在3和4之间;②1x +中x 的取值范围是1x ≥-;③81的平方根是3;④31255--=-;⑤51528->.其中正确的个数为( ) A .1个 B .2个C .3个D .4个8.已知,那么满足上述条件的整数的个数是( ).A .4B .5C .6D .79.下列计算不正确的是 ( )A .35525-=B .236⨯=C 7742=D 363693=+==10.若a b >3a b - ) A .ab --B .-abC .a abD .-ab11.下列运算一定正确的是( )Aa =B=C .222()a b a b ⋅=⋅ D()0na m=≥ 12.如果实数x ,y=-(),x y 在( ) A .第一象限 B .第二象限C .第一象限或坐标轴上D .第二象限或坐标轴上二、填空题13.比较实数的大小:(1)______ ;(2_______12 14.3=,且01x <<=______.15.把根号外的因式移入根号内,得________ 16.. 17.若0xy >,则二次根式________. 18.已知4a|2|a -=_____.19.若a 、b 都是有理数,且2222480a ab b a -+++=. 20.函数y=2x -中,自变量x 的取值范围是____________. 三、解答题21.计算及解方程组: (1-1-) (2)2+(3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩【答案】(1)2)7;(3)102x y =⎧⎨=⎩. 【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可; (2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可; (3)首先将第二个方程化简,然后利用加减消元法即可求解. 【详解】(11-1+(11=1(22+)=34-=7-=7-(3)251032x y x y x y-=⎧⎪⎨+-=⎪⎩①②由②得:50x y -= ③ ②-③得: 10x = 把x=10代入①得:y=2∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.22.计算(1)2213113a a a a a a +--+-+-; (2)已知a 、b+b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.23.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =.. 【分析】根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.24.观察下列等式:1==;==== 回答下列问题:(1(2)计算:【答案】(1(2)9 【分析】(1)根据已知的31=-n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可. 【详解】解:(1=(2+99+=1100++-=1 =10-1 =9.25.计算(1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差.【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差.试题解析:(1)原式=4﹣3+2=6﹣3;(2)原式=﹣3﹣2+﹣3=-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65;乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点:二次根式的混合运算;方差.26.-10【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10. 【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.27.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数). (2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小. 【详解】解:(1)根据题意得:第n 个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.28.计算:(1(2|a ﹣1|,其中1<a 【答案】(1)1;(2)1 【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1(2)∵1<a ,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.29.02020((1)π-.【答案】 【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可. 【详解】原式11=-= 【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.30.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =, 由于437+=,4312⨯=,所以22+==,2===.. 【答案】见解析 【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法. 【详解】根据题意,可知13m =,42n =, 由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】2÷故选A.2.C解析:C 【分析】由二次根式的性质,二次根式的混合运算,分别进行计算,即可得到答案. 【详解】解:A A 错误;B 5=,故B 错误;C 2==,故C 正确;D 01213=+=,故D 错误; 故选:C .【点睛】本题考查了二次根式的性质,二次根式的混合运算,立方根,零指数幂,解题的关键是熟练掌握运算法则进行解题.3.A解析:A【分析】分别根据二次根式的除法和乘法法则以及二次根式的平方计算每一项,再合并即可.【详解】=+=解:原式333故选:A.【点睛】本题主要考查了二次根式的混合运算,属于基础题型,熟练掌握二次根式的乘除法则是解题的关键.4.B解析:B【分析】分别利用二次根式的性质化简求出即可.【详解】解;A2=|a+b|,故此选项错误;B2+1,正确;C,无法化简,故此选项错误;D,故此选项错误;故选:B.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.5.A解析:A【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∴x-2020≥0,解得:x≥2020;故选:A.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的6.C解析:C【分析】根据二次根式的性质分析即可得出答案.【详解】解:∵m、n是正整数,∴m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m,n)为(2,5)或(8,20),故选:C.【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.7.A解析:A【分析】答.【详解】解:①3104<<,415∴<<,故①错误;x的取值范围是1x≥-,故②正确;9=,9的平方根是3±,故③错误;④5=,故④错误;58=,(229<,58-<58<,故⑤错误;综上所述:正确的有②,共1个,故选:A.【点睛】本题考查了故算无理数的大小,解决本题的关键是掌握估算平方法比较无理数大小.8.C【解析】【分析】利用分母有理化进行计算即可.【详解】由原式得:所以,因为,,所以.故选:C【点睛】此题考查解一元一次不等式的整数解,解题关键在于分母有理化.9.D解析:D【解析】根据二次根式的加减法,合并同类二次根式,可知35525=故正确;236=根据二次根式的性质和化简,7742=,故正确;根据二次根式的加减,36不是同类二次根式,故不正确.故选D.10.D解析:D【分析】首先根据二次根式有意义的条件求得a、b的取值范围,然后再利用二次根式的性质进行化简即可;【详解】3a b-∴-a3b≥0∵a>b,∴a>0,b<023=a b ab a a ab--=-,故选:D.【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.11.C【分析】直接利用二次根式的性质与化简以及积的乘方运算法则分别计算即可得出答案.【详解】A|a|,故此选项错误;B.,则a,b均为非负数,故此选项错误;C.a2•b2=(a•b)2,正确;D m n a(a≥0),故此选项错误.故选C.【点睛】本题主要考查了二次根式的性质与化简以及积的乘方运算,正确掌握相关运算法则是解题的关键.12.D解析:D【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限或坐标轴.【详解】=-∴x、y异号,且y>0,∴x<0,或者x、y中有一个为0或均为0.∴那么点(),x y在第二象限或坐标轴上.故选:D.【点睛】根据二次根式的意义,确定被开方数的取值范围,进而确定a、b的取值范围,从而确定点的坐标位置.二、填空题13.【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)(2)∵∴∴故答案为:,.解析:<<【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)<12=∵3=<∴14<12故答案为:<,<.【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键.14..【分析】利用题目给的求出,再把它们相乘得到,再对原式进行变形凑出的形式进行计算.【详解】∵,∴,∴,∴,∵,∴,∴,∴原式.故答案是:.【点睛】本题考查二次根式的运.【分析】,再把它们相乘得到1xx-,再对原式进行变形凑出1xx-的形式进行计算.【详解】3=,∴221239xx=++==,∴17xx+=,∴212725xx=-+=-=,∵01x<<,=,∴1xx=-=-∴原式====..【点睛】本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.15.【分析】根据被开方数大于等于零,可得出,再根据二次根式的性质进行计算即可.【详解】解:∵,∴.故答案为:.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质【分析】根据被开方数大于等于零,可得出0a <,再根据二次根式的性质进行计算即可.【详解】 解:∵310a -≥, ∴0a <,∴a ===.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质是解此题的关键.16.【解析】【详解】根据二次根式的性质和二次根式的化简,可知==.故答案为.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.解析:2【解析】【详解】22.故答案为2. 【点睛】 此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化17.-【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵,且有意义,∴,∴.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是 解析:【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵0xy > ∴00x y <,<,∴x ==.故答案为.【点睛】 此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.即(0)(0)a a a a a ≥⎧==⎨-<⎩=(a ≥0,b >0). 18.-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵,∴a+3<0,2-a>0,∴-a-3-2+a=-5,故答案为:-5.【点睛】此解析:-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵4a ,∴a+3<0,2-a>0,|2|a -=-a-3-2+a=-5,故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.19.【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵∴∴∴∵∴解得:a=-4,b=-2∴=故答案为:.【点睛解析:【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵2222480a ab b a -+++=∴222448160a ab b a -+++=∴()()222448160a ab ba a -+++=+ ∴()()22240ab a +-+=∵()()2220,40a b a +-≥≥∴20,40a b a +-==解得:a=-4,b=-2=故答案为:【点睛】此题考查的是配方法、非负性的应用和化简二次根式,掌握完全平方公式、平方的非负性和二次根式的乘法公式是解决此题的关键.20.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案. 【详解】解:由y=2x -,得4-x≥0且x-2≠0. 解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
一、选择题1.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为15cm ,在容器内壁离容器底部3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿3cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为( )A .20cmB .18cmC .25cmD .40cm 2.在ABC 中,AB 边上的中线3,6,8CD AB BC AC ==+=,则ABC 的面积为( )A .6B .7C .8D .93.如图,在Rt ABC 中,90BAC ︒∠=,以Rt ABC 的三边为边分别向外作等边三角形'A BC ,'AB C △,'ABC △,若'A BC ,'AB C △的面积分别是10和4,则'ABC △的面积是( )A .4B .6C .8D .94.如图,在△ABC 中,∠A =90°,P 是BC 上一点,且DB =DC ,过BC 上一点P ,作PE ⊥AB 于E ,PF ⊥DC 于F ,已知:AD :DB =1:3,BC =46,则PE+PF 的长是( )A .6B .6C .42D .265.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( )A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形6.如图,在数轴上点A 所表示的数为a ,则a 的值为( )A .15--B .15-C .5-D .15-+7.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm ,在容器内壁离容器底部4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm ,则该圆柱底面周长为( )A .12cmB .14cmC .20cmD .24cm8.在ABC ∆中,::1:1:2BC AC AB =,则△ABC 是( ) A .等腰三角形 B .钝角三角形 C .直角三角形D .等腰直角三角形 9.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A .7.5平方千米B .15平方千米C .75平方千米D .750平方千米10.有下列的判断:①△ABC 中,如果a 2+b 2≠c 2,那么△ABC 不是直角三角形②△ABC 中,如果a 2-b 2=c 2,那么△ABC 是直角三角形③如果△ABC 是直角三角形,那么a 2+b 2=c 2以下说法正确的是( )A .①②B .②③C .①③D .② 二、填空题11.如图,在平面直角坐标系中,等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,依此规律,得到等腰直角三角形OA 2018A 2019,则点A 2019的坐标为________.12.如图,等腰梯形ABCD 中,//AD BC ,1AB DC ==,BD 平分ABC ∠,BD CD ⊥,则AD BC +等于_________.13.已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为_____.14.如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的C 点处的食物,需要爬行的最短路程是___________________(π的值取3).15.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.16.《算法统宗》中有一道“荡秋干”的问题,其译文为:“有一架秋千,当它静止时,踏板上一点A 离地1尺,将它往前推送10尺(水平距离)时,点A 对应的点B 就和某人一样高,若此人的身高为5尺,秋干的绳索始终拉得很直,试问绳素有多长?”根据上述条件,秋干绳索长为________尺.17.如图,△ABC 中,∠ABC =45°,∠BCA =30°,点D 在BC 上,点E 在△ABC 外,且AD =AE =CE ,AD ⊥AE ,则AB BD 的值为____________.18.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC 的形状为___________19.如图,把平面内一条数轴x 绕点O 逆时针旋转角θ(0°<θ<90°)得到另一条数轴y ,x 轴和y 轴构成一个平面斜坐标系.规定:已知点P 是平面斜坐标系中任意一点,过点P 作y 轴的平行线交x 轴于点A ,过点P 作x 轴的平行线交y 轴于点B ,若点A 在x 轴上对应的实数为a ,点B 在y 轴上对应的实数为b ,则称有序实数对(a ,b )为点P 的斜坐标.在平面斜坐标系中,若θ=45°,点P 的斜坐标为(1,22),点G 的斜坐标为(7,﹣22),连接PG ,则线段PG 的长度是_____.20.如图,直线423y x =+与x 轴、y 轴分别交于点B 和点A ,点C 是线段OA 上的一点,若将ABC ∆沿BC 折叠,点A 恰好落在x 轴上的'A 处,则点C 的坐标为______.三、解答题21.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.22.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=︒,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转90︒);(3)在(2)的问题中,15ACM ∠=︒,1AM =,求BM 的长.23.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.24.如图,在△ABC 中,∠C =90°,把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合.(1)若∠A =35°,则∠CBD 的度数为________;(2)若AC =8,BC =6,求AD 的长;(3)当AB =m(m>0),△ABC 的面积为m +1时,求△BCD 的周长.(用含m 的代数式表示)25.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).26.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC ,其顶点A ,B ,C 都在格点上,同时构造长方形CDEF ,使它的顶点都在格点上,且它的边EF 经过点A ,ED 经过点B .同学们借助此图求出了△ABC 的面积.(1)在图(1)中,△ABC 的三边长分别是AB = ,BC = ,AC = .△ABC 的面积是 .(2)已知△PMN 中,PM =17,MN =25,NP =13.请你根据启航小组的思路,在图(2)中画出△PMN ,并直接写出△RMN 的面积 .27.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD ,30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .(1)求点A 的坐标;(2)判断DF 与OE 的数量关系,并说明理由;(3)直接写出ADG ∆的周长.28.阅读下列一段文字,然后回答下列问题. 已知在平面内有两点()111, P x y 、()222, P x y ,其两点间的距离()()22121212PP x x y y =-+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为12x x -或1|y -2|y .(1)已知()2, 4A 、()3, 8B --,试求A 、B 两点间的距离______.已知M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1,试求M 、N 两点的距离为______;(2)已知一个三角形各顶点坐标为()1, 6D 、()3, 3E -、()4, 2F ,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标及PD PF +的最短长度.29.(1)如图1,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,且点D 在BC 边上滑动(点D 不与点B ,C 重合),连接EC ,①则线段BC ,DC ,EC 之间满足的等量关系式为 ;②求证:BD 2+CD 2=2AD 2;(2)如图2,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD的长.30.在平面直角坐标系中,点A(0,4),B(m,0)在坐标轴上,点C,O关于直线AB 对称,点D在线段AB上.(1)如图1,若m=8,求AB的长;(2)如图2,若m=4,连接OD,在y轴上取一点E,使OD=DE,求证:CE=2DE;(3)如图3,若m=43,在射线AO上裁取AF,使AF=BD,当CD+CF的值最小时,请在图中画出点D的位置,并直接写出这个最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】将容器侧面展开,建立A关于EG的对称点A′,根据两点之间线段最短可知A′B的长度即为最短路径,由勾股定理求出A′D即圆柱底面周长的一半,由此即可解题.【详解】解:如图,将圆柱展开,EG为上底面圆周长的一半,作A关于E的对称点A',连接A B'交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF BF +的长,即 25cm AF BF A B '+==,延长BG ,过A '作A D BG '⊥于D ,3cm AE A E '==,153315cm BD BG DG BG AE ∴=+=+=-+=,Rt A DB '∴△中,由勾股定理得:20cm A D '==, ∴该圆柱底面周长为:20240cm ⨯=,故选D .【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.B解析:B【分析】本题考查三角形的中线定义,根据条件先确定ABC 为直角三角形,再根据勾股定理求得228AC BC = ,最后根据12ABC AC BC ∆=⋅求解即可. 【详解】 解:如图,在ABC 中,AB 边上的中线,∵CD=3,AB= 6,∴CD=3,AB= 6,∴CD= AD= DB ,12∠∠∴=,34∠=∠ ,∵1234180∠+∠+∠+∠=︒,∴1390∠+∠=︒,∴ABC 是直角三角形,∴22236AC BC AB +==,又∵8AC BC +=,∴22264AC AC BC BC +⋅+=,∴22264()643628AC BC AC BC ⋅=-+=-=,又∵12ABC AC BC ∆=⋅, ∴128722ABC S ∆=⨯=, 故选B.【点睛】本题考查三角形中位线的应用,熟练运用三角形的中线定义以及综合分析、解答问题的能力,关键要懂得:在一个三角形中,如果获知一条边上的中线等于这一边的一半,那么就可考虑它是一个直角三角形,通过等腰三角形的性质和内角和定理来证明一个三是直角三角形.3.B解析:B【分析】设AB=c ,AC=b ,BC=a ,用a 、b 、c 分别表示'A BC ,'AB C △,'ABC △的面积,再利用Rt ABC 得b 2+c 2=a 2,求得c 值代入即可求得的面积'ABC △的面积.【详解】设AB=c ,AC=b ,BC=a ,由题意得'A BC 的面积=131022a a ⋅⋅=, 'AB C △的面积=1342b ⋅= ∴24033a = 21633b =在Rt △ABC 中,∠BAC=90°,b 2+c 2=a 2, ∴c 2=a 2-b 24016338333= ∴'ABC △的面积=21332c ⋅=3836= 故此题选B【点睛】此题考察勾股定理的运用,用直角三角形的三边分别表示三个等边三角形的面积,运用勾股定理的等式求得第三个三角形的面积4.C解析:C【解析】【分析】根据三角形的面积判断出PE+PF 的长等于AC 的长,这样就变成了求AC 的长;在Rt △ACD 和Rt △ABC 中,利用勾股定理表示出AC ,解方程就可以得到AD 的长,再利用勾股定理就可以求出AC 的长,也就是PE+PF 的长.【详解】∵△DCB为等腰三角形,PE⊥AB,PF⊥CD,AC⊥BD,∴S△BCD=12BD•PE+12CD•PF=12BD•AC,∴PE+PF=AC,设AD=x,BD=CD=3x,AB=4x,∵AC2=CD2-AD2=(3x)2-x2=8x2,∵AC2=BC2-AB2=()2-(4x)2,∴x=2,∴,∴故选C【点睛】本题考查勾股定理、等腰三角形的性质等知识,解题的关键是学会利用面积法证明线段之间的关系,灵活运用勾股定理解决问题,属于中考常考题型.5.D解析:D【分析】由(a-b)(a2-b2-c2)=0,可得:a-b=0,或a2-b2-c2=0,进而可得a=b或a2=b2+c2,进而判断△ABC的形状为等腰三角形或直角三角形.【详解】解:∵(a-b)(a2-b2-c2)=0,∴a-b=0,或a2-b2-c2=0,即a=b或a2=b2+c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a2+b2=c2的三角形是直角三角形.6.A解析:A【分析】首先根据勾股定理得出圆弧的半径,然后得出点A的坐标.【详解】∴由图可知:点A所表示的数为: 1-故选:A【点睛】本题主要考查的就是数轴上点所表示的数,属于基础题型.解决这个问题的关键就是求出斜边的长度.在数轴上两点之间的距离是指两点所表示的数的差的绝对值.7.D解析:D【分析】将容器侧面展开,建立A关于EG的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如图:将圆柱展开,EG为上底面圆周长的一半,作A关于E的对称点A',连接A'B交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm,延长BG,过A'作A'D⊥BG于D,∵AE=A'E=DG=4cm,∴BD=16cm,Rt△A'DB中,由勾股定理得:22-=cm201612∴则该圆柱底面周长为24cm.故选:D.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.8.D解析:D【分析】根据题意设出三边分别为k、k2k,然后利用勾股定理的逆定理判定三角形为直角三角形,又有BC、AC边相等,所以三角形为等腰直角三角形.【详解】设BC、AC、AB分别为k,k2k,∵k2+k2=2k)2,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴△ABC 是等腰直角三角形.故选D .【点睛】本题主要考查了直角三角形的判定,利用设k 法与勾股定理证明三角形是直角三角形是难点,也是解题的关键.9.A解析:A【解析】分析:直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.详解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形, ∴这块沙田面积为:12×5×500×12×500=7500000(平方米)=7.5(平方千米). 故选A .点睛:此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键. 10.D解析:D【分析】欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.【详解】①c 不一定是斜边,故错误;②正确;③若△ABC 是直角三角形,c 不是斜边,则a 2+b 2≠c 2,故错误,所以正确的只有②,故选D.【点睛】本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.二、填空题11.(21009,0).【分析】根据等腰直角三角形的性质得到OA 1=1,OA 2=1,OA 3=2,OA 4=3,…OA 2019=2018,再利用1A 、2A 、3A …,每8个一循环,再回到y 轴的正半轴的特点可得到点A 2019在x 轴的正半轴上,即可确定点A 2019的坐标.∵等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,∴OA 1=1,OA 2,OA 3=)2,…,OA 2019=)2018,∵A 1、A 2、A 3、…,每8个一循环,再回到y 轴的正半轴,∴2019÷8=252…3,∴点A 2019在x 轴正半轴上.∵OA 2019=)2018,∴点A 2019的坐标为(2018,0)即(21009,0).故答案为:(21009,0).【点睛】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的2倍.也考查了直角坐标系中各象限内点的坐标特征. 12.3【分析】由//AD BC ,BD 平分ABC ∠,易证得ABD ∆是等腰三角形,即可求得1AD AB ==,又由四边形ABCD 是等腰梯形,易证得2C DBC ∠=∠,然后由BD CD ⊥,根据直角三角形的两锐角互余,即可求得30DBC ∠=︒,则可求得BC 的值,继而求得AD BC +的值.【详解】解:∵//AD BC ,AB DC =,∴C ABC ∠=∠,ADB DBC ∠=∠,∵BD 平分ABC ∠,∴2ABC DBC ∠=∠,ABD DBC ∠=∠,∴ABD ADB ∠=∠,∴1AD AB ==,∴2C DBC ∠=∠,∵BD CD ⊥,∴90BDC ∠=︒,∵三角形内角和为180°,∴90DBC C ∠+∠=︒,∴260C DBC ∠=∠=︒,∴2212BC CD ==⨯=,∴123AD BC +=+=.故答案为:3.【点睛】本题主要考查对勾股定理,含30度角的直角三角形,等腰三角形的性质和判定,平行线的性质,等腰梯形的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此13..(3,4)或(2,4)或(8,4).【分析】题中没有指明△ODP的腰长与底分别是哪个边,故应该分情况进行分析,从而求得点P的坐标.【详解】解:(1)OD是等腰三角形的底边时,P就是OD的垂直平分线与CB的交点,此时OP=PD≠5;(2)OD是等腰三角形的一条腰时:①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,在直角△OPC中,CP=22-=3,则P的坐标是(3,4).54-=22OP OC②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,过D作DM⊥BC于点M,在直角△PDM中,PM=22-=3,PD DM当P在M的左边时,CP=5﹣3=2,则P的坐标是(2,4);当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4).故P的坐标为:(3,4)或(2,4)或(8,4).故答案为:(3,4)或(2,4)或(8,4).【点睛】本题考查了等腰三角形的性质和勾股定理的运用等知识,注意正确地进行分类,考虑到所有可能的情况并进行分析求解是解题的关键.14.15厘米【分析】要想求得最短路程,首先要画出圆柱的侧面展开图,把A和C展开到一个平面内.根据两点之间,线段最短,结合勾股定理即可求出蚂蚁爬行的最短路程.【详解】解:如图,展开圆柱的半个侧面是矩形,π=厘米,矩形的宽BC=12厘米.∴矩形的长是圆柱的底面周长的一半,即AB=39∴蚂蚁需要爬行最短路程2222=++厘米.12915AC BC AB故答案为:15厘米【点睛】求两个不在同一平面内的两点之间的最短距离时,一定要展开到一个平面内,根据两点之间,线段最短.15.413【分析】延长AD至点E,使得DE=AD=4,结合D是中点证得△ADC≌△EDB,进而利用勾股定理逆定理可证得∠E=90°,再利用勾股定理求得BD长进而转化为BC长即可.【详解】解:如图,延长AD至点E,使得DE=AD=4,连接BE,∵D是BC边中点,∴BD=CD,又∵DE=AD,∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=6,又∵AB=10,∴AE2+BE2=AB2,∴∠E=90°,∴在Rt△BED中,2222BD BE DE=++=,64213∴BC=2BD=13故答案为:13【点睛】本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.16.5【分析】设绳索x 尺,过点B 向地面及AO 作垂线BE 、BC ,构成直角三角形OBE ,利用勾股定理求出x 的值【详解】如图, 过点B 作BC ⊥OA 于点C ,作BD 垂直于地面,延长OA 交地面于点D 由题意知AD=1,BE=5,BC=10设绳索x 尺,则OA=OB=x∴OC=x+1-5=x-4在Rt △OBC 中,OB 2=OC 2+BC 2∴222(4)10x x =-+得x=14.5(尺)故填14.5 ,【点睛】此题考察勾股定理的实际运用,理解题意作辅助线构建直角三角形是解题关键. 17.622【解析】【分析】过A 点作BC 的垂线,E 点作AC 的垂线,构造全等三角形,利用对应角相等计算得出∠DAM=15°,在AM 上截取AG=DG ,则∠DGM=30°,设DM=a,通过勾股定理可得到DG=AG=2a ,332)a ,31)a ,231)a ,代入计算即可.【详解】过A 点作AM ⊥BC 于M 点,过E 点EN ⊥AC 于N 点.∵∠BCA =30°,AE=EC∴AM=12AC ,AN=12AC ∴AM=AN又∵AD=AE∴R t∆ADM ≅ R t∆AEN (HL)∴∠DAM=∠EAN 又∵∠MAC=60°,AD ⊥AE∴∠DAM=∠EAN=15°在AM 上截取AG=DG ,则∠DGM=30°设DM=a,则 DG=AG=2a ,根据勾股定理得:GM=3a, ∵∠ABC =45° ∴AM=BM=(32)a +∴BD=(31)a +,AB=2(32)a +,∴()()62262231a AB BD a++==+ 故答案为:62+【点睛】本题主要考查等于三角形的性质、含30°角的直角三角形的性质,勾股定理等知识,关键是能根据已知条件构建全等三角形及构建等腰三角形将15°角转化为30°角,本题有较大难度.18.等腰直角三角形【解析】根据非负数的意义,由()22220c a ba b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形.故答案为:等腰直角三角形.点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式.19.5【分析】如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N ,先证明△ANP ≌△MNG (AAS ),再根据勾股定理求出PN 的值,即可得到线段PG 的长度.【详解】如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N .∵P(1,2),G(7.﹣2),∴OA=1,PA=GM=2,OM=7,AM=6,∵PA∥GM,∴∠PAN=∠GMN,∵∠ANP=∠MNG,∴△ANP≌△MNG(AAS),∴AN=MN=3,PN=NG,∵∠PAH=45°,∴PH=AH=2,∴HN=1,∴2222215PN PH NH=+=+=∴PG=2PN=5.故答案为5【点睛】本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.20.(0,34).【分析】由423y x=+求出点A、B的坐标,利用勾股定理求得AB的长度,由此得到53122OA'=-=,设点C的坐标为(0,m),利用勾股定理解得m的值即可得到答案.【详解】在423y x=+中,当x=0时,得y=2,∴A(0,2)当y=0时,得4203x+=,∴32x=-,∴B(32-,0),在Rt △AOB 中,∠AOB=90︒,OA=2,OB=32,∴52AB ===, ∴53122OA '=-=, 设点C 的坐标为(0,m )由翻折得ABC A BC '≌,∴2A C AC m '==-,在Rt A OC '中, 222A C OC A O ''=+,∴222(2)1m m -=+,解得m=34, ∴点C 的坐标为(0,34). 故答案为:(0,34). 【点睛】此题考查勾股定理,翻折的性质,题中由翻折得ABC A BC '≌是解题的关键,得到OC 与A’C 的数量关系,利用勾股定理求出点C 的坐标. 三、解答题21.BF 的长为【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .【详解】解:连接BF .∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中,BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3 ∴222232BF BD FD BD =+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.22.(15132)见解析;(3)23【分析】(1)分两种分割法利用勾股定理即可解决问题;(2)如图,过点A 作AD ⊥AB ,且AD=BN .只要证明△ADC ≌△BNC ,推出CD=CN ,∠ACD=∠BCN ,再证明△MDC ≌△MNC ,可得MD=MN ,由此即可解决问题;(3)过点B 作BP ⊥AB ,使得BP=AM=1,根据题意可得△CPB ≌△CMA ,△CMN ≌△CPN ,利用全等性质推出∠BNP=30°,从而得到NB 和NP 的长,即得BM.【详解】解:(1)当MN 最长时,225MN AM -,当BN 最长时,2213AM MN +(2)证明:如图,过点A 作AD ⊥AB ,且AD=BN ,在△ADC 和△BNC 中,AD BN DAC B AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△BNC (SAS ),∴CD=CN ,∠ACD=∠BCN ,∵∠MCN=45°,∴∠DCA+∠ACM=∠ACM+∠BCN=45°,∴∠MCD=∠MCN ,在△MDC 和△MNC 中,CD CN MCD MCN CM CM =⎧⎪∠=∠⎨⎪=⎩,∴△MDC ≌△MNC (SAS ),∴MD=MN在Rt △MDA 中,AD 2+AM 2=DM 2,∴BN 2+AM 2=MN 2,∴点M ,N 是线段AB 的勾股分割点;(3)过点B 作BP ⊥AB ,使得BP=AM=1,根据(2)中过程可得:△CPB ≌△CMA ,△CMN ≌△CPN ,∴∠AMC=∠BPC=120°,AM=PB=1,∠CMN=∠CPN=∠A+∠ACM=45°+15°=60°,∴∠BPN=120°-60°=60°,∴∠BNP=30°,∴NP=2BP=2=MN ,∴22213-=,∴BM=MN+BN=23+.【点睛】本题是三角形的综合问题,考查了全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.23.(1)见解析;(2)证明见解析;(3)25.【分析】(1)直接叙述勾股定理的内容,并用字母表明三边关系;(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.【详解】解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×12ab=2ab , ∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,即 a 2+b 2= c 2.(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.【点睛】本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.24.(1)∠CBD=20°;(2)AD=164;(3) △BCD 的周长为m+2 【分析】(1)根据折叠可得∠1=∠A=35°,根据三角形内角和定理可以计算出∠ABC=55°,进而得到∠CBD=20°;(2)根据折叠可得AD=DB ,设CD=x ,则AD=BD=8-x ,再在Rt △CDB 中利用勾股定理可得x 2+62=(8-x )2,再解方程可得x 的值,进而得到AD 的长;(3)根据三角形ACB 的面积可得112AC CB m =+,进而得到AC•BC=2m+2,再在Rt△CAB中,CA2+CB2=BA2,再把左边配成完全平方可得CA+CB的长,进而得到△BCD的周长.【详解】(1)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴∠1=∠A=35°,∵∠C=90°,∴∠ABC=180°-90°-35°=55°,∴∠2=55°-35°=20°,即∠CBD=20°;(2)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴AD=DB,设CD=x,则AD=BD=8-x,在Rt△CDB中,CD2+CB2=BD2,x2+62=(8-x)2,解得:x= 74,AD=8-74=164;(3)∵△ABC 的面积为m+1,∴12AC•BC=m+1,∴AC•BC=2m+2,∵在Rt△CAB中,CA2+CB2=BA2,∴CA2+CB2+2AC•BC=BA2+2AC•BC,∴(CA+BC)2=m2+4m+4=(m+2)2,∴CA+CB=m+2,∵AD=DB,∴CD+DB+BC=m+2.即△BCD的周长为m+2.【点睛】此题主要考查了图形的翻折变换,以及勾股定理,完全平方公式,关键是掌握勾股定理,以及折叠后哪些是对应角和对应线段.25.(1)见解析;(2)26;(3)3a+ 【分析】 (1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;(2)由等腰直角三角形的性质可得CM=12DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN 中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.【详解】证明:(1)∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE(2)∵∠DCE=90°,CD=CE ,∴△DCE 为等腰直角三角形,∵CM ⊥DE ,∴CM 平分DE ,即M 为DE 的中点∴CM=12DE , ∴DE=2CM=14,∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE=10,∠CAD=∠CBE∴AE=AD+DE=24如图,设AE ,BC 交于点H ,在△ACH 和△BEH 中,∠CAH+∠ACH=∠EBH+∠BEH ,而∠CAH=∠EBH ,∴∠BEH=∠ACH=90°,∴△ABE 为直角三角形 由勾股定理得2222AB=AE BE =2410=26++(3)由(1)(2)可得△ACD ≌△BCE ,∴∠DAC=∠EBC ,∵△ACB ,△DCE 都是等腰三角形,∠ACB=∠DCE=120°∴∠CAB=∠CBA=∠CDE=∠CED=30°,∵CM ⊥DE ,∴∠CMD=90°,DM=EM ,∴CD=CE=2CM ,3CM∴33∵∠BEN=∠BAE+∠ABE=∠BAE+∠EBC+∠CBA=∠BAE+∠DAC+∠CBA=30°+30°=60°, ∴∠NBE=30°,∴BE=2EN ,3EN∵BN=a∴23=AD ∴2323+b 【点睛】本题考查全等三角形的旋转模型,掌握此模型的特点得到全等三角形是关键,其中还需要用到等腰三角形三线合一与30度所对的直角边的性质,熟练掌握这些基本知识点是关键.26.(1131710,112;(2)图见解析;7. 【分析】(1)利用勾股定理求出AB ,BC ,AC ,理由分割法求出△ABC 的面积.(2)模仿(1)中方法,画出△PMN ,利用分割法求解即可.【详解】解:(1)如图1中,AB 22AE BE +2232+13BC 22BD CD +2214+17AC 22AF CF +2213+10,S△ABC=S矩形DEFC﹣S△AEB﹣S△AFC﹣S△BDC=12﹣3﹣32﹣2=112,故答案为13,17,10,112.(2)△PMN如图所示.S△PMN=4×4﹣2﹣3﹣4=7,故答案为7.【点睛】此题重点考查学生对勾股定理的应用,熟练掌握勾股定理是解题的关键.27.(1)(0,3);(2)DF OE=;(3)93233+【分析】(1)由等边三角形的性质得出6OB=,12AB AC BC===,由勾股定理得出2263OA AB OB=-=A的坐标;(2)由等边三角形的性质得出AD AE=,AF AO=,60FAO DAE∠=∠=︒,证出FAD OAE∠=∠,由SAS证明FAD OAE∆≅∆,即可得出DF OE=;(3)证出90AGO∠=︒,求出9AG=,由全等三角形的性质得出AOE AFD∠=∠,证出6090FDO AFD AOD∠=∠+︒+∠=︒,由等边三角形的性质得1332DG OF==即可得出答案.【详解】解:(1)ABC∆是等边三角形,点0()6,B-,点(6,0)C,6OB∴=,12AB AC BC===,222212663OA AB OB=-=-=∴点A的坐标为(0,63);(2)DF OE=;理由如下:ADE∆,AFO∆均为等边三角形,AD AE∴=,AF AO=,60FAO DAE∠=∠=︒,FAD OAE∴∠=∠,在FAD∆和OAE∆中,AF AOFAD OAEAD AE=⎧⎪∠=∠⎨⎪=⎩,()FAD OAE SAS ∴∆≅∆,DF OE ∴=;(3)60AOF ∠=︒,30FOB ∴∠=︒,60ABO ∠=︒,90AGO ∴∠=︒,AFO ∆是等边三角形,AO =·sin 609AG OA ∴=︒==, FAD OAE ∆≅∆,AOE AFD ∴∠=∠,30DOE AOD AOE ∠=︒=∠+∠,30AOD AFD ∴∠+∠=︒,FDO AFD FAO AOD ∠=∠+∠+∠,60603090FDO AFD AOD ∴∠=∠+︒+∠=︒+︒=︒,AG OF ⊥,AOF ∆为等边三角形,G ∴为斜边OF 的中点,1122DG OF ∴==⨯=ADG ∴∆的周长9AG AD DG =++=+【点睛】本题是三角形综合题目,考查了等边三角形的性质、勾股定理、坐标与图形性质、全等三角形的判定与性质、三角函数等知识;本题综合性强,有一定难度,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.28.(1)13,5;(2)等腰直角三角形,理由见解析;(3)当P 的坐标为(1304,)时,PD+PF【解析】【分析】(1)根据阅读材料中A 和B 的坐标,利用两点间的距离公式即可得出答案;由于M 、N 在平行于y 轴的直线上,根据M 和N 的纵坐标利用公式1|y -2|y 即可求出MN 的距离; (2)由三个顶点的坐标分别求出DE ,DF ,EF 的长,即可判定此三角形的形状;(3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时PD PF +最短,最短距离为DF',P 的坐标即为直线DF'与x 轴的交点.【详解】解:(1)∵()2, 4A 、()3, 8B --。
八年级数学第二学期第一单元测试题八年级数学第二学期第一单元测试题一元一次不等式和一元一次不等式组班别:_________学号:_________姓名:_________评分:_________一.填空题:(每小题2分,共20分)1.若_lt;,则-2 -2.(填〝_lt;._gt;或=〞号)2.若,则.(填〝_lt;._gt;或=〞号)3.不等式7-_gt;1的正整数解为:.4.当_______时,代数式的值至少为1.5.不等式6-12_lt;0的解集是_________.6.若一次函数=2-6,当_____时,_gt;0.7.若方程的解是正整数,则的取值范围是:_________.8.的与12的差不小于6,用不等式表示为__________________.9.从小明家到学校的路程是2400米,如果小明早上7点离家,要在7点30分到40分之间到达学校,设步行速度为米/分,则可列不等式组为__________________,小明步行的速度范围是_________.10.若关于的方程组的解满足_gt;,则P的取值范围是_________.二.选择题:(每小题3分,共30分)题号12345678910答案1.若_gt;,则下列不等式中正确的是:( )A.-_lt;0B. C.+8_lt; -8 D.2.在数轴上表示不等式≥-2的解集,正确的是( )ABCD3.已知两个不等式的解集在数轴上如图表示,那么这个解集为( )A.≥-1B._gt;1C.-3_lt;≤-1D._gt;-34.如果不等式组的解集是,则n的取值范围是( )A. B. C.D.5.下列不等式求解的结果,正确的是( )A.不等式组B.不等式组C.不等式组D.不等式组6.不等式2+1_lt;8的最大整数解是( )A.4B.3C.2D.17.若的解集是( )A._lt;_lt;B._lt;_lt;C._lt;_lt;D.无解8.使代数式的值不小于代数式的值,则应为( )A._gt;17B.≥17C._lt;17D.≥279.已知中,为正数,则的取值范围是( )A._lt;2B._lt;3C._lt;4D._lt;510.一次函数的图象如图所示,当-3_lt;_lt;3时,的取值范围是( )A._gt;4B.0_lt;_lt;2C.0_lt;_lt;4D.2_lt;_lt;4三.解下列不等式(组),并把解集在数轴上表示出来:(每小题6分,共24分)1.2.3. 4.五.(6分)为何值时,代数式的值是非负数?六.(6分)已知:关于的方程的解的非正数,求的取值范围.七.(7分)我市移动通讯公司开设了两种通讯业务,A类是固定用户:先缴50元基础费,然后每通话1分钟再付话费0.4元;B类是〝神州行〞用户:使用者不缴月租费,每通话1分钟会话费0.6元(这里均指市内通话).若果一个月内通话时间为分钟,分别设A类和B类两种通讯方式的费用为,(1)写出.与之间的函数关系式.(2)一个月内通话多少分钟,用户选择A类合算?B类呢?(3)若某人预计使用话费150元,他应选择哪种方式合算?八.(6分)登山前,登山者要将矿泉水分装在旅行包内带上山.若每人2瓶,则剩余3瓶,若每人带3瓶,则有一人所带矿泉水不足2瓶.求登山人数及矿泉水的瓶数.九.(附加题)1.(10分)某厂有甲.乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:原料维生素C及价格甲种原料乙种原料维生素C/(单位/千克)600100原料价格/(元/千克)84现配制这种饮料10千克,要求至少含有4200单位的维生素C,并要求购买甲.乙两种原料的费用不超过72元,(1)设需用千克甲种原料,写出应满足的不等式组.(2)按上述的条件购买甲种原料应在什么范围之内?2.(10分)某宾馆一楼房间比二楼房间少5间,一旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.问宾馆一楼有多少房间?。
初二级第二学期第一单元复习卷
一、填空题
1、2)2
1(-的平方根是 ,算术平方根是 ; 2、64-的立方根是 ;
3、若x 的平方根是±2,则x= ;
4、32-的相反数是 ,绝对值是 ,倒数是 ;
5、在实数范围内,若1|5|-+-+x y x =0,则xy= ;
6、若22)()(y x y x -=-,则x 、y 应满足的条件是 ;
7、化简:5
5= ,320a = ;
8、比较实数的大小:-3; 9、长方形的面积为30,若宽为5,则长为 ;
10、三角形的三边长分别为20、40、 45,这个三角形的周长是 。
二、选择题
11、在实数范围内的数0,312-,8,2)3(-中,有平方根的有( )
A 、1个
B 、2个
C 、3个
D 、4个
12、若一具数的平方根等于它的立方根,则这个数是( )
A 、1
B 、-1
C 、±1
D 、0
13、下列叙述正确的是( )
A 、0.4的平方根是±0.2;
B 、3)2(--的立方根不存在;
C 、±6是36的算术平方根;
D 、3)3(-的立方根是-3
14、使式子23+x 有意义的实数x 的取值范围是( )
A 、x ≥0
B 、x >32-
C 、x ≥23-
D 、x ≥3
2- 15、下列二次根式中,与35-是同类二次根式的是( )
A 、18
B 、3.0
C 、30
D 、300
16、下列运算正确的是( )
A 、171251251252222=+=+=+;
B 、1234949=-=-=-;
C 、20)4()5(1625)16()25(=-⨯-=⨯-=-⨯-;
D 、1535)3()5(22=⨯=-⨯-;
17、下列说法正确的是( )
A 、实数分为正实数和负实数;
B 、没有绝对值最大的实数,有绝对值最小的实数;
C 、两个无理数的和还是无理数;
D 、不带根号的数都是有理数;
18、若a 是2003的算术平方根,则100
2003的平方根是( ) A 、0.01a B 、0.1a C 、-0.1a D 、±0.1a。