【高中教育】最新高二数学下学期期末考试试题文2
- 格式:doc
- 大小:146.17 KB
- 文档页数:8
θ-高二第二学期期末考试文科数学试卷命题人:高三文科数学备课组—、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1,2,3A =-,{}230B x x x =-≥,则AB =( )A .{}1- B .{}1,0-C .{}1,3- D .{}1,0,3-2.若复数z 满足()1i 12i z -=+,则z =( )A .52B .32C 10D .63.已知α为锐角,5cos 5α=,则tan 4απ⎛⎫-= ⎪⎝⎭( )A .13B .3C .13-D .3- 4.设命题p :1x ∀< ,21x <,命题q :00x ∃> ,0012x x >( )A .p q ∧B .()p q ⌝∧C .()p q ∧⌝D .()()p q ⌝∧⌝5.已知变量x ,y 满足202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,,,则2z x y =+的最大值为( )A .5B .4C .6D .06.如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,直角三角形中较小的锐角.若在该大正方形区域内随机地取一点,则该点落在中间小正方形内的概率是( )A .232- B .32C .D .127.下面左图是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为A 1,A 2,…,A 16,右图是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是( ) A .6 B .10 C .91 D .928. 已知等比数列{a n },且a 4+a 8=-2,则a 6(a 2+2a 6+a 10)的值为( )A. 4B. 6C. 8D. -99. 设曲线2()1cos ()f x m x m R =+∈上任一点(,)x y 处切线斜率为()g x ,则函数2()y x g x =的部分图象可以为( )10.将函数2sin cos 33y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的图象向左平移()0ϕϕ>个单位,所得图象对 应的函数恰为奇函数,则ϕ的为最小值为( )A .12πB .6πC .4πD .3π11.已知正三棱锥P-ABC 的主视图和俯视图如图所示,则此三棱锥的外接球的表面积为( )A .4π B.12πC.316πD.364π12. 已知函数2(1)(0)()2x f f f x e x x e '=⋅+⋅-,若存在实数m 使得不等式 2()2f m n n ≤-成立,则实数n 的取值范围为( )A. [)1-,1,2⎛⎤∞-⋃+∞ ⎥⎝⎦ B. (]1,1,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭C. (]1,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭D. [)1-,0,2⎛⎤∞-⋃+∞ ⎥⎝⎦二、填空题:本大题共4小题,每小题5分,共20分aEDCAP13.已知向量(1,2),(,1)a b x ==,2,2u a b v a b =+=-,且u ∥v ,则实数x 的值是___.15. 已知点P (x ,y )在直线x+2y=3上移动,当2x+4y取得最小值时,过点P 引圆16.已知12,F F 分别是椭圆22221x y a b+=(0)a b >>的左、右焦点,P 是椭圆上一点(异于左、右顶点),过点P 作12F PF ∠的角平分线交x 轴于点M ,若2122PM PF PF =⋅,则该椭圆的离心率为.三、解答题:本大题共6小 题 ,共70分.解答应写出文字说明,证明过程或演算步骤 17. (本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足(1)求角C 的大小;(2)若bsin (π﹣A )=acosB ,且,求△ABC 的面积.18.(本小题满分12分)如图,已知多面体PABCDE 的底面ABCD 是边长为2的菱形,ABCD PA 底面⊥,ED PA ,且22PA ED ==.(1)证明:平面PAC ⊥平面PCE ;(2) 若 o 60=∠ABC ,求三棱锥P ACE -的体积19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周总利润的平均值.附:相关系数公式∑∑∑===----=ni ini ini iiy yx x y yx x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20. (本小题满分12分)已知椭圆()2222:10x y E a b a b+=>>的离心率为2,且过点⎛ ⎝⎭.(1)求E 的方程; (2)是否存在直线:l y kx m =+与E 相交于,P Q 两点,且满足:①OP 与OQ (O 为坐标原点)的斜率之和为2;②直线l 与圆221x y +=相切,若存在,求出l 的方程;若不存在,请说明理由. 21(本小题满分12分)已知函数f (x )=x 2+1,g (x )=2alnx+1(a ∈R ) (1)求函数h (x )=f (x )-g (x )的极值;(2)当a=e 时,是否存在实数k ,m ,使得不等式g (x )≤kx+m ≤f (x )恒成立?若存 在,请求实数k ,m 的值;若不存在,请说明理由.请考生在22〜23三题中任选一题做答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xOy 中,已知直线l 的参数方程为1cos ,1sin x t y t αα=+⎧⎨=+⎩(t 为参数,α为倾斜角),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位,曲线C 的极坐标方程为24cos 6sin 40ρρθρθ--+=. (1)求曲线C 的普通方程和参数方程;(2)设l 与曲线C 交于A ,B 两点,求线段||AB 的取值范围. 23. (本小题满分10分)选修4-5:不等式选讲 巳知函数f(x)=|x-2|+2|x-a|(a ∈R). (1)当a=1时,解不等式f(x)>3;(2)不等式1)(≥x f 在区间(-∞,+∞)上恒成立,求实数a 的取值范围.2017-2018学年度高二第二学期期末考试文科数学试卷答案一、选择题1-5 DCABB 6-10 ABADB 11-12 DA 二、填空题13. 14.15. 16 .22三、 解答题17.解:(1)在△ABC 中,由,由余弦定理:a 2+b 2﹣c 2=2abcosC , 可得:2acsinB=2abcosC .由正弦定理:2sinCsinB=sinBcosC∵0<B <π,sinB ≠0, ∴2sinC=cosC ,即tanC=,∵0<C <π, ∴C=. (2)由bsin (π﹣A )=acosB , ∴sinBsinA=sinAcosB , ∵0<A <π,sinA ≠0, ∴sinB=cosB ,∴,根据正弦定理,可得,解得c=118.(1)证明:连接BD,交AC于点O,设PC连接OF,EF.因为O,F分别为AC,PC的中点,所以OF PA,且12OF PA=,因为DE PA,且12DE PA=,所以OF DE,且OF DE=.………………1分所以四边形OFED为平行四边形,所以OD EF,即BD EF.…………2分因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA BD⊥.因为ABCD是菱形,所以BD AC⊥.因为PA AC A=,所以BD⊥平面PAC.……………4分因为BD EF,所以EF⊥平面PAC.………………5分因为FE⊂平面PCE,所以平面PAC⊥平面PCE.……6分(2)解法1:因为60ABC∠=,所以△ABC是等边三角形,所以2AC=.……7分又因为PA⊥平面ABCD,AC⊂平面ABCD,所以PA AC⊥.所以.………8分因为面PAC,所以是三棱锥的高.……9分因为EF DO BO===10分所以13P ACE E PAC PACV V S EF--∆==⨯……11分1233=⨯=.…12分解法2:因为底面ABCD为菱形,且︒=∠60ABC,所以△ACD为等边三角形.………7分取AD的中点M,连CM,则ADCM⊥,且3=CM.…8分因为⊥PA 平面ABCD ,所以CM PA ⊥,又A AD PA = ,所以CM ⊥平面PADE ,所以CM 是三棱锥C PAE -的高.……………9分 因为122PAE S PA AD ∆=⨯=.……10分 所以三棱锥ACE P -的体积13P ACE C PAE PAE V V S CM --∆==⨯…………11分1233=⨯=.………………12分 19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==. (1)分因为51()()(3)(1)000316iii x x yy =--=-⨯-++++⨯=∑,……2分,52310)1()3()(22222512=+++-+-=-∑=i ix x ……………………3分==…………………4分所以相关系数()()0.95nii xx y y r --===≈∑.………………5分因为0.75r >,所以可用线性回归模型拟合y 与x 的关系.…………6分 (2)记商家周总利润为Y 元,由条件可得在过去50周里:当X >70时,共有10周,此时只有1台光照控制仪运行, 周总利润Y =1×3000-2×1000=1000元.……………………8分 当50≤X ≤70时,共有35周,此时有2台光照控制仪运行, 周总利润Y =2×3000-1×1000=5000元.………………………9分 当X<50时,共有5周,此时3台光照控制仪都运行, 周总利润Y =3×3000=9000元.………………10分 所以过去50周周总利润的平均值10001050003590005460050Y ⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.………12分20. 解:(1)由已知得221314c a a b=+=, 解得224,1a b ==,∴椭圆E 的方程为2214x y +=; (2)把y kx m =+代入E 的方程得:()()222148410k xkmx m +++-=,设()()1122,,,P x y Q x y ,则()2121222418,1414m kmx x x x k k--+==++,① 由已知得()()12211212211212122OF OQ kx m x kx m x y y y x y x k k x x x x x x +++++=+===, ∴()()1212210k x x m x x -++=,②把①代入②得()()2222811801414k m km k k ---=++, 即21m k +=,③又()()2221641164k m k k ∆=-+=+,由224010k k m k ⎧+>⎨=-≥⎩,得14k <-或01k <≤,由直线l 与圆221x y +=1=④③④联立得0k =(舍去)或1k =-,∴22m =, ∴直线l的方程为y x =-21.解:(1)h (x )=f (x )﹣g (x )=x 2﹣2alnx ,x >0所以 h′(x )=当a ≤0,h′(x )>0,此时h (x )在(0,+∞)上单调递增,无极值, 当a >0时,由h′(x )>0,即x 2﹣a >0,解得:a >或x <﹣,(舍去)由h′(x )<0,即x 2﹣a <0,解得:0<x <,∴h (x )在(0,)单调递减,在(,+∞)单调递增, ∴h (x )的极小值为h ()=a ﹣2aln=a ﹣alna ,无极大值;(2)当a=e 时,由(1)知min ()h x =h ()=h ()=e ﹣elne=0∴f (x )﹣g (x )≥0, 也即 f (x )≥g (x ),当且仅当x=时,取等号;以(1)e +为公共切点,f′()=g′()2e =所以y=f (x )与y=g (x )有公切线,切线方程y=2x+1﹣e ,构造函数 2()()1)(h x f x e x =--+=,显然()0h x ≥1()e f x ∴+-≤构造函数 ()1)()2ln k x e g x e x e =+--=--(0)x >()x k x x'=由()0k x '> 解得 x >()0k x '< 解得 0x <<所以()k x 在上递减,在)+∞上递增min ()0k x k ∴==,即有1)()e g x +-≥从而 ()1()g x e f x ≤+-≤,此时1k m e ==-22. 解:(Ⅰ)因为曲线C 的极坐标方程为24cos 6sin 40ρρθρθ--+=, 所以曲线C 的普通方程为224640x y x y +--+=, 即22(2)(3)9x y -+-=,所以曲线C 的参数方程为23cos 33sin x y ϕϕ=+⎧⎨=+⎩(ϕ为参数).(Ⅱ)把代入1cos 1sin x t y t αα=+⎧⎨=+⎩代入22(2)(3)9x y -+-=,并整理得22(cos 2sin )40t t αα-+-=, 设A ,B 对应的参数分别为1t ,2t , 所以122(cos 2sin )t t αα+=+,124t t =-,所以1212||||||||AB t t t t =+=-=====设4cos 5ϕ=,3sin 5ϕ=,∴||AB =,∵1sin(2)1αϕ-≤-≤,∴1610sin(2)263αϕ≤-+≤,∴4||6AB ≤≤, ∴||AB 的取值范围为[]4,6.23. 解:(Ⅰ)解得解得解得…………………3分不等式的解集为………………5分(Ⅱ);;;的最小值为;………………8分则,解得或.………………10分2017-2018学年度高二第二学期期末考试文科数学试卷答案一、选择题1-5 DCABB 6-10 ABADB 11-12 DA二、填空题13. 14.15. 16 .2 2三、解答题17.解:(1)在△ABC中,由,由余弦定理:a2+b2﹣c2=2abcosC,可得:2acsinB=2abcosC.由正弦定理:2sinCsinB=sinBcosC∵0<B<π,sinB≠0,∴2sinC=cosC,即tanC=,∵0<C<π,∴C=.(2)由bsin(π﹣A)=acosB,∴sinBsinA=sinAcosB,∵0<A<π,sinA≠0,∴sinB=cosB,∴,根据正弦定理,可得,解得c=118.(1)证明:连接BD,交AC于点O,设PC连接OF,EF.因为O,F分别为AC,PC的中点,所以OF PA,且12OF PA=,因为DE PA,且12DE PA=,所以OF DE,且OF DE=.………………1分所以四边形OFED为平行四边形,所以OD EF,即BD EF.…………2分因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA BD⊥.因为ABCD是菱形,所以BD AC⊥.因为PA AC A=,所以BD⊥平面PAC.……………4分因为BD EF,所以EF⊥平面PAC.………………5分因为FE⊂平面PCE,所以平面PAC⊥平面PCE.……6分(2)解法1:因为60ABC∠=,所以△ABC是等边三角形,所以2AC=.……7分又因为PA⊥平面ABCD,AC⊂平面ABCD,所以PA AC⊥.所以.………8分因为面PAC,所以是三棱锥的高.……9分因为EF DO BO===10分所以13P ACE E PAC PACV V S EF--∆==⨯……11分123=⨯=.…12分解法2:因为底面ABCD为菱形,且︒=∠60ABC,所以△ACD为等边三角形.………7分取AD的中点M,连CM,则ADCM⊥,且3=CM.…8分因为⊥PA平面ABCD,所以CMPA⊥,又AADPA=,所以CM⊥平面PADE,所以CM是三棱锥C PAE-的高.……………9分因为122PAE S PA AD ∆=⨯=.……10分 所以三棱锥ACE P -的体积13P ACE C PAE PAE V V S CM --∆==⨯…………11分123=⨯=.………………12分 19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==. (1)分因为51()()(3)(1)000316iii x x yy =--=-⨯-++++⨯=∑,……2分,52310)1()3()(22222512=+++-+-=-∑=i ix x ……………………3分==…………………4分所以相关系数()()0.95nii xx y y r --===≈∑.………………5分因为0.75r >,所以可用线性回归模型拟合y 与x 的关系.…………6分 (2)记商家周总利润为Y 元,由条件可得在过去50周里:当X >70时,共有10周,此时只有1台光照控制仪运行, 周总利润Y =1×3000-2×1000=1000元.……………………8分 当50≤X ≤70时,共有35周,此时有2台光照控制仪运行, 周总利润Y =2×3000-1×1000=5000元.………………………9分 当X<50时,共有5周,此时3台光照控制仪都运行, 周总利润Y =3×3000=9000元.………………10分 所以过去50周周总利润的平均值10001050003590005460050Y ⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.………12分 20. 解:(1)由已知得221314c a a b=+=,解得224,1a b ==,∴椭圆E 的方程为2214x y +=; (2)把y kx m =+代入E 的方程得:()()222148410k xkmx m +++-=,设()()1122,,,P x y Q x y ,则()2121222418,1414m kmx x x x k k--+==++,① 由已知得()()12211212211212122OF OQ kx m x kx m x y y y x y x k k x x x x x x +++++=+===, ∴()()1212210k x x m x x -++=,②把①代入②得()()2222811801414k m km k k---=++, 即21m k +=,③又()()2221641164k m k k ∆=-+=+,由224010k k m k ⎧+>⎨=-≥⎩,得14k <-或01k <≤,由直线l 与圆221x y +=1=④③④联立得0k =(舍去)或1k =-,∴22m =, ∴直线l的方程为y x =-21.解:(1)h (x )=f (x )﹣g (x )=x 2﹣2alnx ,x >0所以 h′(x )=当a ≤0,h′(x )>0,此时h (x )在(0,+∞)上单调递增,无极值, 当a >0时,由h′(x )>0,即x 2﹣a >0,解得:a >或x <﹣,(舍去)由h′(x )<0,即x 2﹣a <0,解得:0<x <,∴h (x )在(0,)单调递减,在(,+∞)单调递增, ∴h (x )的极小值为h ()=a ﹣2aln=a ﹣alna ,无极大值;(2)当a=e 时,由(1)知min ()h x =h ()=h ()=e ﹣elne=0∴f (x )﹣g (x )≥0, 也即 f (x )≥g (x ),当且仅当x=时,取等号;以(1)e +为公共切点,f′()=g′()2e =所以y=f (x )与y=g (x )有公切线,切线方程y=2x+1﹣e ,构造函数 2()()1)(h x f x e x =--+=,显然()0h x ≥1()e f x ∴+-≤构造函数 ()1)()2ln k x e g x e x e =+--=--(0)x >()x k x x'=由()0k x '> 解得 x >()0k x '< 解得 0x <<所以()k x 在上递减,在)+∞上递增min ()0k x k ∴==,即有1)()e g x +-≥从而 ()1()g x e f x ≤+-≤,此时1k m e ==-22. 解:(Ⅰ)因为曲线C 的极坐标方程为24cos 6sin 40ρρθρθ--+=, 所以曲线C 的普通方程为224640x y x y +--+=, 即22(2)(3)9x y -+-=, 所以曲线C 的参数方程为23cos 33sin x y ϕϕ=+⎧⎨=+⎩(ϕ为参数).(Ⅱ)把代入1cos 1sin x t y t αα=+⎧⎨=+⎩代入22(2)(3)9x y -+-=,并整理得22(cos 2sin )40t t αα-+-=, 设A ,B 对应的参数分别为1t ,2t ,所以122(cos 2sin )t t αα+=+,124t t =-,所以1212||||||||AB t t t t =+=-=====设4cos 5ϕ=,3sin 5ϕ=,∴||AB =,∵1sin(2)1αϕ-≤-≤,∴1610sin(2)263αϕ≤-+≤,∴4||6AB ≤≤, ∴||AB 的取值范围为[]4,6.23. 解:(Ⅰ)解得解得解得…………………3分不等式的解集为………………5分(Ⅱ);;;的最小值为;………………8分则,解得或.………………10分。
福州2023-2024学年第二学期期末考试高二数学(答案在最后)一、单选题1.已知tan22α=,则1cos sin αα+的值是()A.2B.2C.D.122.已知复数2i1iz -=+(其中i 为虚数单位),则z =()A.13i 22- B.13i 22+C.33i 22- D.33i 22+3.若0a b <<,则下列结论正确的是()A.ln ln a b> B.22b a< C.11a b< D.1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭4.已知(31)(1)n x x -+的展开式中所有项的系数之和为64,则展开式中含4x 的项的系数为()A.20B.25C.30D.355.已知函数()()()2sin 0f x x ωϕω=+>的部分图像如图所示,则函数()f x 的一个单调递增区间是()A.75,1212ππ⎛⎫-⎪⎝⎭B.7,1212ππ⎛⎫-- ⎪⎝⎭C.,36ππ⎛⎫-⎪⎝⎭ D.1117,1212ππ⎛⎫⎪⎝⎭6.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 的直线与C 的左、右支分别交于点P 、Q .若1:1:2F P PQ =,且122cos 3F QF ∠=,则C 的离心率为()A.3B.2C.D.7.等差数列()*12,,n a a a n N∈ ,满足121212111222n n n a a a a a a a a a +++=++++=++++++++ 122010333n a a a =+++=+++ ,则()A.n 的最大值是50B.n 的最小值是50C.n 的最大值是51D.n 的最小值是518.对于曲线22:1C x y --+=,给出下列三个命题:①关于坐标原点对称;②曲线C 上任意一点到坐标原点的距离不小于2;③曲线C 与曲线3x y +=有四个交点.其中正确的命题个数是()A.0B.1C.2D.3二、多选题9.已知22()1xf x x =+,则下列说法正确的有()A.()f x 奇函数B.()f x 的值域是[1,1]-C.()f x 的递增区间是[1,1]- D.()f x 的值域是(,1][1,)-∞-+∞ 10.已知抛物线24y x =的焦点为F ,点P 在准线上,过点F 作PF 的垂线且与抛物线交于A ,B 两点,则()A.PF 最小值为2B.若PA PB =,则2AB PF =C.若8AB =,则PF =D.若点P 不在x 轴上,则2FA FB PF⋅>11.已知随机变量X 、Y ,且31,Y X X =+的分布列如下:X 12345Pm11015n310若()10E Y =,则()A.310m =B.15n =C.()3E X =D.7()3D Y =12.已知数列{}n a 满足2122n n n a a a +=-+,则下列说法正确的是()A.当112a =时,()5124n a n <≤≥ B.若数列{}n a 为常数列,则2n a =C.若数列{}n a 为递增数列,则12a > D.当13a =时,1221n n a -=+三、填空题13.函数()()lg 12x f x x +=+的定义域是_________.14.若一个圆的圆心是抛物线24x y =的焦点,且该圆与直线3y x =+相切,则该圆的标准方程是__________.15.已知函数()(),f x g x 的定义域为R ,且()()()()6,24f x f x f x g x -=+-+=,若()1g x +为奇函数,()23f =,则311()k g k ==∑__________.四、解答题16.ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC的面积tan 4S ac B =⋅.(1)求B ;(2)若a 、b 、c 成等差数列,ABC 的面积为32,求b .17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认为12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k≥0.0500.0100.001k 3.841 6.63510.82818.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos a ca B =-.(1)证明:2B A =;(2)若3a =,b =,求c .19.双败淘汰制是一种竞赛形式,与普通的单败淘汰制输掉一场即被淘汰不同,参赛者只有在输掉两场比赛后才丧失争夺冠军的可能.在双败淘汰制的比赛中,参赛者的数量一般是2的次方数,以保证每一轮都有偶数名参赛者.第一轮通过抽签,两人一组进行对阵,胜者进入胜者组,败者进入负者组.之后的每一轮直到最后一轮之前,胜者组的选手两人一组相互对阵,胜者进入下一轮,败者则降到负者组参加本轮负者组的第二阶段对阵;负者组的第一阶段,由之前负者组的选手(不包括本轮胜者组落败的选手)两人一组相互对阵,败者被淘汰(已经败两场),胜者进入第二阶段,分别对阵在本轮由胜者组中降组下来的选手,胜者进入下一轮,败者被淘汰.最后一轮,由胜者组最终获胜的选手(此前从未败过,记为A )对阵负者组最终获胜的选手(败过一场,记为B ),若A 胜则A 获得冠军,若B 胜则双方再次对阵,胜者获得冠军.某围棋赛事采用双败淘汰制,共有甲、乙、丙等8名选手参赛.第一轮对阵双方由随机抽签产生,之后每一场对阵根据赛事规程自动产生对阵双方,每场对阵没有平局.(1)设“在第一轮对阵中,甲、乙、丙都不互为对手”为事件M ,求M 的概率;(2)已知甲对阵其余7名选手获胜的概率均为23,解决以下问题:①求甲恰在对阵三场后被淘汰的概率;②若甲在第一轮获胜,设甲在该项赛事的总对阵场次为随机变量ξ,求ξ的分布列.20.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos()1B A C ++=.(1)求角B 的大小;(2)若M 为BC 的中点,且AM AC =,求sin BAC ∠.21.已知函数()()2111()R ,ax x f x x ea a g x e x +-=+-∈=-.(1)求函数()f x 的单调区间;(2)对∀a ∈(0,1),是否存在实数λ,[][]1,,1,n m a a a a ∃∈∀∈--,使()2()0f g n m λ-⎡⎤⎣<⎦成立,若存在,求λ的取值范围;若不存在,请说明理由.福州2023-2024学年第二学期期末考试高二数学一、单选题1.已知tan22α=,则1cos sin αα+的值是()A.2B.2C.D.12【答案】D 【解析】【分析】利用二倍角公式和商公式即可得出答案.【详解】由tan 22α=,则212cos 11cos 2sin 2sin cos 22ααααα+-+=2cos 2sin cos 22ααα=1tan 2α=12=.故选:D 2.已知复数2i1iz -=+(其中i 为虚数单位),则z =()A.13i 22- B.13i 22+C.33i 22- D.33i 22+【答案】B 【解析】【分析】利用复数的除法法则、共轭复数的定义即可得出.【详解】由已知()()()()2i 1i 13i1i 1i 22z --==-+-,则13i 22z =+.故选:B .3.若0a b <<,则下列结论正确的是()A.ln ln a b >B.22b a < C.11a b< D.1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】【分析】利用不等式的性质判断B ,C ,利用对数函数和指数函数的性质判断A ,D.【详解】因为函数ln y x =在()0+∞,上单调递增,0a b <<,所以ln ln b a >,A 错误,因为0a b <<,由不等式性质可得220a b <<,B 错误,因为0a b <<,所以0a b -<,0ab >,所以110a b b a ba --=<,故11b a<,C 错误,因为函数12xy ⎛⎫= ⎪⎝⎭在()0+∞,上单调递减,0a b <<,所以1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,∴D 正确,故选:D.4.已知(31)(1)n x x -+的展开式中所有项的系数之和为64,则展开式中含4x 的项的系数为()A.20B.25C.30D.35【答案】B 【解析】【分析】根据所有项的系数之和求解n ,写出(1)n x +的展开式,求3x 与二项式中含3x 的项相乘所得的项,-1与二项式中含4x 的项相乘所得的项,两项相加,即为(31)(1)n x x -+的展开式中含4x 的项.【详解】所有项的系数之和为64,∴(31)(11)64n -+=,∴5n =5(31)(1)(31)(1)n x x x x -+=-+,5(1)x +展开式第1r +项515r r r T C x -+=,2r =时,2333510T C x x ==,3431030x x x ⋅=,1r =时,144255T C x x ==,44(1)55x x -⨯=-,44430525x x x -=,故选:B .5.已知函数()()()2sin 0f x x ωϕω=+>的部分图像如图所示,则函数()f x 的一个单调递增区间是()A.75,1212ππ⎛⎫-⎪⎝⎭B.7,1212ππ⎛⎫-- ⎪⎝⎭C.,36ππ⎛⎫-⎪⎝⎭D.1117,1212ππ⎛⎫⎪⎝⎭【答案】D 【解析】【分析】由图像得出解析式,再由正弦函数的单调性判断即可.【详解】根据函数()()2sin (0)f x x ωϕω=+>的部分图像,可得1122544312T πππω⋅=⋅=-解得2ω=,∴函数()()2sin 2f x x ϕ=+再把5,212π⎛⎫ ⎪⎝⎭代入函数的解析式,可得52sin 26ϕπ⎛⎫+= ⎪⎝⎭∴5sin 1,2πZ ,63k k ππϕϕ⎛⎫+=∴=-+∈⎪⎝⎭()故函数()2sin 23f x x π⎛⎫=- ⎪⎝⎭.令222,232k x k k Z πππππ--+∈ ,得51212k x k πππ-π+ ,当1k =时,函数()f x 的一个单调递增区间是1117,1212ππ⎡⎤⎢⎥⎣⎦.故选:D.6.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 的直线与C 的左、右支分别交于点P 、Q .若1:1:2F P PQ =,且122cos 3F QF ∠=,则C 的离心率为()A.3 B.2C.D.【答案】A 【解析】【分析】由向量的关系求出线段之间的关系,设1||PF x =,则||2PQ x =,1||3QF x =,再由双曲线的定义可得2||2PF a x =+,2||32QF x a =-,再由数量积为可得直线的垂直,分别在两个直角三角形中由余弦定理可得a ,c 的关系,可求出离心率.【详解】1:1:2F P PQ =,设1||PF x =,则||2PQ x =,1||3QF x =,由双曲线的定义可得2||2PF a x =+,2||32QF x a =-,因为122cos 3F QF ∠=,在12QF F 中,由余弦定理有222121212122cos F F QF QF QF QF F QF =+-⋅⋅∠,即22224(3)(32)3(32)32c x x a x x a -⨯=+--⨯,①在2PQF 中,由余弦定理有222222122cos PF PQ QF PQ QF F QF =+-⋅⋅∠,即2222(2)(32)(2)(32)(2)32a x x a x x a x -+=-+-⨯,②由②可得83x a =,代入①可得229c a =,即3c a =.所以C 的离心率为:3ce a==,故选:A.公众号:高中试卷君7.等差数列()*12,,n a a a n N∈ ,满足121212111222n n n a a a a a a a a a +++=++++=++++++++ 122010333n a a a =+++=+++ ,则()A.n 的最大值是50B.n 的最小值是50C.n 的最大值是51D.n 的最小值是51【答案】A 【解析】【分析】不妨设10a >,0d <,由对称性可得:2,*n k k N =∈.可得10k k a a +>⎧⎨<⎩,130k a ++<.解得3d <-.可得()121222010k k k k a a a a a a +++++-+++= ,可得22010k d =-,解出即可得出.【详解】解:不妨设10a >,0d <,由对称性可得:2,*n k k N =∈.则10k k a a +>⎧⎨<⎩,130k a ++<.()110a k d +->,10a kd +<,130a kd ++>∴3d <-∴()121222010k k k k a a a a a a +++++-+++= ,∴22010k d =-,∴220103k-<-,解得:k <,∴2k <,∴250k ≤.∴n 的最大值为50.故选:A .【点睛】本题考查了等差数列的通项公式求和公式及其性质、方程与不等式的解法,考查了推理能力与计算能力,属于难题.8.对于曲线22:1C x y --+=,给出下列三个命题:①关于坐标原点对称;②曲线C 上任意一点到坐标原点的距离不小于2;③曲线C 与曲线3x y +=有四个交点.其中正确的命题个数是()A.0 B.1C.2D.3【答案】C 【解析】【分析】分析两个曲线的对称性,并结合函数的图象和性质,利用数形结合,即可判断①③,利用基本不等式,即可判断②.【详解】①将曲线22:1C x y --+=中的x 换成x -,将y 换成y -,方程不变,所以曲线关于原点对称,并且关于x 轴和y 轴对称,故①正确;②设曲线C 上任一点为(),P x y ()222222222211224y x x y x y xy x y ⎛⎫+=++=++≥+= ⎪⎝⎭,当2222y x x y=,即222x y ==时,等号成立,2≥,曲线C 上任意一点到坐标原点的距离不小于2,故②正确;③曲线3x y +=中的x 换成x -,将y 换成y -,方程不变,所以曲线关于原点对称,并且关于x 轴和y 轴对称,并且将x 换成y ,y 换成x ,方程不变,所以曲线也关于y x =对称,曲线2211:1C x y +=中,21x ≥且21y ≥,将曲线2211:1C x y+=中的x 换成y ,y 换成x ,方程不变,所以曲线C 也关于y x =对称,当0,0x y >>时,联立22111x y y x ⎧+=⎪⎨⎪=⎩,得x y ==,当0,0x y >>时,y ==1x >时,函数单调递减,3<,所以点在直线3x y +=的下方,如图,在第一象限有2个交点,根据两个曲线的对称性可知,其他象限也是2个交点,则共有8个交点,故③错误;故选:C【点睛】关键点点睛:本题的关键是③的判断,判断的关键是对称性的判断,以及将方程转化为函数,判断函数的单调性,即可判断.二、多选题9.已知22()1xf x x =+,则下列说法正确的有()A.()f x 奇函数B.()f x 的值域是[1,1]-C.()f x 的递增区间是[1,1]- D.()f x 的值域是(,1][1,)-∞-+∞ 【答案】ABC 【解析】【分析】对于A ,利用奇函数的定义进行判断;对于B ,D ,利用判别式法求其值域;对于C ,利用单调性的定义进行判断【详解】对于A ,()221xf x x =+,其定义域为R ,有()()221x f x f x x -=-=-+,为奇函数,A 正确;对于B ,221xy x =+,变形可得220yx x y -+=,则有2440y ∆=-≥,解可得11y -≤≤,即函数的值域为[]1,1-,B 正确,对于C ,()221xf x x =+,任取12,x x R ∈,且12x x <,则1221121222221212222()(1)()()11(1)(1)x x x x x x f x f x x x x x ---=-=++++,当12,[1,1]x x ∈-,所以12())0(f x f x -<,即12()()f x f x <,所以()f x 的递增区间是[1,1]-,所以C 正确,对于D ,由选项B 的结论,D 错误,故选:ABC .10.已知抛物线24y x =的焦点为F ,点P 在准线上,过点F 作PF 的垂线且与抛物线交于A ,B 两点,则()A.PF 最小值为2B.若PA PB =,则2AB PF =C.若8AB =,则PF = D.若点P 不在x 轴上,则2FA FB PF⋅>【答案】ABC 【解析】【分析】根据抛物线的定义,结合两点间距离公式、抛物线的性质逐一判断即可.【详解】点()1,0F ,抛物线的准线方程为=1x -,设()1,P m -,2PF ==≥=,所以点P 在横轴上时PF 有最小值2,所以选项A 正确;若PA PB =,根据抛物线的对称性可知点P 在横轴上,把1x =代入24y x =中,得2y =±,()224AB =--=,此时2PF =,于是有2AB PF =,所以选项B 正确;因为8AB =,显然点P 不在横轴上,则有22PF AB m k k m=⇒=-,所以直线AB 的方程为()21y x m=-代入抛物线方程中,得()2244240x x m -++=,设()()1122,,,A x y B x y ,2122x x m +=+22121182284AB x x m m =+++=⇒++=⇒=,PF ===,所以选项C 正确,点P 不在x 轴上,由上可知:2122x x m +=+,121=x x ,()()22121212111224x x x x x x FA FB m m =++=+++=++=+⋅,而224PFm =+,显然2FA FB PF ⋅=,所以选项D 不正确,故选:ABC11.已知随机变量X 、Y ,且31,Y X X =+的分布列如下:X 12345Pm11015n310若()10E Y =,则()A .310m =B.15n =C.()3E X =D.7()3D Y =【答案】AC 【解析】【分析】由分布列的性质和期望公式求出,m n 可判断ABC ;由方差公式可判断D .【详解】由113110510m n ++++=可得:25m n +=①,又因为()()()313110E Y E X E X =+=+=,解得:()3E X =,故C 正确.所以()1132345310510E X m n =+⨯+⨯++⨯=,则7410m n +=②,所以由①②可得:13,1010n m ==,故A 正确,B 错误;()()()()()2222231113()1323334353101051010D X =-⨯+-⨯+-⨯+-⨯+-⨯3113134114101010105=⨯+⨯+⨯+⨯=,()()13117()319955D Y D X D X =+==⨯=,故D 错误.故选:AC .12.已知数列{}n a 满足2122n n n a a a +=-+,则下列说法正确的是()A.当112a =时,()5124n a n <≤≥ B.若数列{}n a 为常数列,则2n a =C.若数列{}n a 为递增数列,则12a > D.当13a =时,1221n n a -=+【答案】AD 【解析】【分析】令1n n b a =-可得21n n b b +=,据此判断A ,令n a t =,由递推关系222t t t =-+求出即可判断B ,根据B 及条件数列{}n a 为递增数列,分类讨论求出10a <或12a >时判断C ,通过对21n n b b +=取对数,构造等比数列求解即可判断D.【详解】对于A ,当112a =时,254a =,令1n n b a =-,则21n n b b +=,214b =,故()1024n b n <≤≥,即()5124n a n <≤≥,A 正确;对于B ,若数列{}n a 为常数列,令n a t =,则222t t t =-+,解得1t =或2,1n t a =∴=或2n a =,B 不正确;对于C ,令1n n b a =-,则21n n b b +=,若数列{}n a 为递增数列,则数列{}n b 为递增数列,则210n n n n b b b b +-=->,解得0n b <或1n b >.当11b <-时,2211b b =>,且21n n b b +=,2312,n b b b b b ∴<<⋅⋅⋅<<⋅⋅⋅<,此时数列{}n b 为递增数列,即数列{}n a 为递增数列;当110b -≤<时,201b <≤,且21n n b b +=,2312,n b b b b b ∴≥≥⋅⋅⋅≥≥⋅⋅⋅<,此时数列{}n b 不为递增数列,即数列{}n a 不为递增数列;当11b >时,21n n b b +=,123n b b b b ∴<<<⋅⋅⋅<<⋅⋅⋅,此时数列{}n b 为递增数列,即数列{}n a 为递增数列.综上,当11b <-或11b >,即10a <或12a >时,数列{}n a 为递增数列,C 不正确;对于D ,令1n n b a =-,则21n n b b +=,12b =,两边同时取以2为底的对数,得212log 2log n n b b +=,21log 1b =,∴数列{}2log n b 是首项为1,公比为2的等比数列,12log 2n n b -∴=,即11222,21n n n n b a --=∴=+,D 正确.故选:AD.【点睛】关键点点睛:本题所给数列的递推关系并不常见,对学生的理性思维要求比较高,求解时将已知条件变为()2111n n a a +-=-是非常关键的一步,再根据每个选项所附加的条件逐一进行判断,既有求解数列的项的取值范围的问题,又考查了数列的单调性、数列通项的求解,要求学生具备扎实的逻辑推理能力.本题难度比较大,起到压轴的作用.公众号:高中试卷君三、填空题13.函数()()lg 12x f x x +=+的定义域是_________.【答案】()1,-+∞【解析】【分析】由真数大于0和分母不等于0建立不等式组即可求解.【详解】解:由1020x x +>⎧⎨+≠⎩,可得1x >-,所以函数()()lg 12x f x x +=+的定义域是()1,-+∞,故答案为:()1,-+∞.14.若一个圆的圆心是抛物线24x y =的焦点,且该圆与直线3y x =+相切,则该圆的标准方程是__________.【答案】()2212x y +-=【解析】【分析】求出圆心和半径可得答案.【详解】抛物线的焦点为(0,1),故圆心为(0,1),圆的半径为R ==,故圆的方程为:22(1)2x y +-=.故答案为:22(1)2x y +-=.15.已知函数()(),f x g x 的定义域为R ,且()()()()6,24f x f x f x g x -=+-+=,若()1g x +为奇函数,()23f =,则311()k g k ==∑__________.【答案】1-【解析】【分析】由()f x 的对称性及()()24f x g x -+=得()()2g x g x =--,再由()1g x +为奇函数得()()4g x g x =--,从而得()()8g x g x -=,即()g x 是周期为8的周期函数,再利用周期可得答案.【详解】由()1g x +为奇函数,得()()11g x g x -+=-+,即()()2g x g x -=-,由()()6f x f x -=+,得()()()2422f x f x f x ⎡⎤-=+=---⎣⎦,又()()24f x g x -+=,于是()()442g x g x -=---,即()()2g x g x =--,从而()()22g x g x -=---,即()()4g x g x +=-,因此()()()84g x g x g x -=--=,函数()g x 的周期为8的周期函数,显然(1)(5)(2)(6)(3)(7)(4)(8)0g g g g g g g g +=+=+=+=,又(32)(0)4(2)1g g f ==-=,所以83111()4()(32)4011k k g k g k g ===-=⨯-=-∑∑.故答案为:1-【点睛】结论点睛:函数()f x 关于直线x a =对称,则有()()f a x f a x +=-;函数()f x 关于(,)a b 中心对称,则有()2()2f a x f x b -+=;函数()f x 的周期为2a ,则有()()f x a f x a -=+.四、解答题16.ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积tan 4S ac B =⋅.(1)求B ;(2)若a 、b 、c 成等差数列,ABC 的面积为32,求b .【答案】(1)6π(2)1+【解析】【分析】(1)由三角形面积公式和同角三角函数的关系化简已知式子可求得B ;(2)由a 、b 、c 成等差数列,可得22242a c b ac +=-,再由ABC 的面积为32,可得6ac =,然后利用余弦定理可求得结果【小问1详解】∵1sin tan 24S ac B ac B ==,∴1sin sin 24cos B B B =⋅,即3cos 2B =,∵0B π<<,∴6B π=.【小问2详解】∵a 、b 、c 成等差数列,∴2b a c =+,两边同时平方得:22242a c b ac +=-,又由(1)可知:6B π=,∴113sin 242S ac B ac ===,∴6ac =,222412a c b +=-,由余弦定理得,22222241243cos 21242a cb b b b B ac +----====,解得24b =+,∴1b =+17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认为12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k≥0.0500.0100.001k3.8416.63510.828【答案】(1)答案见详解(2)答案见详解【解析】【分析】(1)根据题中数据完善列联表,计算2K ,并与临界值对比分析;(2)用频率估计概率可得0.64p =,根据题意计算p +,结合题意分析判断.【小问1详解】根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得()2215026302470754.687550100965416K ⨯-⨯===⨯⨯⨯,因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.【小问2详解】由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=,用频率估计概率可得0.64p =,又因为升级改造前该工厂产品的优级品率0.5p =,则0.50.50.5 1.650.56812.247p +=+≈+⨯≈,可知p p >+所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos a c a B =-.(1)证明:2B A =;(2)若3a =,b =,求c .【答案】(1)证明见解析(2)5c =【解析】【分析】(1)由正弦定理结合两角和的正弦公式化简2cos a c a B =-可得sin sin()A B A =-,结合角的范围,可证明结论;(2)由正弦定理可得sin sin 3B A =,结合(1)的结论利用二倍角公式可求出cos 3A =,继而求得cos B ,结合已知条件即可求得答案.【小问1详解】由2cos a c a B =-及正弦定理得sin sin 2sin cos A C A B =-,因为πA B C ++=,所以()sin sin sin cos cos sin C A B A B A B =+=+,所以sin cos sin sin cos sin()A A B A B B A =-=-.因为0πA <<,0πB <<,所以ππB A -<-<,所以B A A -=,或πB A A -+=(即B π=,不合题意,舍去),所以2B A =.【小问2详解】由正弦定理可得sin 26sin 3B b A a ==,由(1)知sin sin22sin cos B A A A ==,代入上式可得6cos 3A =,所以21cos cos22cos 13B A A ==-=,再由条件可得12cos 3653c a a B =+=+⨯=.19.双败淘汰制是一种竞赛形式,与普通的单败淘汰制输掉一场即被淘汰不同,参赛者只有在输掉两场比赛后才丧失争夺冠军的可能.在双败淘汰制的比赛中,参赛者的数量一般是2的次方数,以保证每一轮都有偶数名参赛者.第一轮通过抽签,两人一组进行对阵,胜者进入胜者组,败者进入负者组.之后的每一轮直到最后一轮之前,胜者组的选手两人一组相互对阵,胜者进入下一轮,败者则降到负者组参加本轮负者组的第二阶段对阵;负者组的第一阶段,由之前负者组的选手(不包括本轮胜者组落败的选手)两人一组相互对阵,败者被淘汰(已经败两场),胜者进入第二阶段,分别对阵在本轮由胜者组中降组下来的选手,胜者进入下一轮,败者被淘汰.最后一轮,由胜者组最终获胜的选手(此前从未败过,记为A )对阵负者组最终获胜的选手(败过一场,记为B ),若A 胜则A 获得冠军,若B 胜则双方再次对阵,胜者获得冠军.某围棋赛事采用双败淘汰制,共有甲、乙、丙等8名选手参赛.第一轮对阵双方由随机抽签产生,之后每一场对阵根据赛事规程自动产生对阵双方,每场对阵没有平局.(1)设“在第一轮对阵中,甲、乙、丙都不互为对手”为事件M ,求M 的概率;(2)已知甲对阵其余7名选手获胜的概率均为23,解决以下问题:①求甲恰在对阵三场后被淘汰的概率;②若甲在第一轮获胜,设甲在该项赛事的总对阵场次为随机变量ξ,求ξ的分布列.【答案】(1)47;(2)①427;②答案见解析.【解析】【分析】(1)先求出8人平均分成四组的方法数,再求出甲,乙,丙都不分在同一组的方法数,从而可求得答案;(2)①甲恰在对阵三场后淘汰,有两种情况:“胜,败,败”和“败,胜,败”,然后利用互斥事件的概率公式求解即可②由题意可得{}3,4,5,6,7ξ∈,然后求出各自对应的概率,从而可得ξ的分布列【详解】(1)8人平均分成四组,共有2222864244C C C C A 种方法,其中甲,乙,丙都不分在同一组的方法数为35A ,所以()352222864244A P A C C C C A =47=(2)①甲恰在对阵三场后淘汰,这三场的结果依次是“胜,败,败”或“败,胜,败”,故所求的概率为211121333333⨯⨯+⨯⨯427=②若甲在第一轮获胜,{}3,4,5,6,7ξ∈.当3ξ=时,表示甲在接下来的两场对阵都败,即()1113339P ξ==⨯=.当4ξ=时,有两种情况:(i )甲在接下来的3场比赛都胜,其概率为222833327⨯⨯=;(ii )甲4场对阵后被淘汰,表示甲在接下来的3场对阵1胜1败,且第4场败,概率为12211433327C ⋅⨯⨯=,所以()844427279P ξ==+=当5ξ=时,有两种情况:(i )甲在接下来的2场对阵都胜,第4场败,概率为221433327⨯⨯=;(ii )甲在接下来的2场对阵1胜1败,第4场胜,第5场败,概率为1221218333381C ⋅⨯⨯⨯=;所以()48205278181P ξ==+=.当6ξ=时,有两种情况:(i )甲第2场胜,在接下来的3场对阵为“败,胜,胜”,其概率为2212833381⎛⎫⨯⨯= ⎪⎝⎭;(ii )甲第2场败,在接下来的4场对阵为“胜,胜,胜,败”,其概率为31218333243⎛⎫⨯⨯= ⎪⎝⎭;所以()8832681243243P ξ==+=.当7ξ=时,甲在接下来的5场对阵为“败,胜,胜,胜,胜”,即()41216733243P ξ⎛⎫==⨯= ⎪⎝⎭.所以ξ的分布列为:ξ34567P 194920813224316243【点睛】关键点点睛:此题考查互斥事件概率的求法,考查离散型随机变量的分布列,解题的关键是正确理解题意,求出3,4,5,6,7ξ=对应的概率,考查分析问题的能力,考查计算能力,属于中档题20.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos()1B A C ++=.(1)求角B 的大小;(2)若M 为BC 的中点,且AM AC =,求sin BAC ∠.【答案】(1)3π(2)7【解析】【分析】(1)利用诱导公式及辅助角公式计算可得;(2)利用余弦定理和正弦定理求出结果.【小问1详解】解:在ABC 中,A B C π++=()cos 1B A C ++=,()cos 1B B π+-=cos 1B B -=,∴2sin 16B π⎛⎫-= ⎪⎝⎭,即1sin 62B π⎛⎫-= ⎪⎝⎭,∵0B π<<,∴5666B πππ-<-<,∴66B ππ-=,∴3B π=;【小问2详解】解:在ABC 中,222222cos AC a c ac B a c ac =+-=+-,在ABM 中,2222212cos 2242a a a AM c c B c ⎛⎫=+-⨯=+- ⎪⎝⎭,又AM AC = ,∴2222142a a c ac c ac +-=+-,32a c ∴=,代入上式得2AC =,在ABC 中,sin 21sin 7BC B BAC AC ⋅∠==.21.已知函数()()2111()R ,ax x f x x e a a g x e x +-=+-∈=-.(1)求函数()f x 的单调区间;(2)对∀a ∈(0,1),是否存在实数λ,[][]1,,1,n m a a a a ∃∈∀∈--,使()2()0f g n m λ-⎡⎤⎣<⎦成立,若存在,求λ的取值范围;若不存在,请说明理由.【答案】(1)答案不唯一见解析(2)存在,e λ≥.【解析】【分析】(1)求函数导数,分0,0,0a a a =><三种情况,分析()f x '与0的关系,即可求出函数的单调区间;(2)由题意转化为0λ>且2min min [()]()f n g m λ<,利用导数求出min 22[()](1)f n a =-,min ()(1)0g x g ==,即转化为21(1)a a e a λ-->-,构造函数21(1)(),[0,1)x x h x x e x --=∈-,利用导数可求出21(1)a a e e a--<-,即可求解.【详解】(1)()211ax f x x e a +=+-(R)a ∈的定义域为(,)∞∞-+,1()(2)ax f x x ax e +'=+⋅,①当a =0时,0,()0,0,()0x f x x f x ''>><<,所以函数()f x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞.②当a >0时,22,,()0,,0,()0,(0,)x f x x f x x a a ⎛⎫⎛⎫''∈-∞->∈-<∈+∞ ⎪ ⎪⎝⎭⎝⎭,()0f x '>,所以函数()f x 的单调递增区间为2,,(0,)a ⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为2,0a ⎛⎫- ⎪⎝⎭.③当a <0时,22(,0),()0,0,,()0,,x f x x f x x a a '⎛⎫⎛⎫'∈-∞<∈->∈-+∞ ⎪ ⎪⎝⎭⎝⎭,()0f x '<所以函数()f x 的单调递减区间为2(,0),,a ⎛⎫-∞-+∞ ⎪⎝⎭,单调递增区间为20,a ⎛⎫- ⎪⎝⎭.(2)由1()xg x e x -=-,得1()1x g x e -'=-,当1x >时,()0, 1 g x x '><时,()0g x '<,故()g x 在(,1)-∞上单调递减,在(1,)+∞上单调递增,所以min ()(1)0g x g ==,故当[1,]m a a ∈-时,1min ()()0a g m g a e a -==->当(0,1)a ∈时,21a a ->-,由(1)知,当[1,]n a a ∈-时,min ()(0)10f n f a ==->所以min 22[()](1)f n a =-,若对[1,],[1,]m a a n a a ∀∈-∃∈-使2[()]()0f n g m λ-<成立,即2[()]()f ng m λ<则0λ>且2min min [()]()f n g m λ<.所以()21(1)e a a a λ--<-,所以21(1)a a e a λ-->-.设21(1)(),[0,1)x x h x x e x --=∈-,则()()1121(1)31()x x x x e xe x h x e x --'-----=-,令11()3e e 1,[0,1]x x r x x x x --=---∈则1()(2)e 1x r x x -'=--,当[0,1)x ∈时,由1x e x >+,故1e 2x x ->-,所以1(2)1x x e --<,故()0r x '<,所以()r x 在[0,1]上单调递减,所以[0,1)x ∈时,()(1)0r x r >=,即()0r x >,又[0,1)x ∈时,10x -<,所以当[0,1)x ∈时,()0,()h x h x <'单调递减,所以当(0,1)x ∈时,()(0)h x h e <=,即(0,1)a ∈时,21(1)a a e e a--<-,故e λ .所以当e λ 时,对(0.1),[1,],[1,]a m a a n a a ∀∈∀∈-∃∈-使2[()]()0f n g m λ-<成立.【点睛】本题主要考查了利用导数求函数的单调区间,利用导数求函数的最值,恒成立问题,转化思想,分类讨论思想,考查了推理能力和运算能力,属于难题.。
—————————— 新学期 新成绩 新目标 新方向 ——————————2019年度第二学期期末考试 高二年级 数学(文科) 试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4U =,若{}1,3A =,{}3B =,则()()U U C A C B 等于( )A.{}1,2B.{}1,4C.{}2,3D.{}2,42.若复数()()12i 2i z =-+(其中i 为虚数单位)在复平面中对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3.若双曲线()222:106x y C a a -=>的焦距为a 为( )A.2B.44. 某公司某件产品的定价x 与销量y 之间的统计数据表如下,根据数据,用最小二乘法得出y 与x 的线性回归直线方程为66y x =+,则表格中n 的值为( )A.25B.30C.40D.455.已知()1f x x =,()2sin f x x =,()3cos f x x =,()(4lg f x x =,从以上四个函数中任意取两个相乘得到新函数,那么所得新函数为奇函数的概率为( ) A.14B.13C.12D.236. 设()x f 是周期为4的奇函数,当10≤≤x 时,())1(x x x f +=,则=⎪⎭⎫⎝⎛-29f ( ) A .43 B .41- C.41 D .43-7.某几何体由上、下两部分组成,其三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则该几何体上部分与下部分的体积之比为( )A.13B.12C.23D.568. 函数3cos sin y x x x =+的图象大致为()A .B . C.D .9.已知函数()()π2cos 332f x x ϕϕ⎛⎫=++≤ ⎪⎝⎭,若ππ,612x ⎛⎫∀∈- ⎪⎝⎭,()f x 的图象恒在直线3y =的上方,则ϕ的取值范围是( ) A.ππ,122⎛⎫⎪⎝⎭B.ππ,63⎡⎤⎢⎥⎣⎦C.π0,4⎡⎤⎢⎥⎣⎦D.ππ,63⎛⎫- ⎪⎝⎭10.有编号依次为1,2,3,4,5,6的6名学生参加数学竞赛选拔赛,今有甲、乙、丙、丁四位老师在猜谁将得第一名,甲猜不是3号就是5号;乙猜6号不可能;丙猜2号,3号,4号都不可能;丁猜是1号,2号,4号中的某一个.若以上四位老师中只有一位老师猜驿,则猜对者是( ) A.甲B.乙C.丙D.丁11. 抛物线x y C 8:2=的焦点为F ,准线为P l ,是l 上一点,连接PF 并延长交抛物线C 于点Q ,若PQ PF 54=,则=QF ( ) A .3 B .4 C.5 D .6 12.已知函数()ln 2x axf x x-=,若有且仅有一个整数k ,使得()1f k >,则实数a 的取值范围是( ) A.(]1,3B.1111ln 2,ln34262⎡⎫--⎪⎢⎣⎭C.11ln 21,ln3123⎡⎫--⎪⎢⎣⎭D.11,e 1e ⎛⎤-- ⎥⎝⎦二、填空题:每题5分,满分20分.13.已知()3,2a m =-,()1,2b m =-,()2,1c =-,若()a cb -⊥,则实数m =______________.14.已知变量x ,y 满足约束条件10101x y x y y --≤⎧⎪++≥⎨⎪≤⎩,则21z x y =++的最大值为______________.15.在ABC ∆中,若6:4:3sin :sin :sin =C B A ,则=B cos ______________.16. 已知数列{}n a 满足:()*31223...2222n na a a a n n N ++++=∈,数列2211log log n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n S ,则n S =___________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. 各项均为正数的等比数列{}n a 的前n 项和为n S .已知13a =,339S =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n c 满足nn nS c a =,求数列{}n c 的前n 项和n T . 18. 某组织在某市征集志愿者参加志愿活动,现随机抽出60名男生和40名女生共100人进行调查,统计出100名市民中愿意参加志愿活动和不愿意参加志愿活动的男女生比例情况,具体数据如图所示.(1)完成下列22⨯列联表,并判断是否有99%的把握认为愿意参与志愿活动与性别有关?(2)现用分层抽样的方法从愿意参加志愿活动的市民中选取7名志愿者,再从中抽取2人作为队长,求抽取的2人至少有一名女生的概率. 参考数据及公式:()()()()()()22n ad bc K n a b c d a b c d a c b d -==+++++++.19.已知正方形ABCD 的边长为2,分别以AB ,BC 为一边在空间中作正三角形PAB ,PBC ,延长CD 到点E ,使2CE CD =,连接AE ,PE .(1)证明:AE ⊥平面PAC ; (2)求点B 到平面PAE 的距离.20. 已知椭圆C 的两个焦点分别为()1F ,)2F ,且椭圆C 过点P ⎛ ⎝⎭. (1)求椭圆C 的标准方程;(2)若与直线OP 平行的直线交椭圆C 于A ,B 两点,当OA OB ⊥时,求AOB △的面积.21.已知函数()e sin cos x f x x x =-,()cos x g x x x =,其中e 是自然常数. (1)判断函数()y f x =在π0,2⎛⎫⎪⎝⎭内零点的个数,并说明理由;(2)1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,使得不等式()()12f x g x m +≥成立,试求实数m 的取值范围.22. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程(1).在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧α=α=sin cos 3y x (其中α为参数),曲线()11:222=+-y x C ,以坐标原点O 为极点,以x 轴正半轴为极轴建立极坐标系.(Ⅰ)求曲线1C 的普通方程和曲线2C 的极坐标方程;(Ⅱ)若射线)(06>ρπ=θ与曲线1C ,2C 分别交于B A ,两点,求AB .[选修4-5:不等式选讲](2).设函数()2f x x a x =-+,其中0a >.(Ⅰ)当2a =时,求不等式()21f x x ≥+的解集;(Ⅱ)若(2,)x ∈-+∞时,恒有()0f x >,求a 的取值范围.高二数学(文科)【参考答案】一、选择题1-5:DDA C C 6-10:DCDCC 11-12:CB 二、填空题13. 7 14. 6 15. 3629 16. 1nn +三、解答题17.解:(Ⅰ)设{}n a 的公比为q ,由13a =,339S =得12111=339a a a q a q ⎧⎨++=⎩, 于是2120q q +-=,解得3q =(4q =-不符合题意,舍去)故111333n n nn a a q --==⨯=.(Ⅱ)由(Ⅰ)得3(31)2n n S =-,则331223n n n n S c a ==-⨯,则23311(2233n T n =-++…1)3n +111(1)3331333122243413n n n n --=-⨯=+-⨯-. 18.解:(Ⅰ)计算2()100(15204520) 6.59 6.635()()()()60403565n ad bc K a b c d a c b d -⨯-⨯==≈<++++⨯⨯⨯,所以没有99%的把握认为愿意参与志愿活动与性别有关.(Ⅱ)用分层抽样的方法从愿意参加志愿活动的市民中选取7名志愿者,则女生4人,男生3人,分别编号为{1234}{}a b c ,,,,,,,从中任取两人的所有基本事件如下: {12}{13}{14}{1}{1}{1}{23}{24}{2}{2}{2}{34}a b c a b c ,,,,,,,,,,,,,,,,,,,,,,,,{3}{3}{3}{4}{4}{4}{}{}{}.a b c a b c a b a c b c ,,,,,,,,,,,,,,,,,共有21种情况,其中满足两人中至少有一人是女生的基本事件数有18个, 一、选择题一、选择题1-5:DDA C C 6-10:DCDCC 11-12:CB 二、填空题13. 7 14. 6 15.3629 16. 1n n +三、解答题17.解:(Ⅰ)设{}n a 的公比为q ,由13a =,339S =得12111=339a a a q a q ⎧⎨++=⎩, 于是2120q q +-=,解得3q =(4q =-不符合题意,舍去)故111333n n nn a a q --==⨯=.(Ⅱ)由(Ⅰ)得3(31)2nn S =-,则331223n n n n S c a ==-⨯,则23311(2233n T n =-++…1)3n +111(1)3331333122243413n n n n --=-⨯=+-⨯-. 18.解:(Ⅰ)计算2()100(15204520) 6.59 6.635()()()()60403565n ad bc K a b c d a c b d -⨯-⨯==≈<++++⨯⨯⨯,所以没有99%的把握认为愿意参与志愿活动与性别有关.(Ⅱ)用分层抽样的方法从愿意参加志愿活动的市民中选取7名志愿者,则女生4人,男生3人,分别编号为{1234}{}a b c ,,,,,,,从中任取两人的所有基本事件如下: {12}{13}{14}{1}{1}{1}{23}{24}{2}{2}{2}{34}a b c a b c ,,,,,,,,,,,,,,,,,,,,,,,,{3}{3}{3}{4}{4}{4}{}{}{}.a b c a b c a b a c b c ,,,,,,,,,,,,,,,,,共有21种情况,其中满足两人中至少有一人是女生的基本事件数有18个, 抽取的2人至少有一名女生的概率186217P ==. 19.解:(1)连接BD 交AC 于点O ,并连接OP ,则OA OB OC ==,又∵PC PA =, ∴PO AC ⊥,又∵POB POC △≌△,∴90POB POC ==∠∠°,∴PO BD ⊥, ∵OB OC O =,∴PO ⊥平面ABCD ,∵AE ⊂平面ABCD ,∴PO AE ⊥, ∵AD CD ⊥,AD DE CD ==,∴45EAD CAD ==∠∠°,∴90EAC =∠°, 即AE AC ⊥,∵POAC O =,∴AE ⊥平面PAC .(2)由题知,AB DE ∥,且AB DE =,可得四边形ABDE 为平行四边形,∴BD AE ∥, 又∵BD ⊄平面PAE ,∴BD ∥平面PAE ,∵点O BD ∈,∴点B 到平面PAE 的距离等于O 点到平面PAE 的距离,取AP 的中点为F ,连接OF ,则由(1)可得OF AE ⊥.在Rt ABC △中,PO ===PO AO =,∴OF PA ⊥,∴OF ⊥平面PAE ,即OF 为点O 到平面PAE 的距离.在Rt POA △中,112OF PA ==,得点B 到平面PAE 的距离为1.20.解:(Ⅰ)设椭圆C 的方程为22221(0)x y a b a b+=>>,由题意可得222231314a b ab ⎧-=⎪⎨+=⎪⎩,,解得2241a b ⎧=⎪⎨=⎪⎩,, 故椭圆C 的方程为2214x y +=.(Ⅱ)直线OP的方程为y , 设直线AB方程为y m =+,1122()()A x y B x y ,,,. 将直线AB 的方程代入椭圆C的方程并整理得2210x m +-=, 由2234(1)0m m ∆=-->,得24m <,122121x x x x m ⎧+=⎪⎨=-⎪⎩,,由OA OB ⊥得,0OA OB =,12121212OA OB x x y y x x m x m ⎫=+=+++⎪⎪⎝⎭⎝⎭212127()4x x x x m =++227(1)()4m m =-+ 257044m =-=, 得275m =.又2||4ABm =-,O 到直线AB的距离d ==.所以11||22AOB S AB d ==⨯△.21.解:(1)函数()y f x =在π0,2⎛⎫ ⎪⎝⎭上的零点的个数为1,理由如下: 因为()e sin cos x f x x x =-,所以()'e sin e cos sin x x f x x x x =++, 因为π02x <<,所以()'0f x >,所以函数()f x 在π0,2⎛⎫ ⎪⎝⎭上单调递增. 因为()010f =-<,π2πe 02f ⎛⎫=> ⎪⎝⎭, 根据函数零点存在性定理得函数()y f x =在π0,2⎛⎫ ⎪⎝⎭上存在1个零点. (2)因为不等式()()12f x g x m +≥等价于()()12f x m g x ≥-, 所以1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,使得不等式()()12f x g x m +≥成立,等价于 ()()()12min min f x m g x ≥-,即()()12min max f x m g x ≥-, 当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()'e sin e cos sin 0x x f x x x x =++>,故()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递增,所以当0x =时,()f x 取得最小值1-,又()'cos sin x g x x x x =-,当π0,2x ⎡⎤∈⎢⎥⎣⎦时,0cos 1x ≤≤,sin 0x x ≥x ,所以()'0g x <, 故函数()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.因此,当0x =时,()g x 取得最大值(1m -≥-,所以1m ≤,所以实数m 的取值范围为(,1-∞-. 22.解:(Ⅰ)由⎩⎨⎧α=α=sin cos 3y x 得1322=+y x ,所以曲线1C 的普通方程为1322=+y x . 把θρ=θρ=sin ,cos y x ,代入()1122=+-y x ,得到()()1sin 1cos 22=θρ+-θρ,化简得到曲线2C 的极坐标方程为θ=ρcos 2. (Ⅱ)依题意可设⎪⎭⎫ ⎝⎛πρ⎪⎭⎫ ⎝⎛πρ6,,6,21B A ,曲线1C 的极坐标方程为3sin 2222=θρ+ρ. 将()06>ρπ=θ代入1C 的极坐标方程得32122=ρ+ρ,解得21=ρ. 将()06>ρπ=θ代入2C 的极坐标方程得32=ρ. 所以2321-=ρ-ρ=AB .(2).解:(Ⅰ).当2a =时,2221x x x -+≥+, 所以21x -≥,所以3x ≥或1x ≤,解集为(,1][3,)-∞+∞. (Ⅱ)3,(),x a x a f x x a x a-≥⎧=⎨+<⎩,因为0a >,∴x a ≥时,320x a a -≥>恒成立,又x a <时,当2x >-时,2x a a +>-+,∴只需20a -+≥即可, 所以2a ≥.。
i A. > B. > 1 C. a 2 > b 2 D. ab < a + b - 18、已知 x > 0 , y > 0 ,若 2 y + > m 2 + 2m 恒成立,则实数 m 的取值范围是()高二年级下学期期末考试数学试卷一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、不等式 2x - 3 < 5 的解集为()A. (-1,4)B. (1,4)C. (1,-4)D. (-1,-4)2、设复数 z 满足 (1 + i) z = 2 ( i 为虚数单位),则复数 z 的共轭复数在复平面中对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3、某市对公共场合禁烟进行网上调查,在参与调查的 2500 名男性市民中有 1000 名持支持态度,2500 名女性市民中有 2000 人持支持态度,在运用数据说明市民对在公共场合禁烟是 否支持与性别有关系时,用什么方法最有说明力( ) A. 平均数与方差 B. 回归直线方程 C. 独立性检验 D. 概率4、若函数 f ( x ) = ax 4 + bx 2 + c 满足 f '(1) = 2 ,则 f '(-1) 等于()A. - 1B. - 2C. 2D. 05 、函数 y = f ( x ) 的图象过原点,且它的导函数y = f '( x ) 的图象是如图所示的一条直线,y = f ( x ) 的图象的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6、在一组样本数据 ( x , y ) , ( x , y ) ,……, ( x , y ) (n ≥ 2, x , x ⋅ ⋅ ⋅ x 不全相等)的散点图中, 1 122nn12n若所有样本点 ( x , y ) (i = 1,2 ⋅ ⋅ ⋅ n) 都在直线 y = i i ( )1 2x + 1上,则这组样本数据的样本相关系数为A. - 1B. 0C. 12D. 17、若 a < 1 , b > 1 那么下列命题正确的是( )1 1 b a b a8xx yA. m ≥ 4 或 m ≤ -2B. m ≥ 2 或 m ≤ -4C. - 4 < m < 2D. - 2 < m < 49、某同学为了了解某家庭人均用电量( y 度)与气温( x o C )的关系,曾由下表数据计算回归直线方程 y = - x + 50 ,现表中有一个数据被污损,则被污损的数据为()+ 的取值范围A. ⎢ ,+∞ ⎪B. - ∞, ⎥C. ⎢ ,+∞ ⎪D. - ∞,- ⎥气温 30 2010 0 人均用电量20 30*50A. 35B. 40C. 45D. 4810、已知函数 f ( x ) 的导函数 f '( x ) = a( x + 1)( x - a) ,若 f ( x ) 在 x = a 处取得极大值,则a 的取值范围是()A. (-∞,1)B. (-1,0)C. (0,1)D. (0,+∞ )11、已知函数 f ( x ) = x 3 - 2ax 2 - bx 在 x = 1 处切线的斜率为 1 ,若 ab > 0 ,则 1 1a b( )⎡ 9 ⎫ ⎛ 9 ⎤ ⎡ 1 ⎫ ⎛ 1 ⎤ ⎣ 2 ⎭⎝ 2 ⎦ ⎣ 2 ⎭ ⎝2 ⎦12、已知 a > b > c > 1 ,设 M = a - cN = a - bP = 2( a + b- ab ) 则 M 、 N 、 P 的大小2关系为( )A. P > N > MB. N > M > PC. M > N > P二、填空题(本大题共 4 个小题,每小题 5 分,共 20 分) 13、下列的一段推理过程中,推理错误的步骤是_______ ∵ a < b∴ a + a < b + a 即 2a < b + a ……①∴ 2a - 2b < b + a - 2b 即 2(a - b ) < a - b ……②∴ 2(a - b )(a - b ) < (a - b )(a - b ) 即 2(a - b )2 < (a - b )2 ……③∵ (a - b )2 > 0∴ 可证得 2 < 1 ……④D. P > M > N14、已知曲线 y = x 2 4- 3ln x 在点( x , f ( x ) 处的切线与直线 2 x + y - 1 = 0 垂直,则 x 的值为0 0 0________15、 f ( x ) = x +1( x > 2) 在 x = a 年取得最小值,则 a =________x - 216、设 a 、 b ∈ R , a - b > 2 ,则关于实数 x 的不等式 x - a + x - b > 2 的解集是_______三、解答题(本大题共 6 小题,共 70 分。
复习试卷答案一、选择题1-5 6-10 11-12二、填空题13.丁 14.充分15.(n +1)(n +2) …(n +n)=2n ×1×3×…×(2n -1)16.2ΔABC ΔBOC ΔBDC S =S S ⋅三、解答题17.证明:由(1tan )(1tan )2A B ++= 可得tantan 21tan 4tan 1tan()1tan 1tan 41tan tan 4A A B A A A A π--π=-===-π+++…………………5分 ()4B A k k π=-+π∈Z 即()4A B k k π+=+π∈Z因为都是钝角,即2A B π<+<π, 所以54A B π+=.…………………………10分 18.解:(Ⅰ)22列联表如下:………………6分(Ⅱ)222()80(4241636)9.6()()()()40402060n ad bc K a b c d a c b d -⨯⨯-⨯===++++⨯⨯⨯ 由2(7.879)0.005P K ≥≈,所以有99.5%的把握认为“成绩与班级有关系”. …………………12分19.解:(Ⅰ)…………………2分(Ⅱ)()12456855x =++++=,()13040605070505y =++++=,…………4分213805550 6.514555b -⨯⨯==-⨯,50 6.5517.5a y bx =-=-⨯=,…………………8分 ∴回归直线方程为 6.517.5y x =+.…………………10分(Ⅲ)当10x =时,预报y 的值为10 6.517.582.5y =⨯+=.…………………12分20.(1)几何证明选讲解析:(Ⅰ)证明:连接,则△为直角三角形,因为∠=∠=90,∠=∠,所以△∽△,则=,即=.又=,所以=. …………………6分(Ⅱ)因为是⊙O 的切线,所以2=.又=4,=6,则=9,=-=5.因为∠=∠,又∠=∠,所以△∽△,则=,即==.…………………12分20.(2)坐标系与参数方程解析:(Ⅰ)直线参数方程可以化为根据直线参数方程的意义,这是一条经过点,倾斜角为60的直线.…………………6分(Ⅱ)直线l 的直角坐标方程为y =x +,即x -y +=0,极坐标方程ρ=2的直角坐标方程为2+2=1,所以圆心到直线l 的距离d ==,所以=2=.…………………12分20.(3)不等式选讲解:(Ⅰ)由()3f x ≤得,||3x a ≤-,解得33a x a ≤≤-+.又已知不等式()3f x ≤的解集为{|15}x x ≤≤-,所以31,35,a a -=-⎧⎨+=⎩解得2a =.…………………6分(Ⅱ)当2a =时,()|2|f x x =-,设()()(5)g x f x f x =++,于是()21,3,|2||3|5,32,21,2,x x g x x x x x x --<-⎧⎪-≤≤⎨⎪+>⎩=-++=所以当3x <-时,()5g x >;当32x ≤≤-时,()5g x =;当2x >时,()5g x >. 综上可得,()g x 的最小值为5.从而若()(5)f x f x m ≥++,即()g x m ≥对一切实数x 恒成立,则m 的取值范围为(-∞,5].…………………12分21.(1)几何证明选讲解析:(Ⅰ)证明:由已知条件,可得∠=∠.因为∠与∠是同弧上的圆周角,所以∠=∠.故△∽△. …………………6分(Ⅱ)因为△∽△,所以=,即=.又S = ∠,且S =,故 ∠=.则 ∠=1,又∠为三角形内角,所以∠=90. …………………12分21.(2)坐标系与参数方程(Ⅰ)2sin ρθ=可得22sin ρρθ=,即222x y y +=所以曲线C 的直角坐标方程为222x y y +=.…………………6分 (Ⅱ)直线l 的普通方程为4(2)3y x =--, 令0y =可得2x =,即(2,0)M ,又曲线C 为圆,圆C 的圆心坐标为(0,1), 半径1r =,则5MC =.51MN MC r ∴≤+=+.…………………12分21.(3)不等式选讲解 (Ⅰ)由|21|1x <-得1211x <<--,解得01x <<. 所以{}M |01x x <<=.…………………6分 (Ⅱ)由(Ⅰ)和M a b ∈,可知01a <<,01b <<. 所以(1)()(1)(1)0ab a b a b >+-+=--.故1ab a b >++.…………………12分22.(1)几何证明选讲解析:(Ⅰ)延长交圆E 于点M ,连接,则∠=90,又=2=4,∠=30,∴ =2,又∵ =,∴ ==.由切割线定理知2==3=9.∴ =3. …………………6分(Ⅱ)证明:过点E 作⊥于点H ,则△与△相似, 从而有==,因此=3. …………………12分22.(2)坐标系与参数方程(I )由2cos 2sin x y ϕϕ=⎧⎨=⎩可得224x y +=, 由4sin()3πρθ=+得24(sin cos cos sin )33ππρρθθ=+, 即22223x y y x +=+,整理得22(3)(1)4x y -+-=.…………………6分 ()圆1C 表示圆心在原点,半径为2的圆,圆2C 表示圆心为(3,1),半径为2的圆, 又圆2C 的圆心(3,1)在圆1C 上,由几何性质可知,两圆相交.…………………12分22.(3)不等式选讲解:(I )当2a =时,|2||4|4x x -+-≥,当2x ≤时,得264x -+≥,解得1x ≤;高二文科数学第二学期期末考试试题与答案11 / 11 当24x <<时,得24≥,无解;当4x ≥时,得264x -≥,解得5x ≥;故不等式的解集为{| 15}x x x ≤≥或.…………………6分()2||x a a -≤可解得22{|}x a a x a a -≤≤+, 因为22{|}{|26}x a a x a a x x -≤≤+⊆-≤≤, 所以2226a a a a ⎧-≤-⎪⎨+≤⎪⎩解得1232a a -≤≤⎧⎨-≤≤⎩即12a -≤≤,又因为1a >,所以12a <≤.…………………12分。
高二数学试题(文科)试卷说明:(1)命题范围:人教版选修1-2,必修1 (2)试卷共两卷(3)时间:120分钟 总分:150分第Ⅰ卷一.选择题:本大题共12小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的.1.如果{}5,4,3,2,1=S ,{}3,2,1=M ,{}5,3,2=N ,那么()()N C M C S S 等于( ). A.φ B.{}3,1 C.{}4 D.{}5,2 2.下列函数中,是奇函数,又在定义域内为减函数的是( ).A.xy ⎪⎭⎫⎝⎛=21 B.x y 1= C.)(log 3x y -= D.3x y -=3. 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则A .a=2,b=2B .a = 2 ,b=2C .a=2,b=1D .a= 2 ,b= 2 4. 对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaaa111++<④aaaa111++>其中成立的是A .①与③B .①与④C .②与③D .②与④5、若函数的图象经过第二且)10(1)(≠>-+=a a b a x f x、三、四象限,则一定有 A .010><<b a 且 B .01>>b a 且C .010<<<b a 且D .01<>b a 且6、已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若A .21 B .-21 C .2D .-27.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a=A.42 B.22 C.41 D.218、函数1(1)y x =≥的反函数是A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y9.在映射:f A B →中,(){},|,A B x y x y R ==∈,且()():,,f x y x y x y →-+,则与A 中的元素()1,2-对应的B 中的元素为()A .()3.1-B .()1,3C .()1,3--D .()3,110.设复数2121),(2,1z z R b bi z i z 若∈+=+=为实数,则b = ( )A.2B.1C.-1D.-211.函数34x y =的图象是( )A .B .C .D .12、在复平面内,复数1i i++(1+3i )2对应的点位于 ( ) A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题纸中对应横线上. 13.已知复数122,13z i z i =-=-,则复数215z i z + =14.lg25+32lg8+lg5·lg20+lg 22= 15.若关于x 的方程04)73(32=+-+x t tx 的两实根21,x x ,满足21021<<<<x x ,则实数t 的取值范围是16.函数2()ln()f x x x =-的单调递增区间为三、解答题:本大题共6小题,共74分.前五题各12分,最后一题14分. 17.(本小题12分)计算 ()20251002i 1i 1i 1i i 21⎪⎭⎫⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-++18.(本小题12分) 在数列{a n }中,)(22,111++∈+==N n a a a a nnn ,试猜想这个数列的通项公式。
2024年春期高2022级高二期末考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.第I 卷(选择题58分)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若直线过点(1,2)-,(3,2+,则此直线的倾斜角为A .6πB .4πC .3πD .2π2.已知221:202C x y x y ++-+= ,则该圆的圆心坐标和半径分别为()A .1,122⎛⎫- ⎪⎝⎭B .()1,2-C .1,12⎛⎫- ⎪⎝⎭D .()1,2-3.记n S 为等差数列{}n a 的前n 项和,若375610,35a a a a +==,则6S =()A .20B .16C .14D .124.已知双曲线C 经过点()0,1,则C 的标准方程为()A .221x y -=B .2213y x -=C .221y x -=D .2213x y -=5.将8个大小形状完全相同的小球放入3个不同的盒子中,要求每个盒子中至少放2个小球,则不同放法的种数为()A .3B .6C .10D .156.衣柜里有灰色,白色,黑色,蓝色四双不同颜色的袜子,从中随机选4只,已知取出两只是同一双,则取出另外两只不是同一双的概率为()A .25B .45C .815D .897.已知点M ,N 是抛物线Γ:()220y px p =>和动圆C :()()()222130x y r r -+-=>的两个公共点,点F 是Γ的焦点,当MN 是圆C 的直径时,直线MN 的斜率为2,则当r 变化时,r MF +的最小值为()A .3B .4C .5D .68.已知2()log 2)cos f x x x x =+-,且0.1231(log ),(0.)9),log 43(a f b f c f ===,则a ,b ,c 的大小关系为()A .a b c >>B .b a c >>C .c b a>>D .a c b>>二、多项选择题(每小题6分,共3小题,共18分.在每个小题给出的四个选项中,有多项符合题目要求.全对的得6分,部分选对的得部分分,有选错的得0分.)9.已知212nx x ⎛⎫- ⎪⎝⎭的展开式中,各项的二项式系数之和为128,则()A .7n =B .只有第4项的二项式系数最大C .各项系数之和为1D .5x 的系数为56010.下列说法中正确的是()附:2χ独立性检验中几个常用的概率值与相应的临界值α0.10.050.01aχ 2.7063.8416.635A .已知离散型随机变量14,3XB ⎛⎫⎪⎝⎭,则()14323D X +=B .一组数据148,149,154,155,155,156,157,158,159,161的第75百分位数为158C .若()()()121,,4312P A P P AB B ===,则事件A 与B 相互独立D .根据分类变量x 与y 的观测数据,计算得到2 3.154χ=,依据0.05α=的独立性检验可得:变量x 与y 独立,这个结论错误的概率不超过0.0511.将两个各棱长均为1的正三棱锥D ABC -和E ABC -的底面重合,得到如图所示的六面体,则()AB .该几何体的体积为6C .过该多面体任意三个顶点的截面中存在两个平面互相垂直D .直线//AD 平面BCE第二卷非选择题(92分)三、填空题(本大题共3小题,每小题5分,共15分,把答案直接填在答题卡中的横线上.)12.数列{}n a 满足()1432n n a a n -=+≥且10a =,则数列{}n a 的通项公式是.13.过点()1,1-与曲线()()ln 13e 2xf x x =+-+相切的直线方程为.14.已知1F 、2F 为椭圆()222210x ya b a b+=>>的左、右焦点,点P 为该椭圆上一点,且满足1260F PF ∠=︒,若12PF F △的外接圆面积是其内切圆面积的64倍,则该椭圆的离心率为.四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.近几年,随着生活水平的提高,人们对水果的需求量也随之增加,我市精品水果店大街小巷遍地开花,其中中华猕猴桃的口感甜酸、可口,风味较好,广受消费者的喜爱.在某水果店,某种猕猴桃整盒出售,每盒20个.已知各盒含0,1个烂果的概率分别为0.8,0.2.(1)顾客甲任取一盒,随机检查其中4个猕猴桃,若当中没有烂果,则买下这盒猕猴桃,否则不会购买此种猕猴桃.求甲购买一盒猕猴桃的概率;(2)顾客乙第1周网购了一盒这种猕猴桃,若当中没有烂果,则下一周继续网购一盒;若当中有烂果,则隔一周再网购一盒;以此类推,求乙第5周网购一盒猕猴桃的概率16.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?17.已知数列{}n a 的通项公式为n a n =,在n a 与1n a +中插入21n n +-个数,使这21n n ++个数组成一个公差为n d 的等差数列,记数列{}n d 的前n 项和为n S ,(1)求{}n d 的通项公式及n S ;(2)设12nn n na b S -=,n T 为数列{}n b 的前n 项和,求n T .18.已知函数2()22ln f x x ax x =-+.(1)当22a =()y f x =的单调减区间;(2)若()y f x =有两个极值点12,x x ,且12x x <,52a ≥,若不等式12()f x mx ≥恒成立,求实数m 的取值范围.19.已知椭圆()2222:10x y C a b a b+=>>的离心率为12,左、右两个顶点分别为A ,B ,直线by x a=与直线x a =的交点为D ,且△ABD 的面积为23(1)求C 的方程;(2)设过C 的右焦点F 的直线1l ,2l 的斜率分别为1k ,2k ,且122k k =-,直线1l 交C 于M ,N 两点,2l 交C 于G ,H 两点,线段MN ,GH 的中点分别为R ,S ,直线RS 与C 交于P ,Q 两点,记△PQA 与△PQB 的面积分别为1S ,2S ,证明:12S S 为定值.1.C【解析】利用斜率的计算公式即可得出倾斜角.【详解】解:已知直线过点(1,2)-,(3,2+,设直线的倾斜角为α,则tan k α=又[0α∈ ,)π,3πα∴=.故选:C .【点睛】本题考查直线的倾斜角,掌握斜率的计算公式是解题的关键.2.A【分析】配方后化为标准方程即可得.【详解】由已知圆的标准方程为2213((1)24x y ++-=,圆心是1(,1)2-,半径是2.故选:A .3.D【分析】由等差数列的性质求得5a ,然后依次求得6a ,公差,最后求得6S .【详解】∵{}n a 是等差数列,∴375210a a a +==,55a =,所以56657a a a a ==,∴公差652d a a =-=,∴1543a a d =-=-,∴6656(3)2122S ⨯=⨯-+⨯=,故选:D .4.C【分析】先根据题意得出双曲线的焦点在y 轴上,设出双曲线的标准方程;再根据双曲线C 经过点()0,1及离心率公式即可求解.【详解】因为双曲线C 经过点()0,1,所以双曲线的焦点在y 轴上,设双曲线的方程为22221(0,0)y xa b a b-=>>.因为双曲线C 经过点(0,1),所以2222101a b-=,解得1a =.又因为ce a==所以c 则222211b c a =-=-=,所以双曲线的标准方程为221y x -=.故选:C.5.B【分析】对每个盒子放入2个球,再看余下2个球的去向即可得解.【详解】依题意,每个盒子放入2个球,余下2个球可以放入一个盒子有13C 种方法,放入两个盒子有23C 种方法,所以不同放法的种数为1233C C 6+=.故选:B 6.D【分析】记“取出的袜子至少有两只是同一双”为事件A ,记“取出的袜子恰好有两只不是同一双”为事件B ,求出()P A ,()P AB ,根据条件概率公式()()()P AB P B A P A =求解即可.【详解】从四双不同颜色的袜子中随机选4只,记“取出的袜子至少有两只是同一双”为事件A ,记“取出的袜子恰好有两只不是同一双”为事件B ,事件A 包含两种情况:“取出的袜子恰好有两只是同一双”,“取出的袜子恰好四只是两双”,则422212114348C C C C C 27()C 35P A =+=,又1211434282C C C C 24()C 35P AB ==,则()8()()9P AB P B A P A ==,即随机选4只,已知取出两只是同一双,则取出另外两只不是同一双的概率为89.故选:D .7.B【分析】直线MN 的方程为21y x =+,联立直线与抛物线的方程得到12244p x x -+=,结合C 是MN 的中点,可得6p =,由抛物线的定义可将r MF +转化为MC MF +,当,,C P M 三点在一条直线时,可求得r MF +的最小值.【详解】圆C :()()()222130x y r r -+-=>的圆心()1,3C ,当MN 是圆C 的直径时,直线MN 的斜率为2,设直线MN 的方程为()321y x -=-,化简为:21y x =+,2212y x y px=+⎧⎨=⎩,消去y 可得:()244210x p x +-+=,设()11,M x y ,()22,N x y ,所以12244p x x -+=,因为C 是MN 的中点,所以12241224x x p +-=⇒=,解得:6p =,故()3,0F ,:3l x =-,由抛物线的定义可知,过点M 作MH l ⊥交l 于点H ,过点C 作CP l ⊥交l 于点P ,所以MF MH =,所以=4r MF MC MF CP ++≥=,当,,C P M 三点在一条直线时取等.故选:B.8.D【分析】先判断函数()f x 的奇偶性和单调性,再比较自变量的大小关系,最后利用函数单调性得到函数值的大小关系.【详解】因函数2()log 2)cos f x x x x =+-的定义域为R ,且22()()[()log 2)cos ][log 2)cos ]f x f x x x x x x x --=----+-122[log 2)log 2)]x x x -=--+2log 0x ==,所以函数()f x 为偶函数;当(0,2)x ∈时,因2t x =单调递增,而2log y t =在定义域内也为增,故由同增异减原则,2log 2)y x =也为增,2log 2)y x x =+也为增,又因cos y x =-在(0,2)x ∈上为增函数,故()f x 在(0,2)上为增函数.又因221(log )(log 3),3a f f ==100.0.9100.9<<=,231log 32,1log 42<<<<由223lg 3lg 4(lg 3)lg 2lg 4log 3log 4lg 2lg 3lg 2lg 3-⋅-=-=⋅,因222lg2lg43lg2lg4()(lg2)(lg3)22+⋅<=<,故321log 4log 32<<<,由2()log 2)cos f x x x x =+-在(0,2)上为增函数可得:0.132(0.9)(log 4)(log 3)f f f <<,即a c b >>.故选:D.9.AD【分析】根据二项式系数之和为2n 运算求解,进而判断A ;根据二项式系数的性质分析判断B ;令1x =,求各项系数之和,进而判断C ;对于D :结合二项式系数的通项分析判断.【详解】对于A :由题意可知:各项的二项式系数之和为2128n =,解得7n =,故A 正确;可得7221122nx x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,对于B :因为7n =,则第4项和第5项的二项式系数最大,故B 错误;对于C :令1x =,可得各项系数之和为()7121-=-,故C 错误;对于D :因为二项展开式的通项为()()72371771C 22C ,0,1,2,,7r rrr r r r T x x r x --+⎛⎫=⋅-=-⋅=⋅⋅⋅ ⎪⎝⎭,令375r -=,解得4r =,所以5x 的系数为()4472C 560-=,故D 正确;故选:AD.10.BC【分析】A 选项,根据二项分布的方差公式和方差的性质进行计算;B 选项,根据百分位数的定义进行计算;C 选项,根据对立事件的概率和事件独立的条件进行判断;D 选项,根据独立性检验的标准进行判断.【详解】对于A :根据二项分布的方差公式,可得()11841339D X ⎛⎫=⨯⨯-= ⎪⎝⎭,∴()()23238D X D X +==,∴A 错误;对于B :1075%7.5⨯=,根据百分位数的定义,这组数据的第75百分位数为第8个数158,∴B 正确;对于C :∵()23P B =,∴()21133P B =-=,∴()()()1114312P A P B P AB ⨯=⨯==,根据事件独立性的定义可知,事件A 与B 相互独立,∴C 正确;对于D :根据2χ的值以及常用的概率值与相应临界值可知,依据0.05α=的独立性检验,可得变量x 与y 相互独立,即认为变量x 与y 不相互独立,犯错误的概率大于0.05小于0.1,∴D 错误.故选:BC 11.AC【分析】对于A ,首先求得其中一个正三角形的面积,进一步即可验算;对于B ,首先求得D ABC V -,进一步即可验算;对于C ,证明面ADE ⊥面ABC 即可判断;对于D ,建立适当的空间直角坐标系,验算平面法向量与直线方向向量是否垂直即可.【详解】对于A ,1112ABD S =⨯⨯ ,所以表面积为6=A 对;对于B ,如图所示:设点D 在平面ABC 内的投影为O ,M 为BC 的中点,则由对称性可知O 为三角形ABC 的重心,所以2213323AO AM ==⨯⨯,又因为1AD =,所以正三棱锥D ABC -的高为3DO =,所以题图所示几何体的体积为1223346D ABC V V -==⨯⨯⨯=,故B 错;对于C ,由B 选项可知DO ⊥面ABC ,由对称性可知,,D O E 三点共线,所以DE ⊥面ABC ,而DE ⊂面ADE ,所以面ADE ⊥面ABC ,故C 正确;对于D,建立如图所示的空间直角坐标系:其中Ox 轴平行BC,因为AO OM ==所以()111,,0,0,0,,1,0,0,,,222B C E BC BE ⎛⎫⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,设平面BCE 的法向量为(),,n x y z =,所以0102x x y -=⎧⎪⎨---=⎪⎩,不妨取1z =,解得0y x =-=,所以取()0,n =-,又36360,,0,0,,0,,3333A D AD ⎛⎫⎛⎛-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,而26660333AD n =--⋅=≠ ,所以直线AD 与平面BCE 不平行,故D 错.故选:AC.12.141n n a -=-【分析】根据题意构造等比数列,进而求出通项公式即可.【详解】设()14n n a a λλ-=++,则143n n a a λ-=+,又因为()1432n n a a n -=+≥,所以33λ=,则1λ=,所以()1141n n a a -+=+,因为1110a +=≠,所以10n a +≠,所以1141n n a a -+=+为常数,所以{}1n a +是首项为1,公比为4的等比数列,所以111144n n n a --+=⨯=,所以141n n a -=-.故答案为:141n n a -=-13.210x y ++=【分析】由导数的几何意义得出切线方程()()1113e xy y n x x -=--,进而由切点的位置得出11,x y ,从而得出切线方程.【详解】设切点坐标为()11,x y ,()13e 1x f x x '=-+,()11113e 1x f x x '=-+.则切线方程为()111113e 1x y y x x x ⎛⎫-=--⎪+⎝⎭,因为()1,1-在切线上,所以()1111113e 11x y x x ⎛⎫-=---⎪+⎝⎭,即()1113e 12x y x =-++又()111ln 13e 2x y x =+-+,所以()111ln 13e 0xx x ++=,令()ln 13e xy x x =++,()131e 1x y x x'=+++,当1x >-时,0'>y ,所以()ln 13e xy x x =++在()1,-+∞上单调递增,所以方程()111ln 13e 0xx x ++=只有唯一解为10x =.即切点坐标为()0,1-,故所求切线方程为12y x +=-,即210x y ++=.故答案为:210x y ++=14.45##0.8【分析】根据椭圆定义并利用余弦定理可得22143F P b P F =,再根据正弦定理可知外接圆半径R =,由等面积法可知内切圆半径()3r a c =-,再根据面积比即可计算出离心率45e =.【详解】根据题意画出图象如下图所示:利用椭圆定义可知122PF PF a +=,且122F F c =;又1260F PF ∠=︒,利用余弦定理可知:()2222212121212121212122cos 22PFPF PF PF F F PF PF F F F PF PF PF PF PF +--+-∠==221212424122a PF PF c PF PF --==,化简可得22143F P b P F =;所以12PF F △的面积为122212433sin 603231122PF F b S PF PF ⨯=︒=⨯ ;设12PF F △的外接圆半径为R,内切圆半径为r ;由正弦定理可得12122s 2sin n 603i R c F F cF PF ==∠=︒,可得R =;易知12PF F △的周长为121222l PF PF F F a c =++=+,利用等面积法可知()1221323PF F b lr a c r S ===+,解得)r a c ==-;又12PF F △的外接圆面积是其内切圆面积的64倍,即22π64πRr=,所以8R r =,即可得28R c a r c ===-,所以108c a =;离心率45c e a ==.故答案为:4 5 .【点睛】方法点睛:求解椭圆焦点三角形外接圆与内切圆半径问题,通常利用正弦定理计算外接圆半径,由等面积法公式12S lr=可计算出内切圆半径,即可实现问题求解.15.(1)0.96(2)0.8336【分析】(1)根据题意利用独立事件的概率乘法公式结合对立事件运算求解;(2)根据题意列举所以可能性情况,利用独立事件的概率乘法公式运算求解.【详解】(1)由题意可得:甲不购买一盒猕猴桃情况为该盒有1个烂果且随机检查其中4个时抽到这个烂果,甲购买一盒猕猴桃的概率319420C10.20.96CP=-⨯=.(2)用“√”表示购买,“╳”表示不购买,乙第5周购买有如下可能:第1周第2周第3周第4周第5周√√√√√√╳√√√√√╳√√√╳√╳√√√√╳√故乙第5周网购一盒猕猴桃的概率()40.80.20.80.80.80.20.80.20.20.80.80.20.8336 P=+⨯⨯+⨯⨯+⨯+⨯⨯=.16.(1)证明见解析;(2)11 2B D=【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,AM B N ,因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅ ,则1CBF BBN ∠=∠.又因为1190BBN BNB ∠+∠=︒,所以1190CBF BNB BF BN ∠+∠=︒⊥,.又因为111111,BF AB BN AB B ⊥= ,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥.[方法二]【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1B B AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅= ,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++ ()11=BF B D BF EB BB ⋅+⋅+ 1BF EB BF BB =⋅+⋅ 11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭ 11122BF BA BF BC BF BB =-⋅-⋅+⋅ 112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠121=52520255-=,所以BF ED ⊥.(2)[方法一]【最优解】:向量法设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩ ,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅=⋅==当12a =时,22214a a -+取最小值为272,此时cos θ=所以()minsin θ=112B D =.[方法二]:几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE 平面11B BCC FT =.作1BH F T ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1D H B ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//CG AB 交DS 于点G .由111113C S C G SA A D ==得11(2)3C G t =-.又1111B D BT C G C T=,即12(2)3t s s t =--,所以31t s t =+.又111B H BT C F FT =,即11B H =1B H =所以DH ===则11sin B D DHB DH∠==所以,当12t =时,()1min sin DHB ∠=[方法三]:投影法如图,联结1,FB FN,DEF 在平面11BB C C 的投影为1BN F ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS S θ= .设1(02)BD t t =≤≤,在1Rt DB F中,DF ==在Rt ECF中,EF D 作1B N 的平行线交EN 于点Q .在Rt DEQ △中,DE 在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅()21)35t t +=+,sin DFE ∠1sin 2DFE S DF EF DFE =⋅∠ =13,2B NF S = 1cos B NF DFES S θ=sin θ,当12t =,即112B D =,面11BB CC 与面DFE 所成的二面角的正弦值最小,最小值为3.【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维.第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C 与面DFE 所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE 在面11BB C C 上的投影三角形的面积与DFE △面积之比即为面11BB C C 与面DFE 所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.17.(1)111n d n n =-+,1n nS n =+(2)1362n n n T -+=-【分析】(1)根据等差数列的定义求等差数列的公差,再用裂项求和法求n S .(2)利用错位相减法求数列{}n b 的前n 项和.【详解】(1)因为在n a n =,11n a n +=+之间插入21n n +-项,使这21n n ++个数成公差为n d 的等差数列,所以()()2111n n nd nn +-=++-⇒21111n d n n n n ==-++,所以11111122311n n S n n n =-+-++-=++ .(2)易知112n n n -+=,所以012123412222nn n T -+=++++ ,123112341222222n n n n n T -+=+++++ 两式相减得12311111112222222n n nn T -+⎛⎫=+++++- ⎪⎝⎭ 111122132312212n n nn n -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭++⎢⎥⎣⎦=+-=--,所以1362n n n T -+=-.18.(1))1-;(2)9,ln28⎛⎤-∞-- ⎥⎝⎦.【分析】(1)a =f(x)求导,解()0f x '<得递减区间;(2)分析出由()0f x '=所得的一元二次方程的两根12,x x 的关系,再对12()f x mx ≥分离参数,消元,构建新函数,求其最小值即得.【详解】(1)2222()2(0)x f x x x x x-+'=-+=>,令()0f x '=得11x +,21x =,由()0f x '<11x -<+.所以,()f x的单调减区间为)1-.(2)()()221x ax f x x-+'=,∵()f x 有两个极值点12,x x ,且12xx <,∴12,x x 是方程210x ax -+=的两正根,则1252x x a +=≥,121=x x ,不等式()12f x mx ≥恒成立,即()12f x m x ≤恒成立,∴()213211111112222ln 22ln f x x ax x x ax x x x x -+==-+()323112*********ln 22ln x x x x x x x x x x =-++=--+,由12x x a +=,121=x x ,得11152x x +≥,∴1102x <≤,令()3122ln ,02x x x x x x ϕ=--+<≤,()232ln x x x ϕ'=-+,令()232ln h x x x =-+,()()22213620x x h x x x-='-+=>,h(x)在10,2⎛⎤ ⎥⎝⎦上递增,则有()1312ln 0242h x h ⎛⎫≤=-+< ⎪⎝⎭即()0x ϕ'<,∴()x ϕ在10,2⎛⎤⎥⎝⎦上是减函数,∴()19ln228x ϕϕ⎛⎫≥=-- ⎪⎝⎭,故9,ln28m ⎛⎤∈-∞-- ⎥⎝⎦【点睛】不等式的恒成立,求参数的取值范围问题,等价转化是解题的关键,借助分离参数,构造函数,求其最值的思想.19.(1)22143x y +=(2)证明见解析【分析】(1)联立方程组,求出D 点坐标,然后利用三角形面积列出,a b 的一个方程,再结合题目所给离心率为12,解出,a b 即可(2)先设出直线12,l l 的方程,分别与椭圆联立方程组,求出交点坐标,再根据PQ 斜率是否存在分类讨论,求出直线PQ 所过定点,最后利用高相等,面积比等于底边之比求出答案即可【详解】(112=,所以b a ①由b y xa x a⎧=⎪⎨⎪=⎩,知(),D a b 由△ABD的面积为122a b ⨯⨯==ab ②由①②解得2,a b =⎧⎪⎨⎪⎩.所以C 的标准方程为22143x y +=.(2)由题意知()1,0F ,()11:1k l y x =-,()22:1l y k x =-,联立方程()1221,1,43y k x x y ⎧=-⎪⎨+=⎪⎩消去y 得()22221114384120k x k x k +-+-=,设()11,M x y ,()22,N x y ,则211221843k x x k +=+,所以2121214243x x k k +=+,代入直线1l 的方程121213243y y k k +-=+,所以211221143,4343k k R k k ⎛⎫- ⎪++⎝⎭,同理得222222243,4343k k S k k ⎛⎫- ⎪++⎝⎭①当直线PQ 的斜率存在时,设直线:PQ y mx n =+,将点R ,S 的坐标代入,得()()21122244330,44330,m n k k n m n k k n ⎧+++=⎪⎨+++=⎪⎩易知1k ,2k 为方程()244330m n k k n +++=的两个根,则123244n k k m n ⋅==-+,得811n m =-,所以直线88:1111PQ y mx m m x ⎛⎫=-=- ⎪⎝⎭,所以直线PQ 过定点8,011E ⎛⎫⎪⎝⎭.②当直线PQ 的斜率不存在时,由对称性可知12k k =-,因为122k k =-不妨设1k =,2k =22122212448434311k k k k ==++即直线8:11PQ x =,满足过定点8,011E ⎛⎫ ⎪⎝⎭.因为PQA △的面积为112P Q S AE y y =-,PQB △的面积为212P Q S BE y y =-,所以1282151187211AE S S BE +===-,为定值.。
一中2021-2021-2学期高二年级期末考试试题数学〔文〕选择题:本大题一一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1. 直线x-y+3=0的倾斜角为A. 30°B. 60°C. 120°D. 150°【答案】B【解析】分析:先求直线的斜率,再求直线的倾斜角.详解:由题得直线的斜率为所以.故答案为:B.点睛:〔1〕此题主要考察直线倾斜角和斜率的计算,意在考察学生对这些知识的掌握程度.(2)直线ax+by+c=0(b≠0)的斜率为2. 设集合,集合,那么A. B. C. D.【答案】D【解析】分析:先化简集合B,再求A∪B.详解:由题得,所以A∪B=,故答案为:D.点睛:(1)此题主要考察集合的化简和并集运算,意在考察学生对这些知识的掌握程度.(2)无限集的运算一般通过数轴进展,有限集的运算一般通过韦恩图进展.3. 等差数列的前项和为,且满足,那么A. B. C. D.【答案】A【解析】分析:先根据等差数列的性质得到再求.详解:由题得所以.故答案为:A.点睛:〔1〕此题主要考察等差数列的性质和数列求和,意在考察学生对这些知识的掌握程度.(2) 等差数列中,假如,那么,特殊地,时,那么,是的等差中项.4. 假设命题“∃R,使得〞是真命题,那么实数a的取值范围是A. (-1,3)B. [-1,3]C.D.【答案】C【解析】分析:由题得,解不等式即得实数a的取值范围.详解:由题得,所以.故答案为:C.点睛:此题主要考察一元二次不等式的解和特称命题,意在考察学生对这些知识的掌握程度.5. ,,,那么、、的大小关系是A. B. C. D.【答案】D【解析】因为幂函数在定义域内单调递增,所以,由指数函数的性质可得,应选D.【方法点睛】此题主要考察幂函数单调性、指数函数的单调性及比拟大小问题,属于中档题. 解答比拟大小问题,常见思路有两个:一是判断出各个数值所在区间〔一般是看三个区间〕;二是利用函数的单调性直接解答;数值比拟多的比大小问题也可以两种方法综合应用.6. 某地区经过一年的新农村建立,农村的经济收入增加了一倍,实现翻番.为更好地理解该地区农村的经济收入变化情况,统计了该地区新农村建立前后农村的经济收入构成比例,得到如下饼图:那么下面结论中不正确的选项是A. 新农村建立后,种植收入减少B. 新农村建立后,其他收入增加了一倍以上C. 新农村建立后,养殖收入增加了一倍D. 新农村建立后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建立前的经济收入为M,根据题意,得到新农村建立后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比拟其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建立前的收入为M,而新农村建立后的收入为2M,那么新农村建立前种植收入为,而新农村建立后的种植收入为,所以种植收入增加了,所以A项不正确;新农村建立前其他收入我,新农村建立后其他收入为,故增加了一倍以上,所以B项正确;新农村建立前,养殖收入为,新农村建立后为,所以增加了一倍,所以C项正确;新农村建立后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;应选A.点睛:该题考察的是有关新农村建立前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.7. 向量满足,,那么A. 2B.C. 4D. 8【答案】B【解析】分析:先化简,求出的值,再求的值.详解:因为,所以所以.故答案为:B.8. 假设执行下面的程序框图,输出的值是3,那么判断框中应填入的条件是A. B. C. D.【答案】D【解析】分析:根据程序框图,写出运行结果,根据程序输出的结果是S=3,可得判断框内应填入的条件.详解:根据程序框图,运行结果如下:S k第一次循环 log23 3第二次循环 log23•log34 4第三次循环 log23•log34•log45 5第四次循环 log23•log34•log45•log56 6第五次循环 log23•log34•log45•log56•log67 7第六次循环 log23•log34•log45•log56•log67•log78=log28=3 8故假如输出S=3,那么只能进展六次循环,故判断框内应填入的条件是k<8.故答案为:D.点睛:此题考察程序框图,尤其考察循环构造,对循环体每次循环需要进展分析并找出内在规律是解题关键.9. 实数满足,那么的最小值是A. B. C. 4 D.【答案】A【解析】分析:由约束条件作出可行域,化目的函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目的函数得答案.详解:由约束条件,写出可行域如图,化z=x+2y为y=,由图可知,当直线y=过A〔2,0〕时,直线在y轴上的截距最小,z有最小值等于z=2+2×0=2.故答案为:A.点睛:〔1〕此题主要考察线性规划求函数的最值,意在考察学生对这些知识的掌握程度和数形结合思想方法.(2) 解答线性规划时,要加强理解,不是纵截距最小,就最小,要看函数的解析式,如:,直线的纵截距为,所以纵截距最小时,最大.10. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱外表上的点M在正视图上的对应点为A,圆柱外表上的点N在左视图上的对应点为B,那么在此圆柱侧面上,从M到N的途径中,最短途径的长度为A. 2B. 3C.D.【答案】C【解析】分析:先画出三视图对应的原图,再展开求从M到N的途径中的最短途径的长度.详解:先画出圆柱原图再展开得,由题得数形结合得M,N的最短途径为故答案为:C.点睛:〔1〕此题主要考察三视图和圆柱中的最值问题,意在考察学生对这些知识的掌握程度和数形结合的思想方法. (2)对于曲面的最值问题,由于用直接法比拟困难,一般利用展开法来分析解答.11. 函数〔〕的图象向右平移个单位后关于轴对称,那么的值是A. B. C. D.【答案】B【解析】分析:先求出图像变换后的解析式y=2cos〔2x﹣φ+〕,再令﹣φ+=kπ,k∈Z,求得的值.详解:由题得函数f〔x〕=cos〔2x﹣φ〕﹣sin〔2x﹣φ〕=2cos〔2x﹣φ+〕,〔|φ|<〕所以函数的图象向右平移个单位后,可得y=2cos〔2x﹣﹣φ+〕=2cos〔2x﹣φ+〕的图象,由于所得图象关于y轴对称,可得﹣φ+=kπ,k∈Z,故φ=.故答案为:B.12. 函数,那么不等式的解集为A. B. C. D.【答案】A【解析】分析:先分析出函数f(x)的性质,再根据函数f(x)的图像解不等式.详解:由题得y==,所以当x≥0时,函数单调递减,所以此时当x=0时,.当x>0时,y=2是一个常数函数,所以不等式可以化为,解之得x∈.故答案为:A.点睛:〔1〕此题主要考察函数的单调性和最值,考察函数的图像和性质,意在考察学生对这些知识的掌握程度和分析推理才能数形结合的思想方法.(2)解答此题的关键有两点,其一是分析出当x≥0时,函数单调递减,所以此时当x=0时,.其二是通过图像分析出.二、填空题:本大题一一共4小题,每一小题5分,一共20分.13. ,那么的最小值是_____________________.【答案】2【解析】分析:先化简得到xy=10,再利用根本不等式求的最小值.详解:因为,所以所以,当且仅当即x=2,y=5时取到最小值.故答案为:2.点睛:〔1〕此题主要考察对数运算和根本不等式,意在考察学生对这些知识的掌握程度和分析推理才能.(2) 利用根本不等式求最值时,一定要注意“一正二定三相等〞,三者缺一不可。
高二学年下学期期末考试数学(文)试题试题说明:1、本试题满分 150分,答题时间 120分钟。
2、请将答案填写在答题卡上,考试结束后只交答题卡。
第Ⅰ卷 选择题部分(共60分)一、选择题(每小题只有一个选项正确,每小题5分,共60分)1.已知集合{}52≤∈=x N x P ,{}1ln ->∈=x R x Q ,则Q P 的真子集个数为 ( )A 2B 3C 4D 72.在ABC ∆中,“B A >”是“B A sin sin >”的 ( )A 充分不必要条件B 必要不充分条件C 充要条件D 非充分也非必要条件 3.已知命题p :()1-=xx f 在其定义域内是减函数;命题q :()x x g tan =的图象关于2π=x 对称。
则下列命题中真命题是( )A q p ∨B q p ∧C ()q p ∧⌝D ()q p ∨⌝4.设方程022=-+x x的根为1x ,方程021log 2=+-x x的根为2x ,则1x +2x = ( )A 1B 2C 3D 45.设23ln =a ,()523ln =b ,075sin =c 则( )A c b a <<B c a b <<C b c a <<D b a c << 6.已知函数()()⎩⎨⎧≥<-=-0,20,1log 122x x x x f x ,则()()()()=+-03f f f f ( )A 7B 3ln 7+C 8D 97.欲得到函数()x x f 2sin 2=的图象,只需将函数()⎪⎭⎫⎝⎛-=42cos 2πx x g 的图象 ( ) A 向右平移8π个单位 B 向右平移4π个单位 C 向左平移8π个单位 D 向左平移4π个单位8.函数()xx xx x f cos sin 2++=在[]ππ,-的图象大致是( )9. 命题“R x ∈∃0,使02≤x ”的否定是( )A 不存在R x ∈0,02>x B 存在R x ∈0,020≥xC R x ∈∀,02≤xD R x ∈∀,02>x10.设b a ,为正数,且bab a2log 142=+--- ,则( )A b a 2<B b a 2>C b a 2=D 12=+b a11.定义在R 上的函数()x f y =是奇函数,()x f y -=2为偶函数,若()11=f ,则()()()=++202120202019f f f ( )A 2-B 0C 2D 312. 函数()x f 是定义在R 上的函数,其导函数记为()x f ',()()b a x f x g +-=的图象关于()b a P ,对称,当0>x 时,()()x x f x f <'恒成立,若()02=f ,则不等式()01>-x x f 的解集为( )A ()()2,10,2 -B ()()2,10,2 -C ()()2,2,1-∞-D ()()+∞-,20,2第II 卷 非选择题部分(共90分)二、填空题(每小题5分,共20分)13.若函数()a ax x x x f ++-=2331在()1,0上不单调,则实数a 的取值范围是______. 14.已知钝角ABC ∆的三边都是正整数,且成等差,公差为偶数,则满足条件的ABC ∆的外接圆的面积的最小值为______.15.设0>a ,()ax x f 22=,()23-=x e x g (e 是自然对数的底),若对⎥⎦⎤⎢⎣⎡∈∀2,211x ,⎥⎦⎤⎢⎣⎡∈∃2,212x ,使得()()()()2121x g x g x f x f =成立,则正数=a ______.16.关于函数xx x f sin 1sin )(+=有如下四个命题: ①)(x f 的图像关于y 轴对称;②)(x f 的图像关于原点对称; ③)(x f 在)2,0(π上单调递减;④)(x f 的最小值为2;⑤)(x f 的最小正周期为π.其中所有真命题的序号是__________.三、解答题(共70分)17.(本题满分10分)已知()x x x f 2sin -=,(1)求()x f y =在0=x 处的切线方程;(2)求()x f y =在⎥⎦⎤⎢⎣⎡2,0π上的最值.18.(本题满分12分)已知βα,为锐角,34tan =α,()55cos -=+βα,(1)求αα2sin 2cos +的值; (2)求()αβ-tan 的值.19.(本题满分12分)已知()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-=4cos 4cos 22sin sin 2ππππx x x x x f(1)求()x f 的最小正周期;(2)若()()a x f x g -=(a 为常数)在⎥⎦⎤⎢⎣⎡2,0π上有两个不同的零点1x 和2x ,求1x +2x .20.(本题满分12分)ABC ∆的三个内角C B A ,,所对的边分别为c b a ,,,三个内角C B A ,,满足1sin sin sin sin sin sin sin 2=-+C B AB C C B , (1)求A ;(2)若2=a ,ABC ∆的内角平分线935=AE ,求ABC ∆的周长.21. (本题满分12分)已知椭圆C :()012222>>=+b a b y a x 的离心率为22,且经过点()2,2.(1)求椭圆C 的方程;(2)不过坐标原点也不平行于坐标轴的直线l 与椭圆C 交于A 、B 两点,设线段AB 的中点为M ,求证:直线OM 的斜率与直线l 的斜率之积为定值.22.(本题满分12分)已知函数1()e ln ln x f x a x a -=-+(e 是自然对数的底). (1)当1=a 时,求函数)(x f y =的单调区间;(2)若1)(≥x f 在),0(+∞上恒成立,求正数a 的取值范围.高二学年下学期期末考试数学(文)试题答案一、1-5 :BCDBC 6-10:DAADC 11-12:BA二、填空题(每小题5分,共20分。
——教学资料参考参考范本——【高中教育】最新高二数学下学期期末考试试题文2______年______月______日____________________部门高二数学(文科)试卷一、选择题(本大题共12小题,共60分) 1。
设集合A=,,则( )A 。
B 。
C 。
D 。
2.复数( )512ii=- A 。
B 。
C 。
D 。
2i -12i -2i -+12i -+3.命题“”的否定是( )01,2≥++∈∃x x R x 使得 A . “” A. “”2,10x R x x ∀∈++<使得2,10x R x x ∀∈++≤使得 C . “” D . “”2,10x R x x ∃∈++≥使得2,10x R x x ∃∈++<使得 4.下列各组函数是同一函数的是 ( )①与; ②与;3()2f x x =-()2g x x x =-()f x x =2()g x x = ③与; ④与0()f x x =01()g x x=2()21f x x x =--2()21g t t t =--A 。
① ②B 。
① ③C 。
③ ④D 。
① ④5。
已知函数为奇函数,当时,=,则=( )A 。
2B 。
1C 。
0D 。
-26.曲线的极坐标方程ρ=4sin θ化成直角坐标方程为( ). A .x2+(y +2)2=4B .x2+(y -2)2=4C .(x -2)2+y2=4D .(x +2)2+y2=47.下列函数中,既是偶函数,又在单调递增的函数是( )(0,)+∞ A 。
B 。
C 。
D 。
12y x =2x y =-1||y x=lg ||y x =8.若函数,则f(f(2))=( )A 。
1B 。
4C 。
0D 。
9.某公司某件产品的定价x 与销量y 之间的数据统计表如下,根据数据,用最小二乘法得出 y 与x 的线性回归直线方程为: =6。
5+17。
5,则表格中n 的值应为( )x 2 4 5 6 8 y3040n5070A .45B .50C .55D .6010。
把曲线C1:(θ为参数)上各点的横坐标压缩为原来的,纵坐标压缩为原来的,得到的曲线C2为()A 。
12x2+4y2=1B 。
4x2=1C 。
x2+=1D 。
3x2+4y2=4⎩⎨⎧==θθsin 2cos 2y x11.设,则( )A 。
B 。
C 。
D 。
12.已知定义在上的奇函数满足,当时,,则( )R ()f x ()()2f x f x +=-[]0,1x ∈()21x f x =-A 。
B 。
()()11672f f f ⎛⎫<-< ⎪⎝⎭()()11672f f f ⎛⎫<<- ⎪⎝⎭C 。
D 。
()()11762f f f ⎛⎫-<< ⎪⎝⎭()()11762f f f ⎛⎫<-< ⎪⎝⎭二、填空题(本大题共4小题,共20分) 13。
函数的定义域为_______________21)(--=x x x f 14.若直线的参数方程为(t 为参数),则直线的斜率为 __________ 15。
若函数在区间(-∞,2上是减函数,则实数的取值范围是________________2(21)1=+-+y x a x ]a 16。
函数f(x)=在[1,a]上的最大值为4,最小值为2,则a 的值为_______ xa三、解答题(本大题共6小题,共70分)17、(10分)设全集,集合,集合,且,求的取值范围。
RU ={}31≥≤=x x x A 或{}R k k x k x B ∈+<<=,1φ=⋂A B k18.(12分)某种产品的广告费用支出 与销售额之间有如下的对应数据:x y(1)求回归直线方程;(2)据此估计广告费用为10时,销售收入的值。
yx 2 4 5 6 8y 30 40 60 50 70( 参考公式:用最小二乘法求线性回归方程系数公式)1221ˆˆˆniii nii x ynx y bay bx xnx==-==--∑∑,19。
(12分)在平面直角坐标系xOy 中,直线l 的参数方程(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为:ρ=4cosθ.(1)把直线l 的参数方程化为极坐标方程,把曲线C 的极坐标方程化为普通方程;(2)求直线l 与曲线C 交点的极坐标(ρ≥0,0≤θ<2π).⎪⎪⎩⎪⎪⎨⎧=+=t y t x 2321220.(12分)调查在3级风的海上航行中71名乘客的晕船情况,在男人中有12人晕船,25人不晕船,在女人中有10人晕船,24人不晕船 (1)作出性别与晕船关系的列联表; (2)根据此资料,能否在犯错误的概率不超过0。
1的前提下认为3级风的海上航行中晕船与性别有关? 附:。
21。
(12分)已知函数f (x )=ax 2-2ax +2+a (a <0),若f (x )在区间[2,3]上有最大值1. (1)求a 的值;(2)若g (x )=f (x )-mx 在[2,4]上单调,求数m的取值范围.22。
(12分)晕船不晕船 总计 男人 女人 总计0。
25 0。
15 0。
10 0。
05 0。
025k1。
3232。
072 2。
706 3。
841 5。
024在直角坐标系中,过点的直线的倾斜角为,以坐标原点为极点,xOy()1,2P -l 60x 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线C2sin 2cos ρθθ=l和曲线的交点为点。
C ,A B (1)求直线的参数方程;l (2)求的值。
PA PB ⋅ 高二文答案: ACACD BDADB DB[1,2)∪(2,+∞), -3/2, [-3/2, +∞), 2 17。
[1,2]18。
解:(1)=5,=50 x y145252221=+++x x x ;x1y1+x2y2+…+x5y5=138025525242322215544332211xx x x x x yx y x y x y x y x y x b -++++-++++=5.655145505513802=⨯-⨯⨯-=______6分a =-b =50-6。
5×5=17。
5y x于是所求的回归直线方程是y =6。
5x +17。
5. ______10分(2)当时, _______12分10x =6.51017.582.5y =⨯+=19(1)直线l 的参数方程(t 为参数),消去参数t 化为=0,把代入即可得出,由曲线C 的极坐标方程为:ρ=4cos θ,变为ρ2=4ρcos θ,代入化为直角坐标方程.(2)联立,解出再化为极坐标(ρ≥0,0≤θ<2π)为.本题考查了极坐标与直角坐标方程的互化、直线与曲线的交点,考查了推理能力与计算能力,属于中档题.20。
(本题满分12分)解(1)_______4分(2)由公式得k ==≈0。
08。
∵k<2。
706。
_______10分∴我们没有理由认为级风的海上航行中晕船与性别有关._______12分2321。
解:(1)因为函数的图象是抛物线,a <0, 所以开口向下,对称轴是直线x =1, 所以函数f (x )在[2,3]单调递减, 所以当x =2时,y max =f(2)=2+a =1, ∴a =-1-----------------------(5分)(2)因为a =-1,∴f(x )=-x 2+2x +1, 所以g (x )=f (x )-mx =-x 2+(2-m )x +1, ,∵g (x )在[2,4]上单调, ∴,从而m ≤-6,或m ≥-2所以,m 的取值范围是(-∞,-6]∪[-2,+∞)----------------------------------------------------(10分),晕船 不晕船 总计 男人 12 25 37 女人10 24 34 总计224971。