15-16武汉市东西湖区八年级期中数学试卷(word)
- 格式:doc
- 大小:154.00 KB
- 文档页数:4
东西湖区八上期中数学卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请把正确答案的代号字母填入答题卷)1、下面所给出的交通标志中,是轴对称图形的是2、如图,在△ABC中,∠A=35°,∠B=25°,则∠ACD的度数是A、60°B、55°C、120°D、65°3、下列长度的三条线段,能组成三角形的是A、3,4,8B、5,6,11C、5,10,6D、4,4,84、如图,在△ABC中,过点A作BC边上的高,正确的作法是5、下列各组条件中,能够判定△ABC≌△DEF的是A、∠A=∠D,∠B=∠E,∠C=∠FB、AB=DE,BC=DE,∠A=∠DC、∠B=∠E=90°,BC=EF,AC=DFD、∠A=∠D,AB=DF,∠B=∠E6、在平面直角坐标系中,点P(-1,3)关于y轴对称点的坐标是A、(1,3)B、(1,-3)C、(-1,-3)D、(-1,3)7、已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形顶角的度数为A、36°B、72°C、45°或72°D、36°或90°8、如图,在△ABC中,沿直线DE折叠后,使得点B与点A重合,已知AC=5cm,△ADC的周长15cm,BC的长为A、20cmB、15cmC、10cmD、5cm9、在下列命题中,真命题的个数是①如果两个三角形有两条边和第三边上的中线对应相等,那么这两个三角形全等②如果两个三角形有两条边和第三边上的高对应相等,那么这两人个三角形全等③如果两个直角三角形有一条边和这条边所对的角对应相等,那么这两个三角形全等④如果两个直角三角形有两个角对应相等,那么这两个三角形全等A、1个B、2个C、3个D、4个10、如图,设△ABC和△CDE都是等边三角形,若∠AEB=70°,则∠EBD的度数是A、115°B、120°C、125°D、130°二.选择题11、已知△ABC的三个内角的度数之比为∠A:∠B:∠C=1:2:3,则∠C=12、如图,图中三角形的个数一共有13、已知一个三角形有两条边长度分别是3、4,则第三边x的长度范围是14、如图,五边形ABCDE中,AE∥CD,∠A=147°,∠B=121°,则∠C=15、如果等腰三角形的一腰上的高等于腰长的一半,则底角的度数是16、如图,在平面直角坐标系中,点A(12,6),∠ABO=90°,一动点C从点B出发以2厘米/秒的速度沿射线BO运动,点D在y轴上,D点随着C点运动而运动,且始终保持OA=CD。
湖北省武汉市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列式子中,是分式的为()A .B .C .D .2. (2分) (2018八上·大石桥期末) 把分式中的x、y同时扩大10倍,那么分式的值()A . 不改变B . 扩大10 倍C . 缩小10倍D . 改变为原来的3. (2分) (2019八上·安国期中) 点P(-5,3)关于y轴的对称点的坐标是()A .B .C .D .4. (2分) (2019八下·长春月考) 将用科学记数法表示为()A .B .C .D .5. (2分) (2011八下·建平竞赛) 如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D 作匀速运动,那么△APB的面积S与点P运动的路程之间的函数图象大致是()A .B .C .D .6. (2分) (2017八下·兴化期中) 反比例函数的图像位于()A . 第一、二象限B . 第一、三象限C . 第二、三象限D . 第二、四象限7. (2分) (2018八上·广东期中) 一次函数的图象过点(0,2),且随的增大而增大,则m=()A . -1B . 3C . 1D . -1或38. (2分)如图,已知四边形ABCD是平行四边形,下列结论中,不一定正确的是()A . AB=CDB . 当AC⊥BD时,它是菱形C . AB=ACD . 当∠ABC=90°时,它是矩形9. (2分) (2019八下·孝南月考) 如图,在□ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A . 2cmB . 4cmC . 6cmD . 8cm10. (2分)一次函数y=kx+b与反比例函数y=的图象在同一直角坐标系下的大致图象如图所示,则k、b的取值范围是()A . k>0,b>0B . k<0,b>0C . k<0,b<0D . k>0,b<011. (2分)直线y=x+b与直线y=﹣2x+2的交点不可能在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限12. (2分)(2018·中山模拟) 如图,P是反比例函数图象上第二象限内一点,若矩形PEOF的面积为3,则反比例函数的解析式是()A . y=B . y=﹣C . y=D . y=二、填空题 (共8题;共10分)13. (1分) (2020八上·襄城期末) 若分式有意义,则x的取值范围是________.14. (3分)将(3﹣m)÷(m+2)写成分式为________,当m=2时,该分式的值为________;当m=________时,该分式的值为0.15. (1分)(2018·武汉模拟) 计算:=________.16. (1分)=________17. (1分)一次函数的图象过点且与直线平行,那么该函数解析式为________.18. (1分)同一温度的华氏度数y()与摄氏度数x(℃)之间的关系是y= x+32.如果某一温度的摄氏度数是25℃,那么它的华氏度数是________.19. (1分)如图,点E是▱ABCD的边AD的中点,连接CE交BD于点F,如果S△DEF=a,那么S△BCF=________.20. (1分)(2012·遵义) 如图,平行四边形ABCD的顶点A、C在双曲线y1=﹣上,B、D在双曲线y2=上,k1=2k2(k1>0),AB∥y轴,S▱ABCD=24,则k1=________.三、解答题 (共7题;共61分)21. (10分)(2011·泰州) 计算或化简:(1),(2).22. (5分)(2017·应城模拟) 解分式方程: + =4.23. (15分)为了激发学生学习英语的兴趣,某中学举行了校园英文歌曲大赛,并设立了一、二、三等奖.学校计划根据设奖情况共买50件奖品,其中购买二等奖奖品件数比一等奖奖品件数的2倍还少10件,购买三等奖奖品所花钱数不超过二等奖所花钱数的1.5倍,且三等奖奖品数不能少于前两种奖品数之和.其中各种奖品的单价如下表所示,如果计划一等奖奖品买x件,买50件奖品的总费用是w元.奖品一等奖奖品二等奖奖品三等奖奖品单价(元)20105(1)用含有x的代数式表示:该校团委购买二等奖奖品多少件,三等奖奖品多少件?并用x的代数式表示w.(2)请问共有哪几种方案?(3)请你计算一下,学校应如何购买这三种奖品,才能使所支出的总费用最少,最少是多少元?24. (5分)(2012·徐州) 如图,C为AB的中点.四边形ACDE为平行四边形,BE与CD相交于点F.求证:EF=BF.25. (5分) (2017八下·南通期末) 某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.26. (15分)如图,直线AB过x轴上一点A(2,0),且与抛物线y=ax2相交于B、C两点,B点坐标为(1,1).(1)求直线AB的解析式及抛物线y=ax2的解析式;(2)求点C的坐标;(3)求S△COB.27. (6分) (2018九上·海淀期末) 码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.轮船到达目的地后开始卸货,记平均卸货速度为v(单位:吨/天),卸货天数为t.(1)直接写出v关于t的函数表达式:v=________;(不需写自变量的取值范围)(2)如果船上的货物5天卸载完毕,那么平均每天要卸载多少吨?参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共8题;共10分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共61分) 21-1、21-2、22-1、23-1、23-2、23-3、24-1、25-1、26-1、26-2、26-3、27-1、27-2、。
湖北省武汉市八年级(上)期中数学试卷(人教版)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.(3分)已知三角形的两边分别为5和8,则此三角形的第三边可能是()A.2B.3C.5D.132.(3分)人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间线段最短B.三角形的稳定性C.两点确定一条直线D.垂线段最短3.(3分)直角坐标系中,点A(2,﹣3)关于x轴对称的点的坐标是()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)4.(3分)五边形的对角线的条数是()A.2B.3C.5D.105.(3分)在3×3的正方形网格中,把3个小正方形涂上阴影.下列各图中,这三个小正方形组成的图案不是轴对称图形的是()A.B.C.D.6.(3分)等腰三角形有一个角为100°,则其底角是()A.40°B.80°C.40°或100°D.80°或100°7.(3分)如图,两个三角形全等,则∠1的度数是()A.76°B.60°C.54°D.50°8.(3分)如图,线段AD与BC相交于O点,∠A=∠B=90°,添加以下的一个条件仍不能判定△ACD≌△BDC的是()A.∠ACD=∠BDC B.AD=BC C.OC=OD D.∠OCA=∠ODB 9.(3分)尺规作图中蕴含着丰富的数学知识和思想方法.如图,为了得到∠P'O'Q'=∠POQ,在用直尺和圆规作图的过程中,得到△AOB≌△A'O'B'的依据是()A.SAS B.SSS C.ASA D.AAS10.(3分)如图,有三条公路两两相交,现要修建一个货栈,使它到三条公路的距离相等,则满足修建货栈条件的地点有()A.一处B.三处C.四处D.无数处二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.(3分)等边三角形是轴对称图形,它有条对称轴.12.(3分)如图,在△ABC中,∠A=70°,∠ACD是△ABC的外角.若∠ACD=130°,则∠B=°.13.(3分)若n边形的每个内角都等于150°,则n=.14.(3分)如图,在△ABC中,∠ACB=90°,∠B=30°,CD是高.若AD=2,则BD =.15.(3分)如图,在△ABC中,AB=AC,点D在AC上,且AD=BD=BC,则∠C的度数是.16.(3分)如图,DF为四边形ACDB外角∠BDE的平分线,CF平分∠ACD,若∠A=140°,∠B=110°,则∠CFD的度数是.三、解答题(共5小题,共52分)17.(10分)如图,已知∠1=∠2,∠3=∠4.求证:BD=BC.18.(10分)(1)五边形的内角和为°;(2)在五边形ABCDE中,五个角的度数表示如图,求x的值.19.(10分)已知点C在线段BE上,且△ABC和△DCE都是等边三角形,连接BD,AE,分别交AC,DC于点M,N.(1)求证:△AEC≌△BDC;(2)求证:CM=CN.20.(10分)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.(1)若∠B=70°,则∠NMA的度数是;(2)连接MB,若BC=6,△MBC的周长是14.①求△ABC的周长;②若P是直线MN上一个动点,则PB+PC的最小值是.21.(12分)如图在由正方形组成的7×8网格中,每个小正方形的顶点叫做格点,点A,B,C都是格点,仅用无刻度直尺,在给定的网格中完成画图.(1)在图(1)中,另画出△MNC,使△MNC≌△ABC(M为A的对应点);(2)在图(1)中,画出△ABC的中线CD;(3)在图(2)中,画出△ABC的高BE;再在高BE上画点F,使得∠AFE=45°.四、填空题(共4小题,每小题4分,共16分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.22.(4分)如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=65°,则∠A的度数是.23.(4分)若等腰三角形一腰上的高与另一腰的夹角为48°,则底角的度数为.24.(4分)如图,先将正方形纸片对折,折痕为MN,再沿AE折叠,使点B落在MN上的点H处.下列结论:①DH=DA;②∠BHD=135°;③NE=BE;④EB=2HN.其中正确结论是.(填序号)25.(4分)如图,在△ABC中,AP平分∠BAC交BC于点P,AQ平分∠BAC的外角∠BAD 交CB的延长线于点Q,∠ABC=2∠C,AB=4cm,BP=3cm,则AC=cm,BQ =cm.五、解答题(共3小题,共34分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形26.(10分)已知△ABC的三边长分别为a,b,c.(1)化简式子|a﹣b+c|+|a﹣b﹣c|=;(2)若a=x+8,b=3x﹣2,c=x+2.①x的取值范围是;②当△ABC为等腰三角形时,求a,b,c的值.27.(12分)如图,在△ABC中,∠ACB=90°,AC=BC,H为AB上一点,连接CH.(1)若AC=AH,①如图(1),求∠BCH的度数;②如图(2),G为AH上一点,GH=BH,GF⊥AB交AC于点E,交HC的延长线于点F,求证:EF=BH;(2)如图(3),AH=3BH,过A作AD⊥CH于点D,若CD=m,AC=n,直接用含m,n的式子写出△ADH的面积.28.(12分)如图,A,B分别为x轴,y轴的正半轴上的点,作AB关于坐标轴的对称线段CB和AD.(1)如图(1),若OA=6,OB=8,直接写出点C,D的坐标;(2)如图,E是OB上一点,直线AE交BC于点F,BE=BF.①如图(2),求证:CF=2OE;②如图(3),CH平分∠ACB交AB于点H,交AF于点G,若四边形COEG的面积等于△ACF面积的一半,判断△ABC的形状,并证明你的结论.。
12015〜2016学年度上学期八年级数学期中测试卷)B. 10, 5, 4C. 5, 2, 6D. 2, 4, 82.下列图案是儿种汽车的标志,请你指出,在这儿个图案中是轴对称图形的共有()A. 40° B. 50° C. 60° D. 70°4. 某同学把一块三角形的玻璃打碎成了 3块,现在要到玻璃店去配一块完全一样的玻璃,那 么可行的办法是().A.带①③去B.带②去C.带②③去D.带③去 5. 如图,为估计假山A, B 两端的距离,小明在一侧选取了一点C,测得AC=18cm, BC 二12cm,那么AB 之间的距离不可能是() A. 12m B. 16m C. 18m D ・ 30m6. 如果一个多边形的每个内角都是120°,那么这个多边形是()A.三角形B.六边形C.七边形D.九边形7. 已知点P (m, 2)>与Q (3, n )关于y 轴对称,则(m+n )2015的值为()A. -1B. 1C. 52015D. -520158. 将矩形纸片ABCD (图①)按如下步骤操作:(1)以过点A 的直线为折痕折叠纸片,使点B 恰 好落在AD 边上,折痕是AE (如图②);(2)以过点E 的直线为折痕再折壳纸片,使点A 落在 EC 边上,折痕EF 交AD 边于点F (如图③);(3)将纸片收展平,那么ZAFE 的度数为() A. 60° B. 67.5° C. 72° D. 75°9. 如图,点A 为ZMON 的角平分线上一点,过A 任作一直线分别与ZMON 的两边交于B 、 C, P 为BC 的中点,过P 作BC 的垂线交OA 于点D, ZMON=130°,则ZBDC=( ).A. 50°B. 60°C. 70°D.不确定10. 如图,在ZiABC 中,AB=AC, AD 丄BC 于点D, AB=5, AD=4,点P 是BC 边上的一动 点,且不与B 、C 重合,则点P 到AB 、AC 的距离之和为()A. 4.8B. 3C. 2.4D.不确定一、选择题(共10小题每小题3分,共30分) 1.下列长度的三条线段,能组成三角形的是( A. A.3. ZABD=120°,则ZC 等于( ) 1, 2, 3 1个 B. 2个 C ・3个 D. 4个B8题图① CD10题图二、填空题(共6小题,11.如图,AABC屮,每小题3分,共18分)AB与BC的夹角是—ZA的对边是,ZA、ZC的公共12.如图,ZABC=ZDEF, AB=DE,要说明△ ABC^ADEF还要添加的条件为一种即可)13.用一条长为18cm的细绳围成一个等腰三角形,如果腰长是底边长的2倍,那么各边的长是_________ •14.如图,在AABC中,ZABC, ZACB的角平分线相交于点O,过点O作DE〃BC分别交AB、AC于D、E两点,AB=6, AC=8,则厶ADE的周长是__________ .15.如图,在△ ABC 中,AB=AC, D、E 是AABC 内的两点,AE 平分ZBAC, ZD=ZDBC=60°, 若BD=5cm, DE=3cm,则BC 的长是16.如图,Z\ABC 中,ZABC二52。
最新人教版数学八年级下册期中考试试题及答案第Ⅱ卷(非选择题共84分)二、填空题(每小题3分,满分18分)13.比较大小:(填“>、<或=”)14. 如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为 .15. 某地需要开辟一条隧道,隧道AB的长度无法直接测量。
如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE的长为1200m,则隧道AB的长度为__ _米。
三、解答题(满分66分)23.(14分)如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论。
(3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请求出凹四边形ABCE的面积.24.(14分)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.求证:AM=AD+MC.【探究展示】(2)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,试判断AM=AD+MC是否成立?若成立,请给出证明,若不成立,请说明理由;【拓展延伸】(3)若(2)中矩形ABCD两边AB=6,BC=9,求AM的长。
参考答案一、BDCAA CABDC BC二、13. <14. 18米15. 2400米16. (5,4)17. 8=+18. (n最新人教版数学八年级下册期中考试试题及答案分△AFC的面积为 A. 6 B. 8 C. 10 D. 12第Ⅱ卷(非选择题共84分)二、填空题(每小题3分,满分18分)13.比较大小:(填“>、<或=”)14. 如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为 .15. 某地需要开辟一条隧道,隧道AB的长度无法直接测量。
八年级上学期数学期中考试调研试题题号1-1213-1617-2021-2324-25总分分数3612272322120得分一、选择题(请将正确答案填在下边相应的表格中,每题3分,共36分):123456789101112一、选择题(共12小题,每题3分,共36分)1.以下银行标记中是轴对称图形的个数有()A.2个B.3个C.4个D.5个2.以下说法中正确的选项是()A.36的平方根是6B.16的平方根是±2EC.8的立方根是-2D.4的算术平方根是-23.a是一个无理数,且知足3<a<4,则a可能是()DB CAA.2B.21C.πD.38F 4.如图,△ACE≌△DBF,若AD=8,BC=2,则AB的长度等于()A.6B.4C.3D.25.已知点P1(a-1,5)和P2(2,b-1)对于x轴对称,则(a+b)2009的值为()A.0B.-1C.1D.(-3)20096、△ABC的两边的长分别为23,53,则第三边的长度不行能为()A.3 3B.43C.53D.637.以下四个条件,能够确立△ABC与△A1B1C1全等的是()A.BC=B1C1,AC=A1C1,∠A=∠A1B.AB=A1B1,∠C=∠C1=900.AC=A1C1,∠A=∠A1,∠B=∠B1;D.∠A=∠A1,∠B=∠B1,A∠C=∠C18.如图:△ABC中,D为BC上一点,△ACD的周长为12cm,E DE是线段AB的垂直均分线,AE=5cm,则△ABC的周长是()A.17cm B.22cm C.29cm D.32cmC D B9.如图,直径为1个单位长度的圆从原点沿数轴向右转动一周,圆上一点由原点抵达点A,以下说法正确的选项是()A.点A所表示的是π.B.数轴上只有一个无理数π.C.数轴上只有无理数没有有理数.D.数轴上的有理数比无理数要多一些.O123A410.以下图,△ABC中,D为BC上一点,且AB=AC=BD.A 则图中∠1与∠2的关系是()A.∠1=2∠2B.∠1+∠2=180°1C.∠1+3∠2=180°D.3∠1-∠2=180°B11.四边形ABCD中,AC和BD交于点E,若AC均分∠DAB,且AB=AE,AC=AD,有以下四个命题:①AC⊥BD;②BC=DE;③∠DBC=1∠DAB;④AB=BE=AE。
2015-2016学年湖北省武汉市部分学校联考八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.下列图案中,轴对称图形是( )A.B. C.D.2.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )A.110°B.80°C.70°D.60°3.已知△ABC中,AB=4,BC=6,那么边AC的长可能是下列哪个值( )A.11 B.5 C.2 D.14.一定能确定△ABC≌△DEF的条件是( )A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F5.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS6.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )A.40°B.100°C.40°或70°D.40°或100°7.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为( )A.7cm B.10cm C.12cm D.22cm8.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB 于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对9.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10 B.7 C.5 D.410.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是( )A.B.C.D.二、填空题(每题3分,共18分)11.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于__________.12.已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是__________.13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为__________.14.等腰三角形的两边长分别是4cm和8cm,则它的周长是__________.15.各边长度都是整数、最大边长为8的三角形共有__________个.16.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为__________.三、解答题(共8道小题,共72分)17.如图,在钝角△ABC中.(1)作钝角△ABC的高AM,CN;(2)若CN=3,AM=6,求BC与AB之比.18.如图,△ABC是等腰三角形,AB=AC,请你作一条直线将△ABC分成两个全等的三角形,并证明这两个三角形全等.19.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,(1)∠ABC=42°,∠A=60°,求∠BFC的度数;(2)直接写出∠A与∠BFC的数量关系.20.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上找出一点P,使得PA+PB的值最小,直接写出点P的坐标;(3)在平面直角坐标系中,找出一点A2,使△A2BC与△ABC关于直线BC对称,直接写出点A2的坐标.21.(1)如图(1),将△ABC纸片沿着DE对折,使点A落在四边形BCDE内点A′的位置,探索∠A,∠1,∠2之间的数量关系,并说明理由.(2)如图(2),继续这样的操作,把△ABC纸片的三个角按(1)的方式折叠,三个顶点都在形内,那么∠1+∠2+∠3+∠4+∠5+∠6的度数是__________.(3)如果把n边形纸片也做类似的操作,n个顶点都在形内,那么∠1+∠2+∠3+…+∠2n的度数是__________ (用含有n的代数式表示).22.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.23.如图,△ABC中,AC=BC,∠ACB=90°,点D在AB上,E在BC上,且AD=BE,BD=AC,连接DE.(1)求证:△ACD≌△BDE;(2)求∠BED的度数;(3)若过E作EF⊥AB于F,BF=1,直接写出CE的长.24.如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一动点,CE⊥BD于E.(1)如图(1),若BD平分∠ABC时,①求∠ECD的度数;②求证:BD=2EC;(2)如图(2),过点A作AF⊥BE于点F,猜想线段BE,CE,AF之间的数量关系,并证明你的猜想.2015-2016学年湖北省武汉市部分学校联考八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.下列图案中,轴对称图形是( )A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各图形分析判断后即可求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选;D.【点评】本题考查了轴对称图形,图形两部分沿对称轴折叠后可重合,轴对称图形的关键是寻找对称轴.2.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )A.110°B.80°C.70°D.60°【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:由三角形的外角性质得:∠CAD=∠B+∠C=40°+30°=70°.故选C.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,是基础题,熟记性质并准确识图是解题的关键.3.已知△ABC中,AB=4,BC=6,那么边AC的长可能是下列哪个值( )A.11 B.5 C.2 D.1【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可.【解答】解:根据三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5,故选:B.【点评】本题考查的是三角形的三边关系,掌握三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.4.一定能确定△ABC≌△DEF的条件是( )A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠DC.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看每个选项是否符合定理即可.【解答】解:A、根据ASA即可推出△ABC≌△DEF,故本选项正确;B、根据∠A=∠E,∠B=∠D,AB=DE才能推出△ABC≌△DEF,故本选项错误;C、根据AB=DE,BC=EF,∠B=∠E才能推出△ABC≌△DEF,故本选项错误;D、根据AAA不能推出△ABC≌△DEF,故本选项错误;故选A.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.6.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )A.40°B.100°C.40°或70°D.40°或100°【考点】等腰三角形的性质.【专题】分类讨论.【分析】分这个角为底角和顶角两种情况,利用三角形内角和定理求解即可.【解答】解:当这个内角为顶角时,则顶角为40°,当这个内角为底角时,则两个底角都为40°,此时顶角为:180°﹣40°﹣40°=100°,故选D.【点评】本题主要考查等腰三角形的性质,掌握等腰三角形的两底角相等是解题的关键.7.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为( )A.7cm B.10cm C.12cm D.22cm【考点】翻折变换(折叠问题).【分析】首先根据折叠可得AD=BD,再由△ADC的周长为17cm可以得到AD+DC的长,利用等量代换可得BC的长.【解答】解:根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.故选:C.【点评】此题主要考查了翻折变换,关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB 于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对【考点】全等三角形的判定;线段垂直平分线的性质;等腰三角形的性质.【专题】压轴题.【分析】根据已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.【点评】本题考查的是全等三角形的判定方法;这是一道考试常见题,易错点是漏掉△ABO≌△ACO,此类题可以先根据直观判断得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.9.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10 B.7 C.5 D.4【考点】角平分线的性质.【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=BC•EF=×5×2=5,故选C.【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.10.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是( )A.B.C.D.【考点】剪纸问题.【分析】根据题意直接动手操作得出即可.【解答】解:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A.【点评】本题考查了剪纸问题,难点在于根据折痕逐层展开,动手操作会更简便.二、填空题(每题3分,共18分)11.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于75°.【考点】三角形内角和定理.【分析】根据已知条件设∠A=3x,∠B=4x,∠C=5x,然后根据三角形的内角和列方程即可得到结果.【解答】解:∵在△ABC中,∠A:∠B:∠C=3:4:5,∴设∠A=3x,∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,∴x=15°,∴∠C=5x=75°,故答案为:75°.【点评】本题考查了三角形的内角和,熟练掌握三角形的内角和是解题的关键.12.已知点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.【解答】解:点P关于x轴的对称点P1的坐标是(1,2),则点P的坐标是(1,﹣2).故答案为:(1,﹣2).【点评】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【考点】多边形内角与外角.【专题】计算题.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.14.等腰三角形的两边长分别是4cm和8cm,则它的周长是20cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两边长为4cm和8cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①8cm为腰,4cm为底,此时周长为8+8+4=20cm;②8cm为底,4cm为腰,∵4+4=8,∴两边和等于第三边无法构成三角形,故舍去.故它的周长是20cm.故答案为:20cm.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.各边长度都是整数、最大边长为8的三角形共有20个.【考点】三角形三边关系.【分析】利用三角形三边关系进而得出符合题意的答案即可.【解答】解:∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;5,5,8;5,6,8;5,7,8;5,8,8;6,6,8;6,7,8;6,8,8;7,7,8;7,8,8;8,8,8;故各边长度都是整数、最大边长为8的三角形共有20个.故答案为:20.【点评】此题主要考查了三角形三边关系,正确分类讨论得出是解题关键.16.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为88°.【考点】圆周角定理.【分析】由AB=AC=AD,可得B,C,D在以A为圆心,AB为半径的圆上,然后由圆周角定理,证得∠CAD=2∠CBD,∠BAC=2∠BDC,继而可得∠CAD=2∠BAC.【解答】解:∵AB=AC=AD,∴B,C,D在以A为圆心,AB为半径的圆上,∴∠CAD=2∠CBD,∠BAC=2∠BDC,∵∠CBD=2∠BDC,∠BAC=44°,∴∠CAD=2∠BAC=88°.故答案为:88°.【点评】此题考查了圆周角定理.注意得到B,C,D在以A为圆心,AB为半径的圆上是解此题的关键.三、解答题(共8道小题,共72分)17.如图,在钝角△ABC中.(1)作钝角△ABC的高AM,CN;(2)若CN=3,AM=6,求BC与AB之比.【考点】作图—复杂作图;三角形的面积.【专题】作图题.【分析】(1)过点A作AM⊥BC于M,过点C作CN⊥AB于N,则AM、BN为△ABC的高;(2)根据三角形面积公式得到AM•BC=CN•AB,然后利用比例性质求BC与AB的比值.【解答】解:(1)如图,AM、CN为所作;(2)∵AM、BN为△ABC的高,∴S△ABC=AM•BC=CN•AB,∴===.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了三角形面积公式.18.如图,△ABC是等腰三角形,AB=AC,请你作一条直线将△ABC分成两个全等的三角形,并证明这两个三角形全等.【考点】全等三角形的判定.【分析】取BC中点D,作直线AD,利用SSS即可证明△ABD≌△ACD.【解答】解:如图,取BC中点D,作直线AD,则直线AD将△ABC分成两个全等的三角形,即△ABD≌△ACD.理由如下:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,(1)∠ABC=42°,∠A=60°,求∠BFC的度数;(2)直接写出∠A与∠BFC的数量关系.【考点】三角形内角和定理.【分析】(1)根据角平分线的定义可得∠FBC=∠ABC,∠FCB=∠ACB,再根据三角形内角和定理求出即可;(2)根据角平分线的定义可得∠FBC=∠ABC,∠FCB=∠ACB,然后表示出∠FBC+∠FCB,再根据三角形的内角和等于180°列式整理即可得证.【解答】解:(1)∵∠ABC=42°,∠A=60°,∴∠ACB=78°,∵∠ABC、∠ACB的平分线相交于点F,∴∠FBC=∠ABC=21°,∠FCB=∠ACB=39°,∴∠BFC=180°﹣(∠FBC+∠FCB)=120°;(2)∠BFC=90°+A,理由是:∵∠ABC与∠ACB的平分线相交于点F,∴∠FBC=∠ABC,∠FCB=∠ACB,∴∠FBC+∠FCB=(∠ABC+∠ACB),在△FBC中,∠BFC=180°﹣(∠FBC+∠FCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A.【点评】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.20.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上找出一点P,使得PA+PB的值最小,直接写出点P的坐标;(3)在平面直角坐标系中,找出一点A2,使△A2BC与△ABC关于直线BC对称,直接写出点A2的坐标.【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)先作出各点关于y轴的对称点,再顺次连接即可;(2)连接AB1交y轴于点P,利用待定系数法求出直线AB1的解析式,进而可得出P点坐标;(3)找出点A关于直线BC的对称点,并写出其坐标即可.【解答】解:(1)如图所示;(2)设直线AB1的解析式为y=kx+b(k≠0),∵A(﹣1,5),B1(1,0),∴,解得,∴直线AB1的解析式为:y=﹣x+,∴P(0,2.5);(3)如图所示,A2(﹣6,0).【点评】本题考查的是作图﹣轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.21.(1)如图(1),将△ABC纸片沿着DE对折,使点A落在四边形BCDE内点A′的位置,探索∠A,∠1,∠2之间的数量关系,并说明理由.(2)如图(2),继续这样的操作,把△ABC纸片的三个角按(1)的方式折叠,三个顶点都在形内,那么∠1+∠2+∠3+∠4+∠5+∠6的度数是360°.(3)如果把n边形纸片也做类似的操作,n个顶点都在形内,那么∠1+∠2+∠3+…+∠2n的度数是360°(n﹣2)(用含有n的代数式表示).【考点】翻折变换(折叠问题).【分析】(1)运用折叠原理及四边形的内角和定理即可解决问题;(2)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6=∠B+∠B'+∠C+∠C'+∠A+∠A',又知∠B=∠B',∠C=∠C',∠A=∠A',故能求出∠1+∠2+∠3+∠4+∠5+∠6的度数和;(3)利用(1)(2)的计算方法:类比得出答案即可.【解答】解:(1)连接AA′,∵∠1=∠BAA′+∠AA′E,∠2=∠CAA′+∠AA′D,∴∠1+∠2=∠BAA′+∠AA′E+∠CAA′+∠AA′D=∠BAC+∠DA′E,又∵∠BAC=∠DA′E,∴∠1+∠2=2∠BAC;(2)∠1+∠2+∠3+∠4+∠5+∠6=∠B+∠B'+∠C+∠C'+∠A+∠A',∵∠B=∠B',∠C=∠C',∠A=∠A',∴∠1+∠2+∠3+∠4+∠5+∠6=2(∠B+∠C+∠A)=360°;(3)∠1+∠2+∠3+…+∠2n=2(∠B+∠C+∠A)(n﹣2)=360°(n﹣2).【点评】本题考查图形的折叠与拼接,同时考查了三角形、四边形等几何基本知识,掌握折叠的性质是解决问题的关键.22.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.【考点】全等三角形的判定与性质.【专题】几何综合题.【分析】(1)求证AB=AC,就是求证∠B=∠C,可通过构建全等三角形来求.过点O分别作OE⊥AB于E,OF⊥AC于F,那么可以用斜边直角边定理(HL)证明Rt△OEB≌Rt△OFC 来实现;(2)思路和辅助线同(1)证得Rt△OEB≌Rt△OFC后,可得出∠OBE=∠OCF,等腰△ABC 中,∠ABC=∠ACB,因此∠OBC=∠OCB,那么OB=OC;(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC.【解答】(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)【点评】本题的关键是通过辅助线来构建全等三角形.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.23.如图,△ABC中,AC=BC,∠ACB=90°,点D在AB上,E在BC上,且AD=BE,BD=AC,连接DE.(1)求证:△ACD≌△BDE;(2)求∠BED的度数;(3)若过E作EF⊥AB于F,BF=1,直接写出CE的长.【考点】全等三角形的判定与性质.【分析】(1)根据SAS证明△ACD≌△BDE即可;(2)根据全等三角形得出AC=BD,进而得出BD=BC,利用角的计算即可解答;(3)过E作EF⊥AB于F,DH⊥BC于H,根据等腰直角三角形的性质求出EF的长,根据题意求出∠CED=∠DEF,根据角平分线的性质求出EH=EF,根据等腰三角形的性质得到答案.【解答】证明:(1)在△ACD与△BDE中,,∴△ACD≌△BDE(SAS),(2)∵△ACD≌△BDE,∴AC=BD,CD=DE,∵AC=BC,∴BD=BC,∴∠BCD=67.5°,∴∠CED=∠BCD=67.5°,∴∠BED=112.5°;(3)过E作EF⊥AB于F,DH⊥BC于H,∵EF⊥AB,∠B=45°,∴EF=BF=1,∵∠FEB=45°,∠CED=67.5°,∴∠DEF=67.5°,∴∠CED=∠DEF,又DH⊥BC,EF⊥AB,∴EH=EF=1,∵DC=DE,DH⊥BC,∴CE=2EH=2.【点评】本题考查的是全等三角形的判定和性质、角平分线的性质以及等腰三角形的性质,掌握全等三角形的判定定理和性质定理、等腰三角形的三线合一是解题的关键.24.如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一动点,CE⊥BD于E.(1)如图(1),若BD平分∠ABC时,①求∠ECD的度数;②求证:BD=2EC;(2)如图(2),过点A作AF⊥BE于点F,猜想线段BE,CE,AF之间的数量关系,并证明你的猜想.【考点】全等三角形的判定与性质.【分析】(1)①根据等腰直角三角形的性质得出∠CBA=45°,再利用角平分线的定义解答即可;②延长CE交BA的延长线于点G得出CE=GE,再利用AAS证明△ABD≌△ACG,利用全等三角形的性质解答即可;(2)过点A作AH⊥AE,交BE于点H,证明△ABH≌△ACE,进而得出CE=BH,利用等腰直角三角形的判定和性质解答即可.【解答】解:(1)①∵在△ABC中,∠BAC=90°,AB=AC,∴∠CBA=45°,∵BD平分∠ABC,∴∠DBA=22.5°,∵CE⊥BD,∴∠ECD+∠CDE=90°,∠DBA+∠BDA=90°,∵∠CDE=∠BDA,∴∠ECD=∠DBA=22.5°;②延长CE交BA的延长线于点G,如图1:∵BD平分∠ABC,CE⊥BD,∴CE=GE,在△ABD与△ACG中,,∴△ABD≌△ACG(AAS),∴BD=CG=2CE;(2)结论:BE﹣CE=2AF.过点A作AH⊥AE,交BE于点H,如图2:∵AH⊥AE,∴∠BAH+∠HAC=∠HAC+∠CAE,∴∠BAH=∠CAE,在△ABH与△ACE中,,∴△ABH≌△ACE(ASA),∴CE=BH,AH=AE,∴△AEH是等腰直角三角形,∴AF=EF=HF,∴BE﹣CE=2AF.【点评】本题考查的是全等三角形的判定和性质,正确的构建出与所求和已知相关的全等三角形,是解答本题的关键.。
湖北省武汉市东西湖区2023-2024学年八年级下学期期中考试数学试卷学校:___________姓名:___________班级:___________考号:___________A. B. C. D.2.下列二次根式是最简二次根式的是( )3.下列计算正确的是( )4.满足下列条件时,不是直角三角形的是( )A.,,C. D.5.如图,已知四边形是平行四边形,下列结论中不正确的是( )A.当时,它是菱形B.当时,它是菱形C.当时,它是矩形D.当时,它是正方形6.如图,矩形中,,,点A ,B 在数轴上,若以点A 为圆心,对角线的长为半径作弧交数轴的正半轴于点M ,则点M 表示的数为( ).7.如图,矩形ABCD 沿直线BD 折叠,使点C 落在点E 处,BE 交AD 于点F ,,,则( )3x ≥3x ≥-3x ≠-0x ≥=-=÷==ABC △1AB =2BC =AC =222AB BC AC -=::3:4:5A B C ∠∠∠=A B C∠-∠=∠ABCD AB BC =AC BD ⊥90ABC ∠=︒AC BD =ABCD 3AB =1AD =AC 8BC =4AB =DF =A.2B.3C.4D.58.两张全等的矩形纸片、按如图方式交叉叠放在一起.若,,则图中重叠(阴影)部分的面积为( )9.如图,已知圆柱底面的周长为,圆柱高为,为底面圆的直径,一只蚂蚁在圆柱的表面上从点A 爬到点C的最短距离为( )m.A.10.如图,在中,,,,,,为边向外作正方形,正方形,正方形.若直线、交于点N ,过点M 作交于点K ,过点H 作与、分别交于点P 、Q .则四边形的面积为( )ABCD AECF 2AB AF ==8AE BC ==12m 4m BC Rt ABC △90ABC ∠=︒1AB =BC =AB AC BC ABC △ABFG ACHM BCED ED FG //KQ DE FG //PQ FG DE KQ KQPNA. B. C. D.和于点E 、F ,,,则图中阴影部分的面积为______.14.一个平行四边形的一条边长是6,两条对角线的长分别是8和形的周长是______.15.如图,在中,E 是的中点,D 是在上且,连接,______.16.如图,正方形和正方形中,A ,D ,E 在同一条直线上,,P 为的中点,延长交于点Q ,连接,,连接分别交,于点M ,N ,下列说法:①;②;③;④;⑤平分,其中正确的结论有______.6+5+6AD BC 3AB =4BC =ABC △BC AC 3AC AD =BD AE =ABCD DEFG 2AD DE =BC FG AB PQ CQ PF CQ CD FNG PNC ≌△△BCQ PFQ ∠=∠:3:7CFN BPMQ S S =四边形△2FN PM =FP CFQ ∠三、解答题17.计算:(2).18.如图,在平行四边形中,对角线、相交于点O ,E ,F是上的两点,,连接,,求证:.19.如图,在矩形中,按以下步骤作图:①以点B圆心,以任意小于的长为半径画弧,分别交、于点M、N ;的长为半径画弧、两弧相交于点P ;③连接并延长交于点Q .据此回答以下问题:(1)求的度数;(2)若,求矩形的周长.20.如图,一架梯子斜靠在一竖直的墙上,这时为米,为米.⨯ABCD AC BD BD DE BF =AE CF AE CF =ABCD AB AB BC MN BP AD AQB ∠BQ =3DQ =ABCD AB AO AO 2.4BO 0.7(1)梯子的长为______米;(2)如果梯子的顶端A 下滑米,那么梯子的底端B 也外移米吗?请说明理由.21.如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.正方形四个顶点都是格点,E 是上的格点,仅用无刻度的直尺在给定网格中完成画图.(1)在图(1)中,先将线段绕点B 顺时针旋转,画对应线段,再在上画点G ,并连接,使;(2)在图(2)中,M 是与网格线的交点,先画点M 关于的对称点N ,再在上画点H ,使得四边形为菱形.22.如图1,四边形中,,,,,,动点P 在线段边上以每秒1个单位的速度由点A 向点D 运动,动点Q 从点C 同时出发,以每秒3个单位的速度向点B 运动,设动点P 的运动时间为t 秒.(1)当t 为何值时,满足和?请说明理由.(2)如图2,若H 是上一点,,那么在线段上是否存在一点R ,使得四边形是菱形?若存在,请求出t 的值;若不存在,请说明理由.23.综合与实践0.40.486⨯ABCD AD BE 90︒BF CD BG 45GBE ∠=︒BE BD BD BNHM ABCD //AD BC 90B ∠=︒8AB =26BC =24AD =AD PQ CD =//PQ CD BC 10BH =AD BHRP在一次综合实践活动课上,老师组织学生开展“如何仅通过折纸的方法来确定正方形一边上的一个三等分点”.操作探究:“求索”小组的实践过程,展示如下:操作过程:第1步:如图1所示,先将正方形纸片对折,使点A 与点B 重合,折痕为,然后展开铺平;第2步:将边沿翻折到的位置;第3步:延长交于点H ,则点H 为边的三等分点.证明过程:连接,如图2,正方形沿折叠,,①____________.又由题可知E 是中点,设,,则,在中,,可列方程:②____________(方程不要求化简),解得:③____________,即H 是边上的三等分点.拓展应用:“励志”小组联想课本折角的方法,探究出了一种折矩形纸片一边的三等分点的方法:操作过程:ABCD EF BC CE GC EG AD AD CH ABCD CE 90B CGE ∴∠=∠=︒CB CG=90D CGH ∴∠=∠=︒CH CH= CGH CDH∴≌△△GH DH∴=AB 2AB x =DH y =AE BE EG x ===Rt AEH △222AE AH EH +=AD 30︒第1步:对折矩形纸片,使与重合,得到折痕,把纸片展平;第2步:折叠纸片,使点A 落在上,并使折痕经过点B ,得到折痕.同时,得到了线段.第3步:再一次折叠纸片,使点A 落在上,并使折痕经过点G ,得到折痕,M 即为边上的三等分点.(1)补全“求索”小组的证明过程.①______,②______,③______.(2)结合“励志”小组的操作过程,猜想,,这三个角之间有什么关系?证明你的猜想;(3)在(2)的条件下,请你判断“励志”小组的操作是否可以得到M 为边上的三等分点说明理由.24.如图1,在平面直角坐标系中,,且a ,b 满足,过点B 分别作轴于点A ,轴于点C .(1)直接写出B 点坐标为______;(2)点E 是边上的点,点F 、M 是边上的点,若为等边三角形,,试探究、、之间的数量关系,并说明理由;(3)如图2,连接,点H 、G 分别在、上,且,请直接写出的最小值为______.ABCD AD BC EF EF BG BH EF GM AB ABG ∠GBH ∠HBC ∠AB (),B ab 4b =BA y ⊥BC x ⊥OA OC BEF △60EMO ∠=︒BM EM FM AC AC BC AH BG =OH OG +参考答案1.答案:A解析:,解得,故选:A.2.答案:D故选:D.3.答案:C解析:A :该选项不符合题意;B :该选项不符合题意;C :该选项符合题意;D :该选项不符合题意;故选:C.4.答案:C解析:A 、,是直角三角形;B 、,,即是直角三角形;C 、,,,,,即不是直角三角形;D 、,,∴30x -≥3x ≥= -= == =22212+= ABC ∴△222AB BC AC -= 222AB BC AC ∴=+ABC △::3:4:5A B C ∠∠∠= 180A B C ∠+∠+∠=︒45A ∴∠=︒60B ∠=︒75C ∠=︒ABC △A B C ∠-∠=∠ 180A B C ∠+∠+∠=︒,即是直角三角形.故选:C .5.答案:D解析:A 、根据邻边相等的平行四边形是菱形可知:四边形是平行四边形,当时,它是菱形,故A 选项正确,不符合题意;B 、四边形是平行四边形,,四边形是菱形,故B 选项正确,不符合题意;C 、有一个角是直角的平行四边形是矩形,故C 选项正确,不符合题意;D 、根据对角线相等的平行四边形是矩形可知当时,它是矩形,不是正方形,故D 选项错误,符合题意.故选:D.6.答案:A 解析:矩形中,,,,,;故选:A.7.答案:D解析:如图,由翻折的性质得,,矩形ABCD 的边,,,,,,在中,,,解得:.90A ∴∠=︒ABC △ABCD AB BC = ABCD AC BD ⊥∴ABCD AC BD = ABCD 3AB =1AD =1BC AD ∴==90ABC ∠=︒AC =∴==AM AC ∴==1-12∠=∠ //AD BC 13∴∠=∠23∴∠=∠BF DF ∴=8AD BC == 8AF DF ∴=-Rt ABF △222AB AF BF +=()22248DF DF ∴-=+5DF =故选:D.8.答案:C 解析:设交于点G ,交于点H ,如图所示:矩形,矩形是全等的矩形,,,,,四边形是平行四边形,在和中,,,平行四边形是菱形,设,则,在中,,,解得:菱形的面积为BC AE AD FC ABCD AECF ∴AB CE =90B E ∠=∠=︒//AD BC //AE CF ∴AGCH ABG △CEG △B E AGB CGEAB CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴(AAS)ABG CEG ≌△△AG CG ∴=∴AGCH AG CG x ==8BG BC CG x =-=-Rt ABG △222AB BG AG +=∴2222(8)x x +-=x =∴CG =∴AGCH AGCH 1742S CG AB =⨯=⨯=菱形故选:C.9.答案:B 解析:如图,把圆柱的侧面展开,线段的长度即为蚂蚁在圆柱的表面上从点A爬到点C 的最短距离,圆柱底面的周长为,,,蚂蚁在圆柱的表面上从点A 爬到点C 的最短距离为.故选:B.10.答案:C解析:在中,,,由勾股定理得,四边形,,都是正方形,四边形,,的四个角都是,四条对边平行且相等,,,,四边形为矩形,,,四边形是矩形,,,延长交于点O ,延长交于L ,则,,如图所示,AC 12m ∴11262BC =⨯= 4AB =∴AC ====∴Rt ABC △90ABC ∠=︒1AB =BC =AC == ABFG ACHM BCED ∴ABFG ACHM BCED 90︒∴90N EDB ∠=∠=︒//ND FB //NF DB ∴NDBF //KQ DE //PQ FG ∴KQPN ∴1FG FB AB ===BD BC DE ===AC CH AM ===∴1ND FB ==NF BD ==BC PQ BA KQ CO PQ ⊥BL KQ ⊥,,,又,,,,同理可证,,,已证四边形是矩形,且四边形,为正方形,,,,四边形为矩形,,同理可证,四边形为矩形,,四边形的面积为:故选:C.11.答案:故答案为:12.答案:2解析:90BAC BCA ∠+∠=︒90BCA HCO ∠+∠=︒∴BAC HCO ∠=∠AC CH =90ABC COH ∠=∠=︒∴ABC COH △△≌∴1CO AB ==ABC MLA △△≌∴AL BC == //PQ FG KQPN ABFG BCED ∴//PO EC //CO EP 90P ∠=︒∴EPOC ∴1EP CO AB ===GALK ∴GK AL BC ===∴11NK NF FG GK =++==112NP ND DE EP =++=+=∴KQPN 1)(26S NK NP =⋅=++=+== 4==故答案:2.13.答案:6解析:四边形是矩形,,,,,在和中,,,,,,.故答案为:614.答案:解析:如图,四边形是平行四边形,,,根据平行四边形的性质可得:,,,,这个平行四边形是菱形,周长为,故答案为:.为 ABCD ∴3CD AB ==OA OC =//AD BC ∴AEO CFO ∠=∠AOE △COF △AEO CFO OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA AOE COF ≌△△∴AOE COF S S =△△∴BOF AOE COD BOF COF COD BCD S S S S S S S S =++=++=阴影△△△△△△△ 1143622BCD S BC CD =⋅=⨯⨯=△∴6BCD S S ==阴影△24ABCD 6AD =AC =8=AO =4DO =∴(2222224366OA OD AD +=+===∴90AOD ∠=︒∴∴4624⨯=24解析:分别取,,的中点G ,H ,连接,,,设的面积为S ,E 为的中点,,都是的中位线,,,,,,,,,,,,,,,,,BD CD EG EH DE ABC △ BC ∴EG EH BCD △∴//EG AC EG DH =BG DG =∴2DC GE = 3AC AD =∴:1:1AD GE = //EG AC ∴EGF FDA ∠=∠GEF FAD ∠=∠∴DAF GEF ∽△△∴::1:1DF FG AD EG ==∴:1:4DF BD =ABC S S= △12AEC S S ∴=△13ADB S S=△111144312ADF ADB S S S S ∴==⨯=△△∴11521212AEC ADF DCEF S S S S S S =-=-=四边形△△1133124ABF ADF S S S S ==⨯=△△∴1345512ABFCDFE SS S S ==四边形△16.答案:①②④解析:①四边形和都是正方形,,P 为的中点,,,,,,()故结论①符合题意.②四边形和都是正方形,,正方形的边长为正方形,Q ,G 为、的中点,又P 为的中点,,,都是等腰直角三角形,且,,,,又,,,,,,故结论②符合题意.④(结论②的证明中已证),,,,,,ABCD DEFG 2AD DE =BC ∴1122PC BC AD ==12GF DE AD ==90DGF PCN ∠=∠=︒∴PC GF =90FGN PCN ∠=∠=︒GNF CNP ∠=∴FNG PNC ≌△△AAS ABCD DEFG 2AD DE =∴DEFG ∴AB DC BC ∴GF GC BQ BP ===∴QBP △FGC △QBP FGC △△≌∴QP FC =45QPB GCF ∠=∠=︒∴135QPC FCP ∠=∠=︒PC PC =∴QPC FCP △△≌∴BCQ FPC ∠=∠ //QF BC ∴PFQ FPC ∠=∠∴BCQ PFQ ∠=∠ BCQ FPC ∠=∠∴PM MC = 90FPC PNC ∠+∠=︒90BCQ MCN ∠+∠=︒∴PNC MCN ∠=∠∴MN MC =,即M 为中点,又(结论①的证明中已证),,故结论④符合题意.③M 为的中点(结论④的证明过程中已证),过点M 作于H ,如图所示,设正方形的边长为a ,则正方形边长为,则,,,,故结论③不符合题意.⑤,,,,又,,,不平分,故结论⑤不符合题意;综上所述,结论①②④符合题意.故答案为:①②④.的∴12PM MC MN PN ===PN FNG PNC ≌△△∴FN PN =∴2FN PM = PN MH PC ⊥DEFG ABCD 2a 1124MH NC a ==211112224CFN S CN GF a a a =⋅=⨯⨯=△21111172222248QBC MPC BPMQ S S S QB BC PC MH a a a a a =-=⋅⋅-⋅=⋅-⋅=四边形△△∴:2:7CFN BPMQ S S =四边形△ PC GC GF ==FC =∴PC FC ≠∴FPC PFC ∠≠∠ //QF BC ∴QFP FPC ∠=∠∴QFP PFC ∠≠∠∴FP CFQ ∠(2)2;(2).18.答案:见解析解析:证法1:四边形是平行四边形,,,,在和中,,,;证法2:连接,,四边形是平行四边形,,,,,,四边形是平行四边形,3+3=+3=+⨯22=-53=-2= ABCD ∴BC AD =//BC AD ∴ADE CBF ∠=∠ADE △CBF △AD CB ADE CBF DE BF =⎧⎪∠=∠⎨⎪=⎩∴()SAS ADE CBF ≌△△∴AE CF =AF CEABCD ∴OB OD =OA OC = BF DE =∴OB BF OD DE -=-∴OF OE =∴AECF.19.答案:(1)(2)26解析:(1)四边形是矩形,,由作图过程知平分,,是等腰直角三角形,;(2)由(1)得:是等腰直角三角形,,,,又,,矩形的周长为:.20.答案:(1)(2)梯子的底端B 向外移米,理由见解析解析:(1)由题意得,在中,,,由勾股定理得米,故答案为:;(2)梯子的底端B 向外移米,理由如下:由题意得,此时在中,,,由勾股定理得,梯子的底端B 向外移米21.答案:(1)见解析(2)见解析解析:(1)如图,线段和G 点为所求;∴AE CF =45AQB ∠=︒ABCD ∴90A ABC ∠=∠=︒BQ ABC ∠∴45ABQ ∠=︒∴ABQ △∴45AQB ∠=︒ABQ △∴AB AQ = 222AB AQ BQ +=BQ =∴5AB AQ ==3DQ =∴8AD AQ DQ =+=∴ABCD 2()2(58)26AB AD +=⨯+=2.50.8Rt ABO △ 2.4m AO =0.7m BO =90AOB ∠=︒∴ 2.5AB ==2.50.8Rt ABO △ 2.40.42m AO =-= 2.5m AB =90AOB =︒∠∴ 1.5m BO ==∴ 1.50.70.8-=BF理由:,,,,,线段绕点B 顺时针旋转得,,,,,;(2)如图,点N 和点H 即为所求,理由:,,,,,,BC BA =CF AE =90BCF BAE ∠=∠=︒∴()SAS BCF BAE ≌△△∴CBF ABE ∠=∠BF BE =∴90FBE CBF CBE ABE CBE CBA ∠=∠+∠=∠+∠=∠=︒∴BE 90︒BF //PE FC∴PEQ CFQ ∠=∠EPQ FCQ ∠=∠∴PE FC =∴()ASA PEQ CFQ ≌△△∴EQ FQ =∴1452GBE EBF ∠=∠=︒ BC BA =90BCF BAE ∠=∠=︒CF AE =∴BCF BAE ≌△△()SAS ∴BF BE = DF DE =与关于对称,,M ,N 关于对称,,,,.,,,,由轴对称可得,.,又,四边形为平行四边形,又,四边形是菱形.22.答案:(1),理由见解析(2),理由见解析解析:(1)连接,如图所示,∴BF BE BD BN BM =∴BD //PE FC ∴POE QOF ∽△△∴EQ PE OF FQ == //MG AE ∴24EM AG MB GB ===∴EM EO EB EF == MEO BEF ∠=∠∴MEO BEF V ∽△∴EMO EBF ∠=∠∴//OM BF ∴MHB FBH ∠=∠FBH EBH ∠=∠∴BHM MBD ∠=∠∴BM HM = BM BN =∴MH BN=∴BNHM BN BM =∴BNHM 6t =6t =PQ若满足和,则四边形为平行四边形,,设动点P 的运动时间为t 秒,则,,,,解得:,符合题意,当,满足和(2)假设在线段上存在一点R ,使得四边形是菱形,连接,,设动点P 的运动时间为t 秒,则,,要使得四边形是菱形,则需要,,,,在中,PQ CD =//PQ CD PDCQ ∴PD CQ =AP t =3CQ t = 24PD AD AP t =-=-∴243t t -=6t =∴6t =PQ CD =//PQ CDAD BHRP BP RH AP t = //AD BC BHRP 10BP PR BH === //AD BC 90B ∠=︒∴90A ∠=︒Rt BAP △,解得:,(舍去),此时,,当时,在线段上存在一点R ,使得四边形是菱形.23.答案:(1)①②③(2),证明见解析(3)M 为边上的三等分点,理由见解析解析:(1)连接,如图2,正方形沿折叠,,.又,,,由题可知E 是中点,设,则,在中,,,,可列方程:,解得:③,即H 是边上的三等分点.故答案为:①;②;③;10BP ===16t =26t =-6AP =1624AR AP PR =+=<∴6t =AD BHRP CD CG=222(2)()x x y x y +-=+23y x =30ABG GBH HBC ∠=∠=∠=︒AB CH ABCD CE ∴90B CGE CB CG ∠=∠=︒=,∴90D CGH ∠=∠=︒CD CG = CH CH =∴CGH CDH ≌△△∴GH DH =AB 2AB x =DH y =AE BE EG x ===Rt AEH △222AE AH EH +=2AH AD DH x y =-=-EH EG GH x y =+=+222(2)()x x y x y +-=+23y x =AD CD CG =222(2)()x x y x y +-=+23y x =(2)将矩形沿着折叠,A 点落在了折痕的H 点,根据翻折的特征,,,,将矩形沿着折叠,使与重合,四边形为矩形,且,,取中点P ,连接,在中,,又,,是等边三角形,,,,又,,.(3),,ABCD BG EF ∴ABG HBG △△≌ABG GBH ∠=∠AB BH = ABCD EF AD BC ∴EFCB 12AE BE AB ==∴90BEF ∠=︒BH EP Rt BEH △12EP BP BH ==1122BE AB BH ==∴BE BP EP ==∴BEP △∴60EBH ∠=︒∴903060BHE ∠=︒-︒=︒∴90906030HBC EBH ∠=︒-∠=︒-︒=︒ABG GBH ∠=∠∴30ABG GBH ∠=∠=︒∴30ABG GBH HBC ∠=∠=∠=︒ //AD BC ∴AGB GBC ∠=∠由第二问可知,,,为折痕,根据翻折的特征,,在中,又,为等腰三角形,有,,,M 为边上的三等分点.24.答案:(1)(2),证明见解析(3)解析:(1),,解得,,;故答案为:;(2),理由如下:如图,延长至点N ,使得,60GBC GBH HBC ∠=∠+∠=︒∴60AGB GBC ∠=∠=︒ MG ∴1302AGM MGN AGB ∠=∠=∠=︒Rt MAG △∴12AM MG = 30ABG ∠=︒∴BMG △MB MG =∴1122AM MG MB ==∴13AM AB =∴AB ()4,4BM EM FM =+4b =+∴4040a a -≥⎧⎨-≥⎩4a =∴4b =∴()4,4B ()4,4BM EM FM =+BM MN MF =,是等边三角形,,,是等边三角形,,,,,,在和中,,,,;(3)如图,过点B 作,且,连接,60FMN EMO ∠=∠=︒∴FMN △∴60MFN ∠=︒FM FN = BEF △∴60BFE ∠=︒BF EF = 60BFM BFE EFM EFM ∠=∠+∠=︒+∠60EFN EFM MFN EFM ∠=∠+∠=∠+︒∴BFM EFN ∠=∠BFM △EFN △BF EF BFM EFN FM FN =⎧⎪∠=∠⎨⎪=⎩∴()SAS BFM EFN ≌△△∴BM EN = EN EM MN EM FM =+=+∴BM EM FM =+//BD AC BD OA =DG,,,,,,四边形为正方形,且,,,在和中,,,的最小值即为的最小值.连接,则,的最小值为的长.过点D 作轴于点P ,作于点Q ,在正方形中,平分,,,,//BD AC ∴DBG BCA ∠=∠ ()4,4B BA OA ⊥BC OC⊥∴4OA OC BC AB ==== OA OB ⊥∴OABC //AO BC ∴BCA OAC ∠=∠∴DBG OAH ∠=∠BGD △AHO △BD AO DBG OAH BG AH =⎧⎪∠=∠⎨⎪=⎩∴()SAS BGD AHO ≌△△∴DG OH =∴OH OG +DG OG +OD DG OG OD +≥∴DG OG +OD DP x ⊥DQ BC ⊥ ABCO AC BCO ∠90BCO ∠=︒∴1452BCA BCO ∠=∠=︒∴45DBQ ∠=︒,即,,,,在中,,,轴,,四边形是矩形,,在中,的最小值为故答案为:DQ BC ⊥90DQB ∠=︒∴9045BDQ DBQ ∠=︒-∠=︒∴DBQ BDQ ∠=∠∴BQ DQ = Rt BDQ △22224BQ DQ BD +==∴BQ DQ ==∴4CQ BC BQ =-=- 18090QCP BCO ∠=︒-∠=︒DP x ⊥DQ BC ⊥∴CPDQ ∴4DP QC ==-QD ==∴4OP OC CP =+=+∴Rt OPD △OD ===∴OH OG +。
八年级数学上册期中数学卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请把正确答案的代号字母填入答题卷)1、下面所给出的交通标志中,是轴对称图形的是2、如图,在△ABC中,∠A=35°,∠B=25°,则∠ACD的度数是A、60°B、55°C、120°D、65°3、下列长度的三条线段,能组成三角形的是A、3,4,8B、5,6,11C、5,10,6D、4,4,84、如图,在△ABC中,过点A作BC边上的高,正确的作法是5、下列各组条件中,能够判定△ABC≌△DEF的是A、∠A=∠D,∠B=∠E,∠C=∠FB、AB=DE,BC=DE,∠A=∠DC、∠B=∠E=90°,BC=EF,AC=DFD、∠A=∠D,AB=DF,∠B=∠E6、在平面直角坐标系中,点P(-1,3)关于y轴对称点的坐标是A、(1,3)B、(1,-3)C、(-1,-3)D、(-1,3)7、已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形顶角的度数为A、36°B、72°C、45°或72°D、36°或90°8、如图,在△ABC中,沿直线DE折叠后,使得点B与点A重合,已知AC=5cm,△ADC的周长15cm,BC的长为A、20cmB、15cmC、10cmD、5cm9、在下列命题中,真命题的个数是①如果两个三角形有两条边和第三边上的中线对应相等,那么这两个三角形全等②如果两个三角形有两条边和第三边上的高对应相等,那么这两人个三角形全等③如果两个直角三角形有一条边和这条边所对的角对应相等,那么这两个三角形全等④如果两个直角三角形有两个角对应相等,那么这两个三角形全等A、1个B、2个C、3个D、4个10、如图,设△ABC和△CDE都是等边三角形,若∠AEB=70°,则∠EBD的度数是A、115°B、120°C、125°D、130°二.选择题11、已知△ABC的三个内角的度数之比为∠A:∠B:∠C=1:2:3,则∠C=12、如图,图中三角形的个数一共有13、已知一个三角形有两条边长度分别是3、4,则第三边x的长度范围是14、如图,五边形ABCDE中,AE∥CD,∠A=147°,∠B=121°,则∠C=15、如果等腰三角形的一腰上的高等于腰长的一半,则底角的度数是16、如图,在平面直角坐标系中,点A(12,6),∠ABO=90°,一动点C从点B出发以2厘米/秒的速度沿射线BO运动,点D在y轴上,D点随着C点运动而运动,且始终保持OA=CD。
2016 东西湖区八上期中数学卷一、选择题(共 10 小题,每小题 3 分,共 30 分)下列各题中均有四个备选答案,请把正确答案的代号字母填入答题卷)1、下面所给出的交通标志中,是轴对称图形的是其中有且只有一个正确,2、如图,在△ ABC 中,∠ A=35 °,∠ B=25 °,则∠ ACD 的度数是A、 60°B、 55°C、 120°D、 65°3、下列长度的三条线段,能组成三角形的是A、 3,4, 8B、 5,6, 11C、 5,10, 6D、 4,4, 84、如图,在△ABC 中,过点 A 作 BC 边上的高,正确的作法是5、下列各组条件中,能够判定△ABC ≌△ DEFA、∠ A= ∠D ,∠ B= ∠E,∠ C=∠ F的是B、 AB=DE ,BC=DE ,∠ A= ∠ DC、∠ B=∠ E=90 °, BC=EF ,AC=DFD、∠ A= ∠D , AB=DF ,∠ B= ∠ E6、在平面直角坐标系中,点P( -1, 3)关于 y 轴对称点的坐标是A、( 1, 3)B、( 1,-3)C、( -1, -3)D、( -1,3)7、已知一个等腰三角形两内角的度数之比为1: 2,则这个等腰三角形顶角的度数为A、 36°B、 72°C、 45°或 72°D、 36°或 90°8、如图,在△ABC 15cm,BC 的长为A、 20cm B 、 15cm 中,沿直线C、 10cmDE 折叠后,使得点D、 5cmB 与点 A 重合,已知AC=5cm ,△ ADC 的周长9、在下列命题中,真命题的个数是①如果两个三角形有两条边和第三边上的中线对应相等,那么这两个三角形全等②如果两个三角形有两条边和第三边上的高对应相等,那么这两人个三角形全等③如果两个直角三角形有一条边和这条边所对的角对应相等,那么这两个三角形全等④如果两个直角三角形有两个角对应相等,那么这两个三角形全等A、1个B、2 个C、3 个D、4 个10、如图,设△ ABC 和△ CDE 都是等边三角形,若∠ AEB=70 °,则∠ EBD 的度数是A、115° B、 120° C、125° D、 130°二.选择题11、已知△ ABC 的三个内角的度数之比为∠ A :∠ B :∠ C=1: 2: 3,则∠ C=12、如图,图中三角形的个数一共有13、已知一个三角形有两条边长度分别是3、 4,则第三边x 的长度范围是14、如图,五边形ABCDE 中, AE ∥ CD ,∠ A=147 °,∠ B=121 °,则∠ C=15、如果等腰三角形的一腰上的高等于腰长的一半,则底角的度数是16、如图,在平面直角坐标系中,点 A ( 12, 6),∠ ABO=90 °,一动点 C 从点 B 出发以 2 厘米 / 秒的速度沿射线 BO 运动,点 D 在 y 轴上, D 点随着 C 点运动而运动,且始终保持 OA=CD 。
|2015〜2016学年度上学期八年级数学期中测试卷
一、选择题(共10小题每小题3分,共30分)
1.下列长度的三条线段,能组成三角形的是( )
A .1,2,3
B .10,5,4
C .5,2,6
D .2,4,8
2.下列图案是几种汽车的标志,请你指出,在这几个图案中是轴对称图形的共有(
)
A .1个
B .2个
C .3个
D .4个
3.如图,在△ABC 中,点D 在CB 的延长线上,∠A=70°,∠ABD=120°,则∠C 等于( )
A .40°
B .50°
C .60°
D .70°
4.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么可行的办法是( ).
A .带①③去
B .带②去
C .带②③去
D .带③去
5.如图,为估计假山A ,B 两端的距离,小明在一侧选取了一点C ,测得AC=18cm ,BC=12cm ,那么AB 之间的距离不可能是( )
A .12m
B .16m
C .18m
D .30m
6.如果一个多边形的每个内角都是120°,那么这个多边形是( )
A .三角形
B .六边形
C .七边形
D .九边形
7.已知点P(m ,2)、与Q(3,n)关于y 轴对称,则(m+n)2015的值为( )
A .-1
B .1
C .52015
D .-52015
8.将矩形纸片ABCD(图①)按如下步骤操作:(1)以过点A 的直线为折痕折叠纸片,使点B 恰好落在AD 边上,折痕是AE(如图②);(2)以过点E 的直线为折痕再折叠纸片,使点A 落在EC 边上,折痕EF 交AD 边于点F(如图③);(3)将纸片收展平,那么∠AFE 的度数为( )
A .60°
B .67.5°
C .72°
D .75°
9.如图,点A 为∠MON 的角平分线上一点,过A 任作一直线分别与∠MON 的两边交于B 、C ,P 为BC 的中点,过P 作BC 的垂线交OA 于点D ,∠MON=130°,则∠BDC=( ).
A .50°
B .60°
C .70°
D .不确定
10.如图,在△ABC 中,AB=AC ,AD ⊥BC 于点D ,AB=5,AD=4,点P 是BC 边上的一动点,且不与B 、C 重合,则点P 到AB 、AC 的距离之和为( )
A .4.8
B .3
C .2.4
D .不确定
D B C A 3题图 A C B 5题图 ① ② ③ 4题图 A B C
D
8题图① 8题图② 8题图③
二、填空题(共6小题,每小题3分,共18分)
11.如图,△ABC 中,AB 与BC 的夹角是_____,∠A 的对边是_______,∠A 、∠C 的公共边是___________.
12.如图,∠ABC=∠DEF ,AB=DE ,要说明△ABC ≌△DEF 还要添加的条件为_________.(填一种即可)
13.用一条长为18cm 的细绳围成一个等腰三角形,如果腰长是底边长的2倍,那么各边的长是_________.
14.如图,在△ABC 中,∠ABC ,∠ACB 的角平分线相交于点O ,过点O 作DE ∥BC 分别交AB 、AC 于D 、E 两点,AB=6,AC=8,则△ADE 的周长是_______.
15.如图,在△ABC 中,AB=AC ,D 、E 是△ABC 内的两点,AE 平分∠BAC ,∠D=∠DBC=60°,若BD=5cm ,DE=3cm ,则BC 的长是_______cm .
16.如图,△ABC 中,∠ABC=52°,∠BAD=12°,DC=AB ,则∠CAD=______.
三、解答题(共9小题,共72分)
17.(6分)如图,∠AOB 是一个任意角,在边OA 、OB 上分别取OM=ON .移动角尺,使角尺两边相同的刻度分别与M 、N 重合,则过角尺顶点C 的射线OC 便是∠AOB 的角平分线,为什么?
16题图 A B D C E D
A
15题图 14题图
A B E C F D A A D B O E
C 12题图 11题图 10题图
9题图 D M
B P N A 17题图 M A O
C N B
18.(6分)如图,是A 、B 、C 三岛的平面图,C 岛在A 岛的北偏东50°方向,B 岛在A 岛的北偏东80°方向,C 岛在B 岛的北偏西30°方向,从B 岛看A 、C 两岛的视角∠ABC 是多少度?从C 岛看
A 、
B 两岛的视角∠ACB 呢?
19.(6分)如图,点D 在BC 上,∠1=∠2,AE=AC ,下面三个条件:①AB=AD ;②BC=DE ;③∠E=∠C ,请你从所给条件①②③中选一个条件,使△ABC ≌△ADE ,并证明两三角形全等.
20.(7分)在Rt △ABC 中,斜边AB 的垂直平分线DE ,分别交AB 、BC 于D 、E .
(1)若∠CAE=∠B+30°,求∠B 的度数;
⑵若∠B=15°,AC=a ,AB=b ,求DE 长(用含a 、b 的代数式表示)
21.(7分)如图,△ABC 的三个顶点的坐标分别为A(-2,
4)、B(-5,0)、C(-1,1) (1)将△ABC 向右平移四个长度单位,再向下平移三个长
度单位,则平移后点A 、B 、C 的对应的坐标分别是
____________.
(2)将△ABC 沿x 轴翻折,则翻折后点A 的对应点的坐标是_________.
(3)将△ABC 向右平移五个长度单位,求△ABC 扫过的面
积.
22.(8分)如图,△ABC 中,∠C=2∠A ,BD 平分∠ABC 交AC 于D ,求证:AB=CD+BC .
22题图 A D
B C
20题图 B E C A D 19题图 A E D B 1 2
23.(10分)如图,AE 是△ABD 的中线,AB=CD=BD .
⑴求证:AB+AD>2AE ; ⑵求证:AC=2AE .
24.(10分)在等腰△ABC 中,AB=AC ,点D 是AC 上一动点,点E 在BD 延长线上,且AB=AE ,AF 平分∠CAE 交DE 于点F ,连接FC .
⑴如图1,求证:∠ABE=∠ACF ;
⑵如图2,当∠ABC=60°时,求证:AF+EF=FB ;
⑶如图3,当∠ABC=45°,且AE ∥BC 时,求证:BD=2EF .
25.(12分)等腰Rt △ABC 中,AC=AB ,∠BAC=90°,点A 、点B 分别是y 轴、x 轴上的两个动点.
⑴如图1,若A(0,2),B(1,0),求C 点的坐标;
(2)如图2,当等腰Rt △ABC 运动,直角边AC 交x 轴于点D ,斜边BC 交y 轴于点E ,且点D 恰为AC 中点时,连接DE ,求证:∠ADB=∠CDE ;
(3)如图3,在等腰Rt △ABC 不断运动的过程中,直角边AC 交x 轴于点D ,斜边BC 交y 轴于点E ,若BD 始终是∠ABC 的平分线,试探究:线段BD 与OA+OD 之间存在怎么的数量关系,并说明理由.
图3 图2 图1 图1 A E F D D F E A F E D
C B A 图2 图3 23题图 A。