集合与函数练习题
- 格式:doc
- 大小:670.18 KB
- 文档页数:7
高一数学必修一练习题一、集合与函数概念1. 判断下列各题中,集合A与集合B是否相等:(1) A = {x | x是小于5的自然数},B = {0, 1, 2, 3, 4}(2) A = {x | x² 3x + 2 = 0},B = {1, 2}(3) A = {x | x是正整数},B = {1, 2, 3, …}2. 填空题:(1) 若集合M = {1, 2, 3, a},集合N = {a, b, c},且M = N,则a = __,b = __,c = __。
(2) 若集合 A = {x | x² 4x + 3 = 0},则A中的元素个数为__。
3. 写出下列函数的定义域:(1) f(x) = √(x² 5x + 6)(2) g(x) = 1 / (x² 4)(3) h(x) = x² 3x + 2二、基本初等函数1. 判断下列函数的奇偶性:(1) f(x) = x³ 2x(2) g(x) = |x| 1(3) h(x) = x² + 12. 求下列函数的值域:(1) f(x) = 2x + 3(2) g(x) = √(4 x²)3. 计算下列函数在给定区间的单调性:(1) f(x) = x² 4x + 3,区间为[1, 3](2) g(x) = x³ + 3x,区间为[0, 2]三、函数的性质1. 已知函数f(x) = x² 2x,求f(1),f(0),f(2)的值。
2. 已知函数g(x) = (1/2)x + 1,求g(4),g(2),g(0)的值。
3. 讨论函数h(x) = ax² + bx + c的单调性,其中a、b、c为常数。
四、综合运用1. 设集合A = {x | x² 4x + 3 = 0},集合B = {x | x² 2x 3 = 0},求A∩B。
一、选择题(每小题5分,共30分)1.已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A∩B =( )A .{3,5}B .{3,6}C .{3,7}D .{3,9}2.设集合A ={x|2≤x <4},B ={x|3x -7≥8-2x},则A ∪B 等于( )A .{x|x≥3}B .{x|x≥2}C .{x|2≤x <3}D .{x|x≥4}3.集合A ={0,2,a},B ={1,2a }.若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .44.满足M ⊆{4321,,a a a a },且M∩{321,,a a a }={21,a a }的集合M 的个数是( )A .1B .2C .3D .45.已知全集U=R ,集合A={x ︱-2≤x ≤3},B={x ︱x <-1或x >4},那么集合A ∩(C U B )等于( ).A.{x ︱-2≤x <4}B.{x ︱x ≤3或x ≥4}C .{x ︱-2≤x <-1} D.{-1︱-1≤x ≤3}二、填空题(每小题5分,共30分)1.已知集合A ={x|x≤1},B ={x|x≥a},且A ∪B =R ,则实数a 的取值范围是________.2.满足{1,3}∪A ={1,3,5}的所有集合A 的个数是________.3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.4.设 , 若 ,则实数m 的取值范围是_______. 5. 设U=Z ,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是_______.6. 如果S ={x ∈N |x <6},A ={1,2,3},B ={2,4,5},那么(S A)∪(S B)= .三、解答题(每小题10分,共40分)1.已知集合A ={1,3,5},B ={1,2,x2-1},若A ∪B ={1,2,3,5},求x 及A∩B.2.已知A ={x|2a≤x≤a +3},B ={x|x<-1或x>5},若A∩B =Ø,求a 的取值范围.3.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?4.集合S ={x|x ≤10,且x ∈N *},A S ,B S ,且A ∩B ={4,5},(S B)∩A ={1,2,3}, (S A)∩(S B)={6,7,8},求集合A 和B.{}{}m x m x B x x A 311/,52/-<<+=<<-=A B A =⋂1.集合}{Z x x x A ∈<≤=且30的真子集的个数为 ( )A.5B.6C.7D.82.已知集合}{{x B x x A =<<-=,21}10<<x ,则 ( )A.B A >B. B A ⊆C. AB D. B A 3.已知}13,2,1{2--=a a M ,}3,1{=N ,若a M N M 则且,3⊄∈的取值为 ( )A.1B.4C.-1或-3D.-4或15.满足M a ⊆}{的集合},,,{d c b a M 共有 ( )A.6个B.7个C.8个D.15个6.已知集{}}{a x x B x x A <=<<=,21,满足A B ,则 ( )A.2≥aB. 1≤aC.1≥aD. 2≤a1.集合A 中有m 个元素,若在A 中增加一个元素,则它的子集增加的个数为____2.设}1,1{},,3,1{2+-==a a B a A 若BA ,则a 的取值为____________. 3.已知集合{}12==x x P ,集合{x Q =}1=ax ,若P Q ⊆,则a 的取值______. 4设{}===∈B x y y x A R y x ,),(,,⎭⎬⎫=⎩⎨⎧1),(x y y x ,则B A 间的关系为____ 1.设集合}{{ax x x B x x A -==-=2,01}02=-,若B A ⊆,求a 的值.2.若集合{}==-+=N x x x M ,062}{0))(2(=--a x x x ,且N M ⊆,求实数a 的值.3.设集合}{22+<<-=a x a x A ,=B }{32<<-x x .(1.)若A B ,求实数a 的取值范围.(2).是否存在数a 使A B ⊆?函数相关习题1、函数定义域的一般原则:①若)(x f 为整式,奇次根式,则定义域为R②若)(x f 为分式,则分母不为零③若)(x f 为偶次根式,则被开方数非负④若)(x f 为零次幂,则底数不为零1 试求下列函数的定义域;(1) 32-=x y (2) x y 1=(3) 122-+=x x y (4) 32x y =(5) 0)13(+=x y (6) 452-=x y (7) x y -=3(8) x y 32+= (9) ⎩⎨⎧≥-<=0)(x 1x 0)(x 22x y 2.求值2 (x 0)(x),f(10),f(f(1)),f(f(f(10)))2100-x (x 0)x f ⎧<⎪=-⎨⎪≥⎩求 3、函数值域的一般求法:(1)观察法 (通过对解析式的简单变形和观察,利用熟知的基本函数的值域,求出函数的值域) 如求函数24x y -=的值域.(2)配方法 (若是二次函数求在定区间上的值域,则通过配方利用单调性求出函数的值域) 如求函数32+-=x x y 在]4,21(上的值域.(3)分离常数法 (将形如)0(≠++=a b ax d cx y 的函数变形为b ax a bcd a c y +-+=,再结合x 的取值范围,求出函数的值域) 如求函数2263+-=x x y 的值域.4、函数解析式求法(1)待定系数法例如:已知二次函数f(x)中,f(2)=f(4)=0,f(0)=3,求f(x).(2)换元法42(2x 1)(x 0)x f x--=≠ ,求(x)f(3)函数f(x)的图象是一条线段,其端点坐标分别是(-2,4),(4,5),则f(x)的解析式是什么,定义域是什么。
数学必修三文科练习题一、集合与函数概念1. 判断下列各题中,集合A与集合B是否相等,并说明理由。
(1)A={x|x²3x+2=0},B={1, 2}(2)A={x|0<x<3},B={x|x²<9}(1)A={x|x属于M,且x为偶数}(2)B={x|x属于M,且x²3x+2=0}3. 已知函数f(x)=2x+1,求f(3)、f(1)和f(0)的值。
二、基本初等函数1. 判断下列函数的奇偶性:(1)f(x)=x³4x(2)g(x)=|x|x2. 求下列函数的定义域:(1)f(x)=√(4x²)(2)g(x)=1/(x²9)3. 已知函数f(x)=3x²2x+1,求f(x)在区间[1, 2]上的最大值和最小值。
三、函数的性质1. 已知函数f(x)=x²4x+3,求f(x)的单调递增区间。
2. 设函数g(x)=1/x,判断g(x)在区间(0, +∞)上的单调性。
3. 已知函数h(x)=2x+3,求h(x)的周期性。
四、函数的应用1. 某企业的年产量Q(单位:万件)与年销售额P(单位:万元)之间的关系为P=5Q10,求企业的盈亏平衡点。
2. 已知某商品的成本函数C(x)=3x+20,其中x为生产数量(单位:件),销售价格为50元/件,求该商品的利润函数。
3. 一辆汽车以60km/h的速度行驶,行驶距离S(单位:km)与时间t(单位:h)之间的关系为S=60t。
求汽车行驶200km所需的时间。
五、数列的概念与性质(1)an=2n+1(2)bn=n²(1)an=1/n(2)bn=(1)^(n+1)/n3. 已知数列{an}的通项公式为an=3n2,求该数列的前n项和。
六、平面向量1. 已知向量a=(2, 3),求向量a的模。
2. 已知向量b=(3, 4),求向量b的单位向量。
3. 已知向量a=(4, 5)和向量b=(2, 3),求向量a与向量b的夹角。
集合不等式函数练习题1. 已知集合A={x|x^2-4x+3<0},求集合A的解集。
2. 函数f(x)=x^3-3x^2+2x,求函数f(x)的单调区间。
3. 集合B={x|x^2-2x-3≤0},集合C={x|x^2+x-6<0},求集合B∩C。
4. 函数g(x)=2x^2-4x+3,判断函数g(x)在区间(-∞, 2)上的单调性。
5. 集合D={x|x^2-6x+8<0},集合E={x|x^2-x-6>0},求集合D∪E。
6. 函数h(x)=x^3-6x^2+11x-6,求函数h(x)的极值点。
7. 集合F={x|x^2-4x+7>0},集合G={x|x^2+2x-8≤0},求集合F∩G。
8. 函数k(x)=x^4-4x^3+6x^2-4x+1,求函数k(x)的零点。
9. 集合H={x|x^3-x^2-2x+2>0},集合I={x|x^3+x^2-4x-4<0},求集合H∪I。
10. 函数l(x)=x^5-5x^4+10x^3-10x^2+5x-1,求函数l(x)的拐点。
11. 集合J={x|x^2-5x+6<0},求集合J的补集。
12. 函数m(x)=x^3-3x^2+4x-2,求函数m(x)的单调增区间。
13. 集合K={x|x^2+3x-10=0},集合L={x|x^2-x-6=0},求集合K∩L。
14. 函数n(x)=2x^3-6x^2+5x+1,求函数n(x)的极值点。
15. 集合M={x|x^3-2x^2-5x+6>0},集合N={x|x^3+2x^2-x-6<0},求集合M∪N。
16. 函数o(x)=x^4-6x^3+11x^2-6x+2,求函数o(x)的零点。
17. 集合P={x|x^2-7x+10<0},求集合P的解集。
18. 函数q(x)=x^3-2x^2-5x+6,求函数q(x)的单调减区间。
19. 集合R={x|x^2-2x-8>0},集合S={x|x^2+4x+3≤0},求集合R∩S。
高二数学必修2练习题一、集合与函数概念1. 判断下列各题中,集合A与集合B是否相等:(1) A={x|x²3x+2=0},B={1, 2}(2) A={x|x为小于5的自然数},B={0, 1, 2, 3, 4}(1) x∈M且x²2x3>0(2) x∉M且x²+x+1<03. 已知函数f(x)=2x+1,求f(3)和f(1)的值。
二、幂函数、指数函数与对数函数(1) y=x²(2) y=3^x(3) y=log₂(x1)(1) y=2x(2) y=(1/2)^x(3) y=log₃x3. 已知函数f(x)=2^x,求f(x+1)f(x)的值。
三、三角函数(1) sin 30°(2) cos 45°(3) tan 60°2. 已知sin α=1/2,求cos α的值。
(1) sin x + cos x = 1(2) 2sin²x sin x 1 = 0四、平面向量1. 已知向量a=(2, 3),求向量a的模。
2. 已知向量a=(4, 5),向量b=(3, 2),求向量a与向量b的和、差及数量积。
(1) 向量a与向量b的模相等,则向量a=向量b。
(2) 向量a与向量b的数量积为零,则向量a与向量b垂直。
五、数列(1) 3, 6, 9, 12, …(2) 1, 1/2, 1/4, 1/8, …2. 已知数列{an}的通项公式为an=n²,求a1, a2, a3的值。
(1) 2, 4, 8, 16, …(2) 1, 3, 6, 10, …六、不等式与不等关系(1) 3x 5 > 2x + 1(2) (x 1)(x + 2) ≤ 02. 已知不等式组:2x 3y > 6x + 4y ≤ 8求解该不等式组。
(1) 若a > b,则a² > b²。
(2) 若a < b,则1/a > 1/b。
数学练习题高一必修一一、集合与函数(1) {x | x是小于5的自然数}(2) {x | x²3x+2=0}(1) 2∈{1, 2, 3}(2) {a, b}={b, a}3. 设A={1, 2, 3},B={2, 3, 4},求A∪B、A∩B、AB。
4. 若f(x)=2x+1,求f(3)、f(1)。
(1) f(x)=|x|,g(x)=x²(2) f(x)=x²,g(x)=√(x⁴)二、指数函数与对数函数(1) 0.0032(2) 5600000(1) 2^3 × 2^5(2) (3^2)^43. 已知f(x)=3^x,求f(2)、f(1)。
(1) log₂8=3(2) log₁₀100=2(1) log₂16 log₂2(2) log₃(1/27)三、三角函数(1) sin30°=1/2(2) cos90°=02. 已知sinα=1/2,求α的值(α为锐角)。
(1) tan45°(2) cot60°4. 已知cosθ=1/2,求θ的值(θ为钝角)。
5. 若sinα=3/5,求cosα的值。
四、数列(1) 2, 4, 6, 8,(2) 1, 3, 9, 27,(1) 1, 3, 5, 7,(2) 2, 4, 8, 16,3. 已知等差数列的首项为3,公差为2,求第10项。
4. 已知等比数列的首项为2,公比为3,求第5项。
(1) 1, 2, 3, 4,(2) 1, 1/2, 1/4, 1/8,五、不等式1. 解下列不等式:(1) 3x 7 > 2x + 4(2) 5 2(x 1) ≤ 3x2. 已知不等式组:\[\begin{cases}2x 3y > 6 \\x + 4y ≤ 8\end{cases}\]求解该不等式组。
3. 对下列不等式进行化简:(1) (x 2)(x + 3) > 0(2) (2x + 1)(3 x) < 04. 已知x > 0,求解不等式2^x > 4。
高一数学集合与函数概念一.选择题(共30小题)1.已知f(x)=lnx﹣+2,若对∀x1∈(0,1],∀x2∈[﹣1,1],都有f(x1)≥g(x2),则a的取值范围为()A.(﹣∞,2﹣e]B.(﹣2,2﹣e]C.D.2.已知集合,若B⊆A,则实数m的取值范围为()A.(4,+∞)B.[4,+∞)C.(2,+∞)D.[2,+∞)3.已知函数,对任意的x∈R恒有,且在区间上有且只有一个x0使得f(x0)=3,则ω的最大值为()A.B.8C.D.4.已知f(x)=32x﹣(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,2﹣1)C.(﹣1,2﹣1)D.(﹣2﹣1,2﹣1)5.已知f(x)=x2+px+q和是定义在上的函数,对任意的x∈A,存在常数x0∈A,使f(x)≥f(x0),g(x)≥g(x0)且f(x0)=g(x0),则f(x)在A上的最大值为()A.B.C.5D.6.已知f(x)为奇函数,当x∈[0,1]时,f(x)=1﹣2|x﹣|,当x∈(﹣∞,﹣1],f(x)=1﹣e﹣1﹣x,若关于x的不等式f(x+m)>f(x)有解,则实数m的取值范围为()A.(﹣1,0)∪(0,+∞)B.(﹣2,0)∪(0,+∞)C.(﹣﹣ln2,﹣1)∪(0,+∞)D.(﹣﹣ln2,0)∪(0,+∞)7.我们把形如的函数因其图象类似于汉字“囧”字,故生动地称为“囧函数”,并把其与y 轴的交点关于原点的对称点称为“囧点”,以“囧点”为圆心凡是与“囧函数”有公共点的圆,皆称之为“囧圆”,则当a=1,b=1时,所有的“囧圆”中,面积的最小值为()A.2πB.3πC.4πD.12π8.在下列四个函数中,当x1>x2>1时,能使[f(x1)+f(x2)]<f()成立的函数是()A.f(x)=B.f(x)=x2 C.f(x)=2x D.f(x)=9.集合M={x|x∈Z且},则M的非空真子集的个数是()A.30个B.32个C.62个D.64个10.设集合P={3,4,5},Q={4,5,6,7},定义P⊕Q={(a,b)|a∈P,b∈Q},则P⊕Q的真子集个数()A.23﹣1B.27﹣1C.212D.212﹣111.已知定义在R上的函数f(x)=﹣(x﹣1)3,则不等式f(2x+3)+f(x﹣2)≥0的解集为()A.(﹣∞,]B.(0,]C.(﹣∞,3]D.(0,3]12.已知函数f(x)=x2﹣2(a+1)x+a2,g(x)=﹣x2+2(a﹣1)x﹣a2+2,记H1(x)=,H2(x)=,则H1(x)的最大值与H2(x)的最小值的差为()A.﹣4B.4C.a2﹣a+4D.a2+a+813.若关于x的不等式e2x﹣alnx≥a恒成立,则实数a的取值范围是()A.[0,2e]B.(﹣∞,2e]C.[0,2e2]D.(﹣∞,2e2]14.设函数f(x)的定义域为R,满足2f(x)=f(x+2),且当x∈[﹣2,0)时,f(x)=﹣x(x+2).若对任意x∈(﹣∞,m],都有f(x)≤3,则m的取值范围是()A.(﹣∞,]B.(﹣∞,]C.[,+∞)D.[,+∞)15.已知函数f(x)=,若|f(x)|≥mx恒成立,则实数m的取值范围为()A.[2﹣2,2]B.[2﹣2,1]C.[2﹣2,e]D.[2﹣2,e]16.设集合S={1,2,3,…,2020},设集合A是集合S的非空子集,A中的最大元素和最小元素之差称为集合A的直径.那么集合S所有直径为71的子集的元素个数之和为()A.71•1949B.270•1949C.270•37•1949D.270•72•194917.已知k∈R,设函数,若关于x的不等式f(x)≥0在x∈R上恒成立,则k的取值范围为()A.[0,e2]B.[2,e2]C.[0,4]D.[0,3]18.已知函数若关于x的不等式在R上恒成立,则实数a的取值范围为()A.B.C.[0,2]D.19.已知若f[(m﹣1)f(x)]﹣2≤0在定义域上恒成立,则m的取值范围是()A.(0,+∞)B.[1,2)C.[1,+∞)D.(0,1)20.设函数f(x)的定义域为R,满足f(x+2)=2f(x),且当x∈(0,2]时,f(x)=﹣x(x﹣2).若对任意x∈(﹣∞,m],都有,则m的取值范围是()A.(﹣∞,]B.(﹣∞,]C.(﹣∞,7]D.(﹣∞,]21.已知函数,g(x)=ax2+2x+a﹣1.若对任意的x1∈R,总存在实数x2∈[0,+∞),使得f(x1)=g(x2)成立,则实数a的取值范围为()A.B.C.D.22.已知函数f(x)=ax2﹣bx+c(a<b<c)有两个零点﹣1和m,若存在实数x0,使得f(x0)>0,则实数m的值可能是()A.x0﹣2B.C.D.x0+323.设函数f(x)=﹣x(x﹣a)2(x∈R),当a>3时,不等式f(﹣k﹣sinθ﹣1)≥f(k2﹣sin2θ)对任意的k∈[﹣1,0]恒成立,则θ的可能取值是()A.﹣B.C.﹣D.24.已知函数,若对任意,都有f(x+m)≥3f(x),则实数m的取值范围是()A.[4,+∞)B.C.[3,+∞)D.25.若关于x的不等式≤1在区间(1,2]上恒成立,则实数a的取值范围为()A.(0,ln2]B.(﹣∞,ln2]C.(ln2,+∞)D.(﹣∞,1]26.对于函数y=f(x),若存在区间[a,b],当x∈[a,b]时的值域为[ka,kb](k>0),则称y=f(x)为k倍值函数.若f(x)=e x+2x是k倍值函数,则实数k的取值范围是()A.(e+1,+∞)B.(e+2,+∞)C.(e+,+∞)D.(e+,+∞)27.已知函数f(x)=(x>2),若f(x)恒成立,则整数k的最大值为()A.2B.3C.4D.528.若存在,使得不等式2xlnx+x2﹣mx+3≥0成立,则实数m的最大值为()A.B.C.4D.e2﹣129.设|AB|=10,若平面上点P满足对任意的λ∈R,恒有,则一定正确的是()A.B.C.D.∠APB≤90°30.已知函数y=f(x)为定义域R上的奇函数,且在R上是单调递增函数,函数g(x)=f(x﹣5)+x,数列{a n}为等差数列,且公差不为0,若g(a1)+g(a2)+…+g(a9)=45,则a1+a2+…+a9=()A.45B.15C.10D.0二.填空题(共5小题)31.设a为实数,对任意k∈[﹣1,1],当x∈(0,4]时,不等式6lnx+x2﹣9x+a≤kx恒成立,则a的最大值是.32.已知实数x,y>0,则的最大值为.33.已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),且当0≤x≤1时,f(x)=log2(x+a),若对于x属于[0,1]都有3,则实数t的取值范围为34.已知二次函数f(x)=ax2+bx+c,且4c>9a,若不等式f(x)>0恒成立,则的取值范围是.35.已知a1,a2,a3与b1,b2,b3是6个不同的实数,若关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解集A是有限集,则集合A中,最多有个元素.三.解答题(共5小题)36.已知定义在R上的函数f(x)满足:①对任意实数x,y,都有f(x+y)=f(x)•f(y);②对任意x>0,都有f (x)>1.(1)求f(0),并证明f(x)是R上的单调增函数;(2)若|f(|x﹣2a+1|)﹣f(|x﹣a|+1)|=f(|x﹣a|+1)﹣f(|x﹣2a+1|)对x∈R恒成立,求实数a的取值范围;(3)已知g(x)=,方程g(x)+2+|g(x)﹣2|﹣2mx=4f(0)有三个根x1<x2<x3,若x3﹣x2=2(x2﹣x1),求实数m.37.设集合A,B是非空集合M的两个不同子集.(1)若M={a1,a2},且A是B的子集,求所有有序集合对(A,B)的个数;(2)若M={a1,a2,a3,…,a n},且A的元素个数比B的元素个数少,求所有有序集合对(A,B)的个数.38.已知集合A={x|2x2﹣5x﹣12≥0},B={y|y=3x+1(x>0)}.(1)求集合A∩B,(∁R A)∪B;(2)若集合C={x|m﹣2≤x≤2m}且(∁R A)∩C=C,求m的取值范围.39.已知a∈R,函数f(x)=(﹣x2+ax)•e x.(1)a=2时,求函数f(x)的单调区间;(2)若函数f(x)在(﹣1,1)上单调递增,求a的取值范围.40.已知函数f(x)=(log2x)2+4log2x+m,x∈[,4],m为常数.(Ⅰ)设函数f(x)存在大于1的零点,求实数m的取值范围;(Ⅱ)设函数f(x)有两个互异的零点α,β,求m的取值范围,并求α•β的值.参考答案与试题解析一.选择题(共30小题)1.【解答】解:g′(x)=x(x﹣2),∴﹣1<x<0时,g′(x)>0,0<x<1时,g′(x)<0,g(x)max=g(0)=2,∴f(x)=lnx﹣+ex≥2在(0,1]恒成立,即a≤xlnx+ex2﹣2x在(0,1]恒成立,令h(x)=xlnx+ex2﹣2x(0<x≤1),h′(x)=lnx+2ex﹣1,h″=+2e≥恒成立,∴h′(x)在x∈(0,1]单调递增,又x→0时,h(x)→﹣∞,h(1)=e﹣2>0,故存在x0∈(0,1],使得0<x<x0,h′(x)<0,x0<x<1,h′(x)>0,即h′(x0)=lnx0+2ex0﹣1=0,解得x0=,∴h(x)min=h()=﹣+e•()2﹣2•=﹣,∴a≤﹣,故选:D.2.【解答】解:由题得A={x|x>2或x<﹣2},∵m>0,∴B={x|m<x<2m}且B≠∅,∵B⊆A,∴m≥2或2m≤﹣2,解得m≥2,即m∈[2,+∞),故选:D.3.【解答】解:由题意知,k1,k2∈Z,则,k,k'∈Z,其中k=k2﹣k1,k'=k1+k2=k+2k1,故k与k'同为奇数或同为偶数.f(x)在上有且只有一个最大值,且要求ω最大,则区间包含的周期应该最多,所以,得0<ω≤8,即≤8,所以k≤4当k=4时,ω=,k'为偶数,φ=,此时x+∈(,),当x1+=0.5π或2.5π或6.5π时,f(x0)=3都成立,舍去;当k=3时,ω=,k'为奇数,φ=,此时x+∈(,),当且仅当x+=2.5π时,f(x0)=3成立.故ω的最大值为,故选:C.4.【解答】解:令3x=t(t>0),则g(t)=t2﹣(k+1)t+2,若x∈R时,f(x)恒为正值,则g(t)=t2﹣(k+1)t+2>0对t>0恒成立.∴①或②解①得:﹣1<k<﹣1+;解②得:k≤﹣1.综上,实数k的取值范围是(﹣∞,2﹣1).故选:B.5.【解答】解:由已知函数f(x)=x2+px+q和g(x)=x+在区间[1,]上都有最小值f(x0),g(x0),又因为g(x)=x+在区间[1,]上的最小值为g(2)=4,f(x)min=f(2)=g(2)=4,所以得:,即:,所以得:f(x)=x2﹣4x+8≤f(1)=5.故选:C.6.【解答】解:若x∈[﹣1,0],则﹣x∈[0,1],则f(﹣x)=1﹣2|﹣x﹣|=1﹣2|x+|,∵f(x)是奇函数,∴f(﹣x)=1﹣2|x+|=﹣f(x),则f(x)=2|x+|﹣1,x∈[﹣1,0],若x∈[1,+∞),则﹣x∈(﹣∞,﹣1],则f(﹣x)=1﹣e﹣1+x=﹣f(x),则f(x)=e﹣1+x﹣1,x∈[1,+∞),作出函数f(x)的图象如图:当m>0时,f(x+m)的图象向左平移,此时f(x+m)>f(x)有解,满足条件.当m<0时,f(x+m)的图象向右平移,当f(x+m)的图象与f(x)在x>1相切时,f′(x)=e x﹣1,此时对应直线斜率k=2,由e x﹣1=2,即x﹣1=ln2,得x=ln2+1.此时y=e x﹣1﹣1=e ln2+1﹣1﹣1=2﹣1=1,即切点坐标为(1+ln2,1),设直线方程为y=2(x﹣a)此时1=2(1+ln2﹣a),即=1+ln2﹣a,得a=+ln2,0<﹣m<+ln2,得﹣﹣ln2<m<0,综上﹣﹣ln2<m<0或m>0综上m的取值范围是(﹣﹣ln2,0)∪(0,+∞),故选:D.7.【解答】解:当a=1,b=1时,函数的定义域为{x|x≠±1,x∈R},且为偶函数,其图象如图所示.函数图象与y轴的交点为B(0,﹣1),其关于原点的对称点为C(0,1),所以“囧点”为(0,1),即“囧圆”的圆心为C(0,1).要求所有“囧圆”的面积的最小值,只需求所有“囧圆”的半径的最小值.由图知,“囧函数”有三部分组成,其图象关于y轴对称,故只需考虑y轴及y轴右侧的函数图象.当圆C过点B时,其半径为2,这是和x轴下方的函数图象有公共点的所有“囧圆”中,半径的最小值;当圆C和x轴上方且y轴右侧的函数图象有公共点A时,设A(m,),(其中m>1),则点A到圆心C的距离的平方为d2=m2+(﹣1)2,令=t,(t>0),则d2=(1+)2+(t﹣1)2=t2++﹣2t+2=(t﹣)2﹣2(t﹣)+4,再令t﹣=μ,(其中μ∈R),则d2=μ2﹣2μ+4=(μ﹣1)2+3≥3,所以当圆C和x轴上方且y轴右侧的函数图象有公共点时,最小半径为.又2>,综上可知,在所有的“囧圆”中,半径的最小值为.故所有的“囧圆”中,圆的面积的最小值为3π.故选:B.8.【解答】解:当x1>x2>1时,能使成立的函数是凸函数,其图象类似:所以选项正确;B,C,D都不正确.故选:A.9.【解答】解:由题意集合M={x|x∈Z且}={x|x=0,1,2,3,5,11},由对于含有n个元素的集合,利用公式2n﹣2计算出M的非空真子集个数,∴M的非空真子集的个数是26﹣2=62,故选:C.10.【解答】解:由所定义的运算可知,集合P⊕Q中元素(x,y)中的x取自3,4,5三个的一个,y取自4,5,6,7四个的一个,故根据乘法原理,P⊕Q中实数对的个数是:3×4=12,∴P⊕Q的所有真子集的个数为212﹣1.故选:D.11.【解答】解:令t=x﹣1,则f(t+1)=,则f(t+1)是奇函数,则当t≥0时,y==﹣t3=﹣t3=﹣t3=﹣1﹣t3,为减函数,∴当x≥1时,f(x)为减函数,即g(x)=f(x+1)是奇函数,则f(2x+3)+f(x﹣2)≥0等价为f(2x+2+1)+f(x﹣3+1)≥0,即g(2x+2)+g(x﹣3)≥0,则g(2x+2)≥﹣g(x﹣3)=g(3﹣x),则2x+2≤3﹣x,得3x≤1,x≤,即原不等式的解集为(﹣∞,],故选:A.12.【解答】解:f(x)﹣g(x)=2x2﹣4ax+2a2﹣2=2(x﹣a﹣1)(x﹣a+1).故当x≥a+1或x≤a﹣1时,f(x)≥g(x);当a﹣1<x<a+1时,f(x)<g(x).又H1(x)=,H2(x)=,,,∴,.设H1(x)的最大值为A,H2(x)的最小值为B.结合二次函数的性质可知,A=H1(a﹣1)=(a﹣1)2+2(a﹣1)(a﹣1)﹣a2+2=3﹣2a;B=H2(a+1)=(a+1)2﹣2(a+1)(a+1)+a2=﹣2a﹣1.故A﹣B=3﹣2a﹣(﹣2a﹣1)=4.∴H1(x)的最大值与H2(x)的最小值的差为4.故选:B.13.【解答】解:当a<0时,f(x)=e2x﹣alnx为(0,+∞)的增函数,f(x)无最小值,不符合题意;当a=0时,e2x﹣alnx≥a即为e2x≥0显然成立;当a>0时,f(x)=e2x﹣alnx的导数为f′(x)=2e2x﹣,由于y=2e2x﹣在(0,+∞)递增,设f′(x)=0的根为m,即有a=2me2m,当0<x<m时,f′(x)<0,f(x)递减;当x>m时,f′(x)>0,f(x)递增,可得x=m处f(x)取得极小值,且为最小值e2m﹣alnm,由题意可得e2m﹣alnm≥a,即﹣alnm≥a,化为m+2mlnm≤1,设g(m)=m+2mlnm,g′(m)=1+2(1+lnm),当m=1时,g(1)=1,m>1时,g′(m)>0,g(m)递增,可得m+2mlnm≤1的解为0<m≤1,则a=2me2m∈(0,2e2],综上可得a∈[0,2e2],故选:C.14.【解答】解:函数f(x)的定义域为R,满足2f(x)=f(x+2),可得f(0)=2f(﹣2)=0,当x∈[﹣2,0)]时,函数f(x)在[﹣2,﹣1)上递增,在(﹣1,0)上递减,所以f(x)max=f(﹣1)=1,由2f(x﹣2)=f(x),可得当图象向右平移2个单位时,最大值变为原来的2倍,最大值不断增大,由f(x)=f(x+2),可得当图象向左平移2个单位时,最大值变为原来的倍,最大值不断变小,当x∈[﹣4,﹣2)时,f(x)max=f(﹣3)=,当x∈[0,2)时,f(x)max=f(1)=2,当x∈[2,4)时,f(x)max=f(3)=4,设x∈[2,4)时,x﹣4∈[﹣2,0),f(x﹣4)=﹣(x﹣4)(x﹣2)=f(x),即f(x)=﹣4(x﹣4)(x﹣2),x∈[2,4),由﹣4(x﹣4)(x﹣2)=3,解得x=或x=,根据题意,当m≤时,f(x)≤3恒成立,故选:A.15.【解答】解:作出函数|f(x)|的图象如图所示;当x≤0时;令x2+2x+2=mx,即x2+(2﹣m)x+2=0,令△=0,即(2﹣m)2﹣8=0,解得,结合图象可知,;当x>0时,令e2x﹣1=mx,则此时f(x)=e2x﹣1,h(x)=mx相切,设切点,则,解得m=2,观察可知,实数m的取值范围为.故选:A.16.【解答】解:设集合A中最大元素为a,最小元素为b,所以满足b﹣a=71的组合有2020﹣71=1949个,集合A中元素最多为72个,而集合A中包含a,b所有子集元素之和个数为2+3+4+ (72)设m=2+3+4+......+72,则m=72+71+70+ (2)所以2m=74+74+74+……+74=74×270,即m=37×270,因此,集合S所有直径为71的子集的元素个数之和为270•37•1949.故选:C.17.【解答】解:(1)当x≤1时,f(x)=x2﹣2kx+2k,∴f(x)的对称轴为x=k,开口向上.①当k<1时,f(x)在(﹣∞,k)递减,(k,1)递增,∴当x=k时,f(x)有最小值,即f(k)≥0,∴0≤k<1;②当k≥1时,f(x)在(﹣∞,1)上递减,∴当x=1时,f(x)有最小值,即f(1)=1,∴1≥0显然成立,此时k≥1.综上得,k≥0;(2)当x>1时,f(x)=(x﹣k﹣1)e x+e3,∴f'(x)=(x﹣k)e x,①′当k≤1时,f(x)在(1,+∞)上递增,∴f(x)>f(1)=﹣ke+e3≥0,∴k≤e2,∴此时k≤1;②′当k>1时,f(x)在(1,k)递减,(k,+∞)递增,∴f(x)≥f(k)=﹣e k+e3≥0,∴k≤3,∴此时1<k≤3.综上:0≤k≤3,∵关于x的不等式f(x)≥0在x∈R上恒成立,则k的取值范围为0≤k≤3,故选:D.18.【解答】解:(1)当x≤1时,f(x)=x2﹣2ax+2a,∴f(x)的对称轴为x=a,开口向上.①当a<1时,f(x)在(﹣∞,a)递减,(a,1)递增,∴当x=a时,f(x)有最小值,即f(a)=﹣a2+2a≥,解得0≤a<1;②当a≥1时,f(x)在(﹣∞,1)上递减,∴当x=1时,f(x)有最小值,即f(1)=1≥,∴1≤a≤2.综合①②得:当x≤1时,0≤a≤2;(2)当x>1时,f(x)=2x﹣alnx,∴f'(x)=2﹣=,①′当a≤0时,f'(x)>0,f(x)在(1,+∞)上递增,∴f(x)>f(1)=2≥,∴a≤4,∴此时a≤0;②′当0<≤1,即0<a≤2时,f(x)在(1,+∞)上递增,同理可得0<a≤2;③′当>1,即a>2时,f(x)在(1,)递减,(,+∞)递增,∴f(x)≥f()=a﹣aln≥,∴ln≤,解得2<a≤2.综合①′②′③′得:当x>1时,a≤2;∵关于x的不等式在R上恒成立,∴0≤a≤2,故选:C.19.【解答】解:∵,∴当﹣1<x<8时,log3(x+1)∈(﹣∞,2),|log3(x+1)|∈[0,2),x∈(﹣1,0)时,f(x)=|log3(x+1)|单调递减,x∈(0,8)时,f(x)单调递增,且当x=﹣时,f(x)=2①.当x≥8时,f(x)=单调递减且f(x)∈(0,2]②,其图象如下:若f[(m﹣1)f(x)]﹣2≤0,则f[(m﹣1)f(x)]≤2,∴(m﹣1)f(x)≥﹣,当f(x)=0时,m∈R;当f(x)>0时,m﹣1>,当f(x)→+∞时,→0,∴m﹣1≥0,解得:m≥1.故选:C.20.【解答】解:当x∈(0,2]时,函数f(x)在(0,1)上递增,在(1,2)上递减,所以f(x)max=f(1)=1,由2f(x﹣2)=f(x),可得当图象向右平移2个单位时,最大值变为原来的2倍,最大值不断增大,由f(x)=f(x+2),可得当图象向左平移2个单位时,最大值变为原来的倍,最大值不断变小,当x∈(﹣2,0]时,f(x)max=f(﹣1)=,当x∈(2,4]时,f(x)max=f(3)=2,当x∈(4,6]时,f(x)max=f(5)=4,设x∈(6,8]时,x﹣6∈(0,2],f(x﹣6)=﹣(x﹣6)(x﹣8)=f(x),即f(x)=﹣8(x﹣6)(x﹣8),x∈(6,8],由﹣8(x﹣6)(x﹣8)=,解得x=或x=,根据题意,当m≥时,f(x)≤恒成立,故选:B.21.【解答】解:由题意,函数f(x)图象如下:结合图象,可知函数f(x)的值域为(,+∞).∵对任意的x1∈R,总存在实数x2∈[0,+∞),使得f(x1)=g(x2)成立,∴函数f(x)的值域是函数g(x)在区间[0,+∞)上值域的子集.①当a=0时,g(x)=2x﹣1,此时g(x)在区间[0,+∞)上值域为[﹣1,+∞),满足题意;②当a<0时,二次函数g(x)=ax2+2x+a﹣1开口朝下,很明显不符合题意;③当a>0时,对称轴x=﹣<0,g(0)=a﹣1,此时g(x)在区间[0,+∞)上值域为[a﹣1,+∞),则必须a﹣1≤,即a≤.即0<a≤满足函数f(x)的值域是函数g(x)在区间[0,+∞)上值域的子集.综上所述,可得实数a的取值范围为[0,].故选:A.22.【解答】解:∵﹣1是函数f(x)=ax2﹣bx+c的一个零点,∴a+b+c=0,∵a<b<c,则a<0,c>0,∵﹣1×m=<0,∴m>0.由a<b,a<0,得<1①,由0=a+b+c>a+b+b=a+2b,得﹣<,即>﹣②,由①②得:﹣<<1.函数f(x)=ax2﹣bx+c的图象是开口向下的抛物线,其对称轴方程为x=,则﹣<<.∴零点﹣1到对称轴的距离d∈(,),另一零点为m>0,∴m﹣(﹣1)=m+1=2d∈(,3),因为f(x0)>0,所以x0∈(﹣1,m),故0<m﹣x0<(2d)min,∴x0<m+x0,综合四个选项,实数m的值可能是+x0.故选:C.23.【解答】解:由f(x)=﹣x(x﹣a)2,得f'(x)=﹣(3x﹣a)(x﹣a).令f'(x)=0,得或x=a,当a>3时,,∴f(x)在区间,[a,+∞)上单调递减,在区间上单调递增;当a>3时,,则f(x)在区间(﹣∞,1]上为减函数,又k∈[﹣1,0],sinθ∈[﹣1,1],则﹣2≤﹣k﹣sinθ﹣1≤1,∴﹣1≤k2﹣sin2θ≤1.∵f(﹣k﹣sinθ﹣1)≥f(k2﹣sin2θ)对任意的k∈[﹣1,0]恒成立,∴对任意的k∈[﹣1,0]恒成立,∴恒成立,∴,即,∴θ的可能取值是.故选:D.24.【解答】解:∵f(﹣x)==﹣f(x),∴函数,为R上的奇函数,又x≥0时,f(x)=x2为增函数,∴f(x)为定义域R上的增函数.又f()=3,∴f(x+m)≥3f(x)=f(x),∵对任意,f(x+m)≥3f(x)=f(x),f(x)为定义域R上的增函数,∴m≥[(﹣1)x]max=(﹣1)(+3),即(1﹣)m=m≥3(﹣1),解得:m≥2.即实数m的取值范围是[2,+∞),故选:B.25.【解答】解:关于x的不等式不等式≤1在区间(1,2]上恒成立⇔关于x的不等式a(x﹣1)2≤lnx在区间(1,2]上恒成立.显然当a≤0时,关于x的不等式不等式≤1在区间(1,2]上恒成立当a>0时,在同一坐标系内分别作出y=a(x﹣1)2,y=lnx的图象,所以关于x的不等式a(x﹣1)2≤lnx在区间(1,2]上恒成立.⇔A点的位置不低于B点的位置⇔ln2≥a(2﹣1)2⇔0<a≤ln2.综上,实数a的取值范围为(﹣∞,ln2].故选:B.26.【解答】解:f(x)在定义域R内单调递增,∴f(a)=ka,f(b)=kb,即e a+2a=ka,e b+2b=kb,即a,b为方程e x+2x=kx的两个不同根,∴,设g(x)=,,∴0<x<1时,g′(x)<0;x>1时,g′(x)>0,∴x=1是g(x)的极小值点,∴g(x)的极小值为:g(1)=e+2,又x趋向0时,g(x)趋向+∞;x趋向+∞时,g(x)趋向+∞,∴k>e+2时,y=k和y=g(x)的图象有两个交点,方程有两个解,∴实数k的取值范围是(e+2,+∞).故选:B.27.【解答】解:当k=5,x=3时,f(x)=f(3)==1+ln2,==,∴f(x)<,故k =5不成立;当k=4,x=3时,f(x)=f(3)=1+ln2<=2,所以k=4也不成立;当k=3时,f(x)>(x>2)⇔1+ln(x﹣1)﹣(1﹣)×3>0,令g(x)=1+ln(x﹣1)﹣3+,x>2则g′(x)=﹣=,∴2<x<4时,g′(x)<0;x>4时,g′(x)>0,∴g(x)在(2,4)上递减,在(4,+∞)上递增,∴g(x)min=g(4)=ln3﹣1>0,∴k=3时,f(x)>在(2,+∞)上恒成立,符合题意.故整数k的最大值为3.故选:B.28.【解答】解:由存在,使得不等式2xlnx+x2﹣mx+3≥0成立,得:m≤2lnx+x+,x∈[,e]有解,令y=2lnx+x+,则y′=,故x∈(,1)时,y′<0,函数是减函数,x∈(1,e)时,y′>0,函数是增函数,故x=时,y=3e+﹣2,x=e时,y=2+e+,又(3e+﹣2)﹣(2+e+)=2e﹣4﹣>0,故函数y=2lnx+x+的最大值是3e+﹣2,m≤3e+﹣2,故选:A.29.【解答】解:以线段AB的中点为原点,以AB所在的直线为x轴,以其中垂线为y轴,建立直角坐标系,则A(﹣5,0)、B(5,0)、设点P(x,y),则,,则,即有(2x+10﹣10λ)2+4y2≥64,整理为以为元的一元二次不等式,即100λ2﹣(200+40x)λ+4x2+40x+4y2+36≥0,由于上述不等式对任意λ∈R恒成立,则△≤0必然成立,△=(200+40x)2﹣4×100×(4x2+40x+4y2+36)≤0,解得|y|≥4,即y≥4或者y≤﹣4,动点P位于直线y=4上或其上方部分,或者直线y=﹣4上或者其下方的区域内,用动态的观点看问题,我们让点P位于点(﹣5,4)处,则,故A错误;让点P位于点(0,4)处,则,故B错误;此时,|AB|=10,用余弦定理计算,∠APB>90°故D错误;我们进一步确定C选项的正确性,,,则,其中x∈R,y2≥16,故x2+y2﹣25≥x2+16﹣25≥﹣9,即,故C正确.故选:C.30.【解答】解:根据题意,函数y=f(x)为定义域R上的奇函数,则有f(﹣x)+f(x)=0,设h(x)=g(x)﹣5=f(x﹣5)+(x﹣5),若g(a1)+g(a2)+…+g(a9)=45,即f(a1﹣5)+a1+f(a2﹣5)+a2+…+f(a9﹣5)+a9=45,变形可得f(a1﹣5)+(a1﹣5)+f(a2﹣5)+(a2﹣5)…+f(a9﹣5)+(a9﹣5)=0,即h(a1﹣5)+h(a2﹣5)+…+h(a9﹣5)=0,又由y=f(x)为定义域R上的奇函数,则h(x)=f(x﹣5)+(x﹣5)关于点(5,0)对称,而数列{a n}为等差数列,且公差不为0,则有a1+a9=10,变形有a5=5,则a1+a2+…+a9=9a5=45;故选:A.二.填空题(共5小题)31.【解答】解:对任意k∈[﹣1,1],当x∈(0,4]时,不等式6lnx+x2﹣9x+a≤kx恒成立,即f(x)=kx+9x﹣x2﹣a ﹣6lnx≥0恒成立,令g(k)=xk+9x﹣x2﹣a﹣6lnx,∵x∈(0,4],∴g(k)在k∈[﹣1,1]上单调递增,∴g(k)min=g(﹣1)≥0即可,g(k)≥g(k)min=g(﹣1)≥0,又∵g(﹣1)=﹣x+9x﹣x2﹣a﹣6lnx=﹣x2+8x﹣6lnx﹣a(x∈(0,4]),令ρ(x)=﹣x2+8x﹣6lnx﹣a,则ρ′(x)=﹣2x+8﹣==(﹣x2+4x﹣3)=﹣(x﹣3)(x﹣1),令ρ′(x)=0,得x=3或x=1,∴x∈(0,1)时,ρ′(x)<0,ρ(x)单调递减;x∈(1,3)时,ρ′(x)>0,ρ(x)单调递增;x∈((3,4)时,ρ′(x)<0,ρ(x)单调递减;ρ(1)=﹣1+8﹣a=7﹣a,ρ(4)=﹣16+32﹣6ln4﹣a=16﹣6ln4﹣a,∴解得a≤7,故答案为:7.32.【解答】解:=令分子等于0,△=0,即(10t2﹣1)y2+2(t﹣1)y+14t2+2t﹣1=0,再令△=0,t2(2t+1)(14t﹣5)=0解得t=0或t=﹣或t=,①﹣==≤0,当且仅当即时等号成立;②+==≥0,当且仅当即时等号成立;综上,最大值为,故答案为:33.【解答】解:由题意,f(x)为周期为4的函数,且是奇函数.0在函数定义域内,故f(0)=0,得a=1,所以当0≤x≤1时,f(x)=log2(x+1),当x∈[﹣1,0]时,﹣x∈[0,1],此时f(x)=﹣f(﹣x)=﹣log2(﹣x+1),又知道f(x+2)=﹣f(x)=f(﹣x),所以f(x)以x=1为对称轴.且当x∈[﹣1,1]时f(x)单调递增,当x∈[1,3]时f(x)单调递减.当x∈[﹣1,3]时,令f(x)=1﹣log23,得x=﹣,或x=,所以在[﹣1,3]内当f(x)>1﹣log23时,x∈[﹣,].设g(x)=﹣,若对于x属于[0,1]都有,因为g(0)=∈[﹣,].,故g(x)∈[﹣,].①当<0时,g(x)在[0,1]上单调递减,故g(x)∈[t﹣,]⊆[﹣,].得t≥0,无解.②0≤t≤1时,,此时g(t)最大,g(1)最小,即g(x)∈[t﹣1,]⊆[﹣,].得t∈[0,1].③当1<t≤2时,即,此时g(0)最小,g(t)最大,即g(x)∈[,]⊆[﹣,].得t∈(1,2],④当t>2时,g(x)在[0,1]上单调递增,故g(x)∈[,t﹣]⊆[﹣,].解得,t∈(2,3],综上t∈[0,3].故填:[0,3].34.【解答】解:若不等式f(x)>0恒成立,则,又由4c>9a,∴设x=,y=,则,则==1+,令z=,则z表示区域内的点(x,y)与P(1,﹣2)连线的斜率,因为A(﹣3,),所以k P A==﹣,设直线PB:y=k(x﹣1)﹣2,联立得x2﹣4kx+4k+8=0,△=16k2﹣16k﹣32=0⇒k=﹣1,k=2,由图可知,z∈(﹣∞,﹣)∪(2,+∞),故答案为(﹣∞,﹣)∪(3,+∞).35.【解答】解:令f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|,将关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解的个数的问题转化为两个函数图象交点个数的问题不妨令a1<a2<a3,b1<b2<b3,由于f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|=,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|=,考查两个函数,可以看到每个函数都是由两条射线与两段拆线所组成的,且两条射线的斜率对应相等,两条线段的斜率对应相等.当a1,a2,a3的和与b1,b2,b3的和相等时,此时两个函数射线部分完全重合,这与题设中方程的解集是有限集矛盾不妨令a1,a2,a3的和小于b1,b2,b3的和即a1+a2+a3<b1+b2+b3,﹣a1﹣a2﹣a3>﹣b1﹣b2﹣b3,两个函数图象射线部分端点左右位置不同,即若左边f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|的射线端点在左,右边射线端点一定在右,反之亦然.不妨认为左边f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|的射线端点在左,右边射线端点一定在右,且射线互相平行,中间线段也对应平行,如图A点在左,F点在右,此时若B,C点在线段AD的上方,则只有一个交点;若BC线段位置在如图位置,则有三个交点,探究知,当a1,a2,a3的值依次是1、4、5,b1,b2,b3的值分别是2、3、6,可得到如图的图象,所以此两函数在本题条件下,最多有三个元素:故两函数图象最多有三个交点,即方程的解集是有限集时,最多有三个元素,故答案为:3.三.解答题(共5小题)36.【解答】解:(1)令x=0,y=1,则代入条件①,得:f(1)=f(0)•f(1)又f(1)≠0,则f(0)=1,设x1<x2,则f(x1)﹣f(x2)=f(x1)﹣f(x2﹣x1+x1)=f(x1)﹣f(x2﹣x1)•f(x1)=f(x1)[1﹣f(x2﹣x1)],因为任意x>0,都有f(x)>1,则1﹣f(x2﹣x1)<0,令y=﹣x,则f(0)=f(x)•f(﹣x)=1且x>0,都有f(x)>1>0,故f(﹣x)=>0,则对任意x∈R都有f(x)>0,则f(x1)>0,所以f(x1)﹣f(x2)<0,所以:f(x)是R上的单调增函数;(2)由条件|f(|x﹣2a+1|)﹣f(|x﹣a|+1)|=f(|x﹣a|+1)﹣f(|x﹣2a+1|)恒成立;可化为f(|x﹣a|+1)≥f(|x﹣2a+1|),即:|x﹣2a+1|≤|x﹣a|+1,即:|x﹣2a+1|﹣|x﹣a|≤1,对x∈R恒成立.因:|x﹣2a+1|﹣|x﹣a|≤|a﹣1|,故只需|a﹣1|≤1.解得0≤a≤2.(3)设G(x)=2,显然﹣1≤x≤1,∴max{g(x),G(x)}={g(x)+G(x)+|g(x)﹣G(x)|},方程g(x)+2+|g(x)﹣2|﹣2mx=4f(0)|等价于2max{g(x),G(x)}=2mx+4,即:max{g(x),G(x)}=mx+2,∵g(x)=,且G(x)可改写为:G(x)=,由﹣2x>2⇒﹣1≤x<﹣,又当x∈[0,1]时,x2﹣1≤2,∴max{g(x),G(x)}=,于是﹣2x=mx+2⇒x=﹣(﹣1≤x<﹣),∴0≤m<2﹣2,由2=mx+2⇒x=0或x=﹣,∵x1<x2<x3,∴x1=﹣,x2=﹣,x3=0,由已知条件x3﹣x2=2(x2﹣x1),∴2x1=3x2,即m2+3m﹣2=0⇒m=,又0≤m<2﹣2,∴m=.37.【解答】解:(1)若集合B含有2个元素,即B={a1,a2},则A=∅,{a1},{a2},则(A,B)的个数为3;若集合B含有1个元素,则B有种,不妨设B={a1},则A=∅,此时(A,B)的个数为×1=2.综上,(A,B)的个数为5.(3分)(2)集合M有2n个子集,又集合A,B是非空集合M的两个不同子集,则不同的有序集合对(A,B)的个数为2n(2n﹣1).(5分)若A的元素个数与B的元素个数一样多,则不同的有序集合对(A,B)的个数为:+=+…+()2﹣(),(7分)又(x+1)n(x+1)n的展开式中x n的系数为+…+()2,且(x+1)n(x+1)n=(x+1)2n的展开式中x n的系数为,所以=+…+()2=,因为=2n,所以当A的元素个数与B的元素个数一样多时,有序集合对(A,B)的个数为﹣2n.(9分)所以当A的元素个数比B的元素个数少时,有序集合对(A,B)的个数为:=.(10分)38.【解答】解:集合A={x|2x2﹣5x﹣12≥0}={x|x≤﹣或x≥4},B={y|y=3x+1(x>0)}={y|y>2}.(1)集合A∩B={x|x≥4},∁R A={x|﹣<x<4},∴(∁R A)∪B={x|x>﹣};(2)若集合C={x|m﹣2≤x≤2m},且(∁R A)∩C=C,∴C⊆∁R A,∴,解得<m<2;当C=∅时,m﹣2>2m,解得∴m<﹣2;综上,m的取值范围是m<﹣2或<m<2.39.【解答】解:(1)a=2时,f(x)=(﹣x2+2x)•e x的导数为f′(x)=e x(2﹣x2),由f′(x)>0,解得﹣<x<,由f′(x)<0,解得x<﹣或x>.即有函数f(x)的单调减区间为(﹣∞,﹣),(,+∞),单调增区间为(﹣,).(2)函数f(x)=(﹣x2+ax)•e x的导数为f′(x)=e x[a﹣x2+(a﹣2)x],由函数f(x)在(﹣1,1)上单调递增,则有f′(x)≥0在(﹣1,1)上恒成立,即为a﹣x2+(a﹣2)x≥0,即有x2﹣(a﹣2)x﹣a≤0,则有1+(a﹣2)﹣a≤0且1﹣(a﹣2)﹣a≤0,解得a≥.则有a的取值范围为[,+∞).40.【解答】解:(Ⅰ)函数f(x)=(log2x)2+4log2x+m,x∈[,4],m为常数.令t=log2x,∵x∈[,4],∴t∈[﹣3,2]则由已知,若f(x)存在大于1的零点,即g(t)在t∈(0,2]时有零点g(t)表示的二次函数开口向上,对称轴为t0=﹣2,所以若g(t)在t∈(0,2]时有零点,即⇒﹣12≤m<0即m的取值范围为[﹣12,0,(Ⅱ)若f(x)有两个相异的零点,即g(t)在t∈[﹣3,2]时有两个相异零点∴g(t)表示的二次函数开口向上,对称轴为t0=﹣2∴即m的取值范围为[3,4),此时,方程g(t)=t2+4t+m=0的两根t1+t2=﹣4即,第31页(共31页)。
1.1集合练习题1、用列举法表示下列集合:(1){大于10而小于20的合数} ;(2)方程组2219x y x y +=⎧⎨-=⎩的解集 。
2.用描述法表示下列集合:(1)直角坐标平面内X 轴上的点的集合 ; (2)抛物线222y x x =-+的点组成的集合 ;(3)使216y x x =+-有意义的实数x 的集合 。
3.含两个元素的数集{}a a a -2,中,实数a 满足的条件是 。
4. 若{}2|60B x x x =+-=,则3 B ;若}{|23D x Z x =∈-<<,则1.5 D 。
5.下列关系中表述正确的是( )A.{}002=∈x B.(){}00,0∈C.0φ∈D.0N ∈6.对于关系:①∉{x x ∣≤Q ;③0∈N ; ④0∈∅,其中正确的个数是A 、4B 、3C 、2D 、 1 7.下列表示同一集合的是( ) A .{}M =(2,1),(3,2){}N =(1,2),(2,3)B .{}{}M N ==1,22,1C .{}2|1M y y x x R ==+∈,{}2|1N y y x x N ==+∈, D .{}2|1M x y y x x R ==-∈(,),{}2|1N y y x x N ==-∈,8.已知集合}{,,S a b c=中的三个元素是ABC ∆的三边长,那么ABC ∆一定不是 ( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形9.设a 、b 、c 为非0实数,则=M a b c a b ca b c a b c+++的所有值组成的集合为( )A 、{4}B 、{-4}C 、{0}D 、 {0,4,-4}10. 已知(){}{}2,1,,0|2--=∈=++R n m n mx x x ,求m ,n 的值.11.已知集合{}2|A x ax x x R =∈-3-4=0,(1)若A 中有两个元素,求实数a 的取值范围, (2)若A 中至多只有一个元素,求实数a 的取值范围。
高一必修一数学练习题一、集合与函数(1) A = {x | x是小于5的自然数}(2) B = {x | x是平方小于10的正整数}(1) 若A∩B = ∅,则A∪B = A(2) 若A⊆B,则B⊆A3. 设函数f(x) = 2x + 3,求f(2)、f(1)的值。
(1) f(x) = |x|,g(x) = x²(2) f(x) = x² 1,g(x) = (x + 1)(x 1)二、二次函数与方程(1) x² 5x + 6 = 0(2) 2x² 4x 3 = 0(1) y = x² 4x + 4(2) y = 2x² + 8x 63. 已知二次函数y = ax² + bx + c的图像开口向上,且顶点坐标为(1, 3),求a、b、c的值。
三、指数与对数(1) 2^3 × 2^4(2) (1/3)^2(1) log₂8 log₂2(2) log₃(3x) log₃x3. 已知log₂x = 3,求x的值。
四、平面几何1. 在直角坐标系中,求点A(2, 3)关于原点的对称点坐标。
2. 已知线段AB的长度为5,点C在线段AB上,且AC = 3,求BC 的长度。
(1) 四边形ABCD,AB = CD = 6,AD = BC = 8(2) 四边形EFGH,∠E = ∠F = ∠G = ∠H = 90°五、立体几何1. 计算棱长为2的正方体的表面积和体积。
2. 已知圆锥的底面半径为3,高为4,求圆锥的母线长度。
(1) 若一个长方体的长、宽、高分别为a、b、c,则其表面积S = 2ab + 2ac + 2bc。
(2) 若一个圆柱的底面半径为r,高为h,则其体积V = πr²h。
六、数列(1) 3, 6, 9, 12,(2) 2, 4, 8, 16,2. 已知数列{an}是等差数列,a1 = 1,公差d = 2,求a10的值。
集合不等式函数练习题一、选择题1. 集合A={x|x>1},B={x|x<3},则A∩B表示的集合是:A. {x|x≤1}B. {x|1<x<3}C. {x|x≥3}D. {x|x<1或x>3}2. 若函数f(x)=x^2-4x+3,求f(x)<0的解集:A. {x|1<x<3}B. {x|x<1或x>3}C. {x|0<x<4}D. {x|-1<x<1}3. 对于不等式x^2-5x+6≤0,其解集为:A. {x|2≤x≤3}B. {x|1<x<6}C. {x|3≤x≤6}D. {x|-1≤x≤1}4. 集合C={x|-1<x<2},D={x|x>-2},则C∪D表示的集合是:A. {x|x>-2}B. {x|-1<x<2}C. {x|x<-2或x>-1}D. {x|x≤-2或x≥-1}5. 若函数g(x)=2-x^2,求g(x)>0的解集:A. {x|-√2<x<√2}B. {x|x<-2或x>2}C. {x|-2<x<2}D. {x|x>-√2或x<√2}二、填空题6. 若A={x|-3<x<5},B={x|x>a},且A⊆B,则a的取值范围是______。
7. 函数h(x)=-x^2+4x+1的图像与x轴的交点坐标是______。
8. 给定不等式3x-2>5x+7,解得x的取值范围为______。
9. 集合E={x|x^2-4x+3>0},E的补集是______。
10. 若不等式|x-2|<1的解集表示为区间形式,则该区间是______。
三、解答题11. 已知集合F={x|-2≤x≤1},G={x|-1<x<4},求F∩G和F∪G。
12. 求函数y=x^3-3x^2+2x+1在区间[-1,2]上的最大值和最小值。
1.若集合{}}{1,2-===x y P y y M x ,则=P M ( )}{1.>y y A }{1.≥y y B }{0.>y y C {}0.≥y y D2.函数x x x f --=11)(的定义域是( )]1,.(-∞A )1,0()0,.(⋃-∞B ]1,0()0,.(⋃-∞C ),1.[+∞D3.已知函数2)(357++-=cx bx ax x f ,且m f =-)5(,则)5()5(f f +-的值为( )4.A 0.B m C 2. 4.+-m D4.若33)3(π-=a ,44)2(π-=b ,则=+b a ( )1.A 5.B 1.-C 52.-πD5.函数2)(x x x f -=的单调递增区间是( ) ]1,0.[A ]21,.(-∞B]1,21.[C ]21,0.[D 6.已知函数127)2()1()(22+-+-+-=m m x m x m x f 为偶函数,则实数m 的值是( ).A 1 .B 2 .C 3 .D 47设0>a ,下列运算中,正确的是( )632.a a a A =∙ 2332)().(a a B -=- 632).(a a C -=- 3232.a a a D =÷ 8.设函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,若1)(0>x f ,则0x 的取值范围是( ))1,1.(-A ),1.(+∞-B ),0()2,.(+∞--∞ C ),1()1,.(+∞--∞ D9.设集合{}2,12,4a a A --=,}{a a B --=1,5,9,若}{9=⋂B A ,则实数a = 10.函数12)(2++=ax ax x f 在]2,3[-上有最大值4,则=a1.为了得到函数)(x f y -=的图像,可以把函数)1(x f y -=的图像( ).A 沿y 轴向上平移1个单位长度 .B 沿y 轴向下平移1个单位长度.C 沿x 轴向右平移1个单位长度 .D 沿x 轴向左平移1个单位长度2.函数⎪⎩⎪⎨⎧<-≥+=0,0,1)(22x x x x x f 的单调递增区间为( ) ),0[),0,.(+∞-∞A )0,.(-∞B ),0.[+∞C ),.(+∞-∞D3.设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f ,则不等式)1()(f x f >的解集是( ) ),3()1,3.(+∞⋃-A ),2()1,3.(+∞⋂-B ),3()1,1.(+∞⋃-C )3,1()3,.( --∞D4.函数331)(2-+-=x x x f 是( ) .A 奇函数 .B 偶函数 .C 既是奇函数又是偶函数 .D 既不是奇函数也不是偶函数5.已知c b a ,,为ABC ∆的三边,化简a c b c b a -+---2)(的结果为( )a cb A 2)(2.-+c a b B 2)(2.-+ a C 2. 0.D6函数1212)(+-=x x x f 是( ) .A 奇函数且为增函数 .B 偶函数且为增函数.C 奇函数且为减函数 .D 偶函数且为减函数7.已知函数)(x f 的定义域为)1,0(,那么函数)2(x f 的定义域是 ( ))1,0.(A )1,21.(B )0,.(-∞C ),0.(+∞D 8.设5.1348.029.01)21(,8,4-===y y y ,则 ( ) 213.y y y A >> 312.y y y B >> 321.y y y C >> 231.y y y D >>13.函数)1lg()(2x x x f -+=是 函数(填“奇”或“偶”)14.若310,210==y x ,则=-2310y x1.函数)1(log 1x y a --=的图像恒过定点 ( ))0,1.(A )1,1.(B )0,0.(C )1,0.(D2.函数)1(3log 2≥+=x x y 的值域是 ( )),2.[+∞A ),3.(+∞B ),3.[+∞C R D .3.设函数⎩⎨⎧>+≤=0),1lg(0,)(2x x x x x f ,若1)(0>x f ,则0x 的取值范围为( ))1,1.(-A ),1.(+∞-B )9,.(-∞C ),9()1,.(+∞-∞ D4.设7.0log ,8.0,7.032121===c b a ,则它们的大小关系是 ( )a b c A <<. b a c B <<. c b a C <<. c a b D <<. 5.已知b a ==7lg ,2lg ,则=98log 14b a b a A +-.b a b a B ++2. b a b a C +-2. ba b a D ++2. 6.函数x x x f -=1)(的图像关于( ) y A .轴对称 .B 直线x y -=对称 .C 坐标原点对称 .D 直线x y =对称7.映射B A f →:中,}{R y x y x B A ∈==,),(,且),(),(:y x y x y x f +-→,则与A 中的元素)2,1(-对应的B 中的元素为( ))1,3.(-A )3,1.(B )3,1.(--C )1,3.(D8.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,)2()(+=x xf x g ,则=-+-)1()3(g g 4.A 3.B 2.C 1.D9.已知函数)(x f 是定义在R 上的奇函数,当0>x 时的解析式为12)(--=xx x f ,则函数)(x f 的解析式为 10.已知函数⎩⎨⎧∈--∈-=]5,2(,3]2,1[,3)(2x x x x x f ,则)(x f 的单调递增区间为1.函数32)(+=x x g ,)12()(-=x g x f ,则=+)1(x f12.+x A 54.+x B 54.-x C 14.+x D2.已知函数)(x f y =是偶函数,且图像与x 轴有4个交点,则方程0)(=x f 的所有实根之和是( ).A 4 .B 2 .C 0 .D 不确定3.已知133--+=+a a a a ,则2a =( )1.A 53.+B 22.+C 133.+D4.设b m 21+=,b n -+=21,那么=n ( )11.-+m m A m m B 1.- 11.+-m m C 1.-m m D 5.函数53)(3+--=x x x f 的零点所在的区间为 ( ))2,1.(A )1,0.(B )0,1.(-C )1,2.(--D6.已知偶函数)(x f 在),0[+∞上单调递增,则满足)31()12(f x f <-的x 的取值范围 7.已知函数)(x f 满足23)()(2+=-+x x f x f ,则=)(x f8.已知函数,)(x b ax x f -=其中b a ,为非零实数,47)2(,21)21(=-=f f . (1)判断函数的奇偶性,并求b a ,得值;(2)用定义证明)(x f 在),0(+∞上是增函数.1.函数x x y 243-+=的值域是( ) ),.(+∞-∞A ),2()2,.(+∞⋃-∞B ),21()21,.(+∞-⋃--∞C ),21()21,.(+∞⋃-∞D 2.函数1)(-=x ax x f 满足14))((+=x x x f f ,则常数=a 1.A 2.B 22.或-C 21.或D3.已知函数8)(35-++=bx ax x x f ,且10)2(=-f ,那么=)2(f ( )10.A 10.-B 18.-C 26.-D4.已知幂函数)(x f y =的图像过点)2,2(,则=)16(log 2f ( )2.A 22.B 2.C 21.D 5.定义在R 上的奇函数)(x f 为减函数,若0≤+b a ,给出下列不等式:0)()(.1≤-∙a f a f )()()()(.2b f a f b f a f -+-≤+0)()(.3≥-∙b f b f )()()()(.4b f a f b f a f -+-≥+其中正确的是6.设集合}{53≤<-=x x x A ,}{121-<≤+=m x m x B ,满足A B ⊆,则实数m 的取值范围7.已知定义为)1,1(-的奇函数)(x f ,在]0,1(-上单调递减,则满足不等式0)1()1(2<-+-a f a f 的实数a 的取值范围是8.已知)(x f 是定义在R 上的奇函数,且当0>x 时,1)(3++=x x x f ,求)(x f 的解析式。
数学第十四周周测1.已知集合}01{},1,1{=+=-=ax x B A ,若A B ⊆,则实数a 的所有可能取值的集合为 ( )}1.{-A }1.{B }1,1.{-C }1,0,1.{-D2.设312.0212,)31(,3log ===c b a ,则 ( ) c b a A <<.a b c B <<. b a c C <<.c a b D <<. 3.函数⎩⎨⎧≥-<-=2),1(2,2)(x x f x x x f ,则=)2(f ( ) 1.-A 0.B 1.C 2.D4.函数3222)1()(----=m m x m m x f 是幂函数,且在),0(+∞∈x 上是减函数,则=m ( )2.A3.B 1.C 1.-D5.函数)4(log )(221-=x x f 的单调递增区间为 ( )),0.(+∞A )0,.(-∞B ),2.(+∞C )2,.(--∞D6.定义在R 上的函数)(x f 满足),(2)()()(R y x xy y f x f y x f ∈++=+,2)1(=f ,则=-)3(f ( )12.A 6.B 3.C 2.D7.若函数⎪⎩⎪⎨⎧≤+->=1,2)24(1,)(x x a x a x f x 是R 上的增函数,则实数a 的取值范围 ( )),1.(+∞A )8,1.(B )8,4.(C )8,4.[D8.已知集合}44,3,2{--=m A ,集合},3{2m B =,若A B ⊆,则实数=m9.函数x x x x f -+=0)1()(的定义域是10.已知)(x f 为奇函数,9)()(+=x f x g ,3)2(=-g ,则=)2(f11.不等式1622<-+x x 的解集是 班级 姓名 成绩 12 3 4 5 6 78. 9.10. 11.12.已知函数432)(2+++=m mx x x f ,(1)m 为何值时,)(x f 有两个零点切均比-1大?(2)求)g.(mf在]2,0[上的最大值)(x。