2015广东省中职高考数学试题
- 格式:doc
- 大小:406.00 KB
- 文档页数:4
2015高考真题——数学文(广东卷)Word版含答案绝密★启用前试卷类型:B2015年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合,,则()A.B.C.D.2、已知是虚数单位,则复数()A.B.C.D.3、下列函数中,既不是奇函数,也不是偶函数的是()A.B.C.D.4、若变量,满足约束条件,则的最大值为()A.B.C.D.5、设的内角,,的对边分别为,,.若,,,且,则()A.B.C.D.6、若直线和是异面直线,在平面内,在平面内,是平面与平面的交线,则下列命题正确的是()A.至少与,中的一条相交B.与,都相交C.至多与,中的一条相交D.与,都不相交7、已知件产品中有件次品,其余为合格品.现从这件产品中任取件,恰有一件次品的概率为()A.B.C.D.8、已知椭圆()的左焦点为,则()A.B.C.D.9、在平面直角坐标系中,已知四边形是平行四边形,,,则()A.B.C.D.10、若集合,,用表示集合中的元素个数,则()A.B.C.D.二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.)(一)必做题(11~13题)11、不等式的解集为.(用区间表示)12、已知样本数据,,,的均值,则样本数据,,,的均值为.13、若三个正数,,成等比数列,其中,,则.(二)选做题(14、15题,考生只能从中选作一题)14、(坐标系与参数方程选做题)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.曲线的极坐标方程为,曲线的参数方程为(为参数),则与交点的直角坐标为.15、(几何证明选讲选做题)如图,为圆的直径,为的延长线上一点,过作圆的切线,切点为,过作直线的垂线,垂足为.若,,则.三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)16、(本小题满分12分)已知.求的值;求的值.17、(本小题满分12分)某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.求直方图中的值;求月平均用电量的众数和中位数;在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?18、(本小题满分14分)如图,三角形所在的平面与长方形所在的平面垂直,,,.证明:平面;证明:;求点到平面的距离.19、(本小题满分14分)设数列的前项和为,.已知,,,且当时,.求的值;证明:为等比数列;求数列的通项公式.20、(本小题满分14分)已知过原点的动直线与圆相交于不同的两点,.求圆的圆心坐标;求线段的中点的轨迹的方程;是否存在实数,使得直线与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.21、(本小题满分14分)设为实数,函数.若,求的取值范围;讨论的单调性;当时,讨论在区间内的零点个数.2015年普通高等学校招生全国统一考试(广东卷)数学(文科)参考答案一、选择题1.C2.D3.A4.C5.B6.A7.B8.C9.D 10.D二、填空题11. 【答案】12. 【答案】13. 【答案】14. 【答案】15. 【答案】16. 【答案】(1);(2).17. 【答案】(1);(2),;(3).18. 【答案】(1)证明见解析;(2)证明见解析;(3).(1)因为四边形是长方形,所以,因为平面,平面,所以平面(2)因为四边形是长方形,所以,因为平面平面,平面平面,平面,所以平面,因为平面,所以(3)取的中点,连结和,因为,所以,在中,,因为平面平面,平面平面,平面,所以平面,由(2)知:平面,由(1)知:,所以平面,因为平面,所以,设点到平面的距离为,因为,所以,即,所以点到平面的距离是19. 【答案】(1);(2)证明见解析;(3).(1)当n=2时,4解得:(2)因为即×,所以数列(3)由知:数列是以为首项,公比为的等比数列,所以即,所以数列是以为首项,公差为的等差数列,所以,即,所以数列的通项公式是20. 【答案】(1);(2);(3)存在,或.(1)圆(2)设线段AB的中点M由圆的性质可得垂直于直线l设直线l的方程为所以因为动直线l与圆相交,所以所以或所以满足即(3)由题意知直线l表示过定点T斜率为k的直线结合图形,按逆时针方向运动到的圆弧,根据对称性,只需讨论在x轴对称下方的圆弧。
2015年广东省高考数学试卷(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5 分)(2015 ?广东)若集合M={x| (x+4)(x+1)=0} ,N={x| (x﹣4)(x﹣1)=0} ,则M ∩N=()A ?{1 ,4} B { ﹣1,﹣4} C {0} D ....考点:交集及其运算.专题:集合.分析:求出两个集合,然后求解交集即可.解答:解:集合M={x| (x+4)(x+1)=0}={ ﹣1,﹣4} ,N={x| (x﹣4)(x﹣1)=0}={1 ,4} ,则M ∩N= ?.故选:D.点评:本题考查集合的基本运算,交集的求法,考查计算能力.2.(5 分)(2015 ?广东)若复数z=i(3﹣2i)(i 是虚数单位),则=()A2﹣3i B 2+3i C 3+2i D 3﹣2i ....考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数的乘法运算法则化简求解即可.解答:解:复数z=i(3﹣2i)=2+3i ,则=2﹣3i,故选:A.点评:本题开采方式的代数形式的混合运算,复数的基本概念,考查计算能力.3.(5 分)(2015 ?广东)下列函数中,既不是奇函数,也不是偶函数的是()x Ax+ DB C y=x+ey=2y= y=x+....考点:函数奇偶性的判断.专题:函数的性质及应用.分析:直接利用函数的奇偶性判断选项即可.解答:解:对于A,y= 是偶函数,所以 A 不正确;对于B,y=x+ 函数是奇函数,所以 B 不正确;x对于C,y=2+ 是偶函数,所以 C 不正确;对于D,不满足f(﹣x)=f(x)也不满足f(﹣x)=﹣f(x),所以函数既不是奇函数,也不是偶函数,所以 D 正确.故选:D.1点评:本题考查函数的奇偶性的判断,基本知识的考查.4.(5 分)(2015 ?广东)袋中共有15 个除了颜色外完全相同的球,其中有10 个白球, 5 个红球.从袋中任取 2 个球,所取的 2 个球中恰有 1 个白球,1 个红球的概率为()AB C D 1....考古典概型及其概率计算公式.点:专概率与统计.题:分首先判断这是一个古典概型,从而求基本事件总数和“所取的 2 个球中恰有 1 个白析:球,1 个红球”事件包含的基本事件个数,容易知道基本事件总数便是从15 个球任取2 球的取法,而在求“所取的 2 个球中恰有 1 个白球, 1 个红球”事件的基本事件个数时,可利用分步计数原理求解,最后带入古典概型的概率公式即可.解解:这是一个古典概型,从15 个球中任取 2 个球的取法有;答:∴基本事件总数为105;设“所取的 2 个球中恰有 1 个白球,1 个红球”为事件 A ;则A 包含的基本事件个数为=50;∴P(A)= .故选:B.点考查古典概型的概念,以及古典概型的求法,熟练掌握组合数公式和分步计数原理.评:2 25.(5 分)(2015?广东)平行于直线2x+y+1=0 且与圆x +y =5 相切的直线的方程是()A .2x+y+5=0 或2x+y﹣5=0 B.2x+y+ =0 或2x+y ﹣=0C.2x﹣y+5=0 或2x﹣y﹣5=0 D.2x﹣y+ =0 或2x﹣y﹣=0考圆的切线方程.点:专计算题;直线与圆.题:分设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,析:即可求出直线方程.解解:设所求直线方程为2x+y+b=0 ,则,答:所以= ,所以b=±5,所以所求直线方程为:2x+y+5=0 或2x+y﹣5=0故选:A .点本题考查两条直线平行的判定,圆的切线方程,考查计算能力,是基础题.评:26.(5 分)(2015 ?广东)若变量x,y 满足约束条件,则z=3x+2y 的最小值为()A4 B C 6 D....考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,根据z 的几何意义,利用数形结合即可得到最小值.解答:解:不等式组对应的平面区域如图:由z=3x+2y 得y=﹣x+ ,平移直线y= ﹣x+ ,则由图象可知当直线y=﹣x+ ,经过点 A 时直线y=﹣x+ 的截距最小,此时z 最小,由,解得,即A(1,),此时z=3×1+2×= ,故选:B.点评:本题主要考查线性规划的应用,根据z 的几何意义,利用数形结合是解决本题的关键.7.(5 分)(2015?广东)已知双曲线C:﹣=1 的离心率e= ,且其右焦点为F2(5,0),则双曲线 C 的方程为()3AB C D.﹣=1 .﹣=1 .﹣=1 .﹣=1考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程.解答:解:双曲线C:﹣=1 的离心率e= ,且其右焦点为F2(5,0),可得:,c=5,∴a=4,b= =3,所求双曲线方程为:﹣=1.故选:C.点评:本题考查双曲线方程的求法,双曲线的简单性质的应用,考查计算能力.8.(5 分)(2015?广东)若空间中n 个不同的点两两距离都相等,则正整数n 的取值()A 至多等于 3B 至多等于 4C 等于 5D 大于 5....考点:棱锥的结构特征.专题:创新题型;空间位置关系与距离.分析:先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断.解答:解:考虑平面上, 3 个点两两距离相等,构成等边三角形,成立;4 个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n 大于4,也不成立;在空间中, 4 个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5 时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,且球的半径等于边长,即有球心与正四面体的底面吗的中心重合,故不成立;同理n>5,不成立.故选:B.点评:本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题.二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)的展开式中,x 的系数为 6 .49.(5 分)(2015 ?广东)在(﹣1)考点:二项式定理的应用.专题:计算题;二项式定理.4分析:根据题意二项式(﹣1)4 r的展开式的通项公式为T r+1= ?(﹣1)? ,分析可得,r=1 时,有x 的项,将r=1 代入可得答案.解答:4 解:二项式(﹣1)r的展开式的通项公式为T r+1= ?(﹣1)? ,令2﹣=1,求得r=2,4∴二项式(﹣1)的展开式中x 的系数为=6,故答案为:6.点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题10.(5 分)(2015?广东)在等差数列{a n} 中,若a3+a4+a5+a6+a7=25,则a2+a8= 10 .考点:等差数列的通项公式.专题:计算题;等差数列与等比数列.分析:根据等差数列的性质,化简已知的等式即可求出a5 的值,然后把所求的式子也利用等差数列的性质化简后,将a5 的值代入即可求出值.解答:解:由a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=5a5=25,得到a5=5,则a2+a8=2a5=10.故答案为:10.点评:本题主要考查了等差数列性质的简单应用,属于基础试题11.(5 分)(2015 ?广东)设△ABC 的内角 A ,B,C 的对边分别为a,b,c.若a= ,sinB= ,C= ,则b= 1 .考点:正弦定理;两角和与差的正弦函数.专题:计算题;解三角形.分析:由sinB= ,可得B= 或B= ,结合a= ,C= 及正弦定理可求 b解答:解:∵sinB= ,∴B= 或B=当B= 时,a= ,C= ,A= ,由正弦定理可得,则b=15当B= 时,C= ,与三角形的内角和为π矛盾故答案为: 1点评:本题考查了正弦、三角形的内角和定理,熟练掌握定理是解本题的关键12.(5 分)(2015?广东)某高三毕业班有40 人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了1560 条毕业留言.(用数字作答)考点:排列、组合的实际应用.专题:排列组合.分析:通过题意,列出排列关系式,求解即可.解答:解:某高三毕业班有40 人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了=40×39=1560 条.故答案为:1560.点评:本题考查排列数个数的应用,注意正确理解题意是解题的关键.13.(5 分)(2015?广东)已知随机变量X 服从二项分布B(n,p),若E(X)=30,D(X)=20,则P= .考点:离散型随机变量的期望与方差.专题:概率与统计.分析:直接利用二项分布的期望与方差列出方程求解即可.解答:解:随机变量X 服从二项分布B(n,p),若E(X)=30,D(X)=20,可得np=30,npq=20,q= ,则p= ,故答案为:.点评:本题考查离散型随机变量的分布列的期望以及方差的求法,考查计算能力.14.(5 分)(2015?广东)已知直线l 的极坐标方程为2ρsin(θ﹣)= ,点A 的极坐标为A (2 ,),则点 A 到直线l 的距离为.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:把极坐标方程转化为直角坐标方程,然后求出极坐标表示的直角坐标,利用点到直线的距离求解即可.解答:解:直线l 的极坐标方程为2ρsin(θ﹣)= ,对应的直角坐标方程为:y﹣x=1,点A 的极坐标为 A (2 ,),它的直角坐标为(2,﹣2).点A 到直线l 的距离为:= .6故答案为:.点评:本题考查极坐标与直角坐标方程的互化,点到直线的距离公式的应用,考查计算能力.15.(2015?广东)如图,已知AB 是圆O 的直径,AB=4 ,EC 是圆O 的切线,切点为C,BC=1.过圆心O 作BC 的平行线,分别交EC 和AC 于D 和点P,则OD= 8 .考相似三角形的判定.点:专选作题;创新题型;推理和证明.题:分析:2连接OC,确定OP⊥AC,OP= BC= ,Rt△OCD 中,由射影定理可得OC=OP?OD,即可得出结论.解解:连接OC,则OC⊥CD,答:∵AB 是圆O 的直径,∴BC ⊥AC,∵OP∥BC,∴OP⊥AC,OP= BC= ,2Rt△OCD 中,由射影定理可得OC =OP?OD,∴4= OD,∴OD=8 .故答案为:8.点本题考查圆的直径与切线的性质,考查射影定理,考查学生的计算能力,比较基础.评:三、解答题716.(12 分)(2015?广东)在平面直角坐标系xOy 中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx 的值;(2)若与的夹角为,求x 的值.考平面向量数量积的运算;数量积表示两个向量的夹角.点:专平面向量及应用.题:分析:(1)若⊥,则?=0,结合三角函数的关系式即可求tanx 的值;(2)若与的夹角为,利用向量的数量积的坐标公式进行求解即可求x 的值.解答:解:(1)若⊥,则? =(,﹣)?(sinx,cosx)= sinx﹣c osx=0,即sinx= cosxsinx=cosx,即tanx=1;(2)∵| |=1,| |=1,? =(,﹣)?(sinx,cosx)= sinx﹣c osx,∴若与的夹角为,则? =| |?| |cos = ,即sinx﹣c osx= ,则s in(x﹣)= ,∵x∈(0,).∴x﹣∈(﹣,).则x﹣=即x= + = .点本题主要考查向量数量积的定义和坐标公式的应用,考查学生的计算能力,比较基评:础.17.(12 分)(2015 ?广东)某工厂36 名工人年龄数据如图:工人编号年龄工人编号年龄工人编号年龄工人编号年龄81 40 10 36 19 27 28 342 44 11 31 20 43 29 393 40 12 38 21 41 30 434 41 13 39 22 37 31 385 33 14 43 23 34 32 426 40 15 45 24 42 33 537 45 16 39 25 37 34 378 42 17 38 26 44 35 499 43 18 36 27 42 36 39 (1)用系统抽样法从36 名工人中抽取容量为9 的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;2(2)计算(1)中样本的均值和方差s;(3)36 名工人中年龄在﹣s和+s 之间有多少人?所占百分比是多少(精确到0.01%)?考点:极差、方差与标准差;系统抽样方法.专题:概率与统计.分析:(1)利用系统抽样的定义进行求解即可;2 (2)根据均值和方差公式即可计算(1)中样本的均值和方差s;(3)求出样本和方差即可得到结论.解答:解:(1)由系统抽样知,36 人分成9 组,每组 4 人,其中第一组的工人年龄为44,所以其编号为2,∴所有样本数据的编号为:4n﹣2,(n=1,2,⋯,9),其数据为:44,40,36,43,36,37,44,43,37.(2)由平均值公式得= (44+40+36+43+36+37+44+43+37 )=40.2 2由方差公式得s= [(44﹣40)+(40﹣40)2 2+⋯+(37﹣40)] = .2(3)∵s= .∴s= ∈(3,4),∴36 名工人中年龄在﹣s和+s 之间的人数等于区间[37,43]的人数,即40,40,41,⋯,39,共23 人.∴36 名工人中年龄在﹣s和+s 之间所占百分比为≈63.89%.点评:本题主要考查统计和分层抽样的应用,比较基础.18.(14 分)(2015 ?广东)如图,三角形△PDC 所在的平面与长方形A BCD 所在的平面垂直,PD=PC=4,AB=6 ,BC=3 ,点 E 是CD 的中点,点F、G 分别在线段AB 、BC 上,且AF=2FB ,CG=2GB .(1)证明:PE⊥FG;(2)求二面角P﹣A D﹣C的正切值;(3)求直线P A 与直线F G 所成角的余弦值.9考点:二面角的平面角及求法;异面直线及其所成的角;直线与平面垂直的性质.专题:空间位置关系与距离;空间角.分析:(1)通过△POC 为等腰三角形可得PE⊥CD,利用线面垂直判定定理及性质定理即得结论;(2)通过(1)及面面垂直定理可得PG⊥AD ,则∠PDC 为二面角P﹣AD ﹣C 的平面角,利用勾股定理即得结论;(3)连结AC,利用勾股定理及已知条件可得FG∥AC ,在△PAC 中,利用余弦定理即得直线PA 与直线FG 所成角即为直线PA 与直线FG 所成角∠PAC的余弦值.解答:(1)证明:在△POC 中PO=PC 且E 为CD 中点,∴PE⊥CD,又∵平面PDC⊥平面ABCD ,平面PDC∩平面ABCD=CD ,PE? 平面PCD,∴PE⊥平面ABCD ,又∵FG? 平面ABCD ,∴PE⊥FG;(2)解:由(1)知PE⊥平面ABCD ,∴PE⊥AD,又∵CD⊥AD 且PE∩CD=E ,∴AD ⊥平面PDC,又∵PD? 平面PDC,∴AD ⊥PD,又∵AD ⊥CD,∴∠PDC 为二面角P﹣AD ﹣C 的平面角,在Rt△PDE 中,由勾股定理可得:PE= = = ,∴tan∠PDC= = ;(3)解:连结AC,则AC= =3 ,在Rt△ADP 中,AP= = =5,∵AF=2FB ,CG=2GB ,∴FG∥AC,∴直线PA 与直线FG 所成角即为直线PA 与直线FG 所成角∠PAC,在△PAC 中,由余弦定理得cos∠PAC=== .10定理、勾股点评:本题考查线线垂直的判定、二面角及线线角的三角函数值,涉及到余弦定理等知识,注意解题方法的积累,属于中档题.2 x)e ﹣a. 19.(14 分)(2015 ?广东)设a>1,函数 f (x)=(1+x;(1)求f(x)的单调区间(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;直线OP (3)若曲线y=f (x)在点P 处的切线与x轴平行,且在点M(m,n)处的切线与平行,(O 是坐标原点),证明:m≤﹣1.考点:利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.用.合应题:常规题型;导数的综专.分析:(1)利用f'(x)≥0,求出函数单调增区间(2)证明只有 1 个零点,需要说明两个方面:①函数单调;②函数有零点.杂.为复(3)利用导数的最值求解方法证明,思路较x 2 x 2解答:解:(1)f'(x)=e (x (x+1)+2x+1 )=e ⋯2 分∴f′(x)≥0,∴f(x)=(1+x 2 x)e ﹣a 在(﹣∞,+∞)上为增函数.⋯3 分(2)证明:由(1)问可知函数在(﹣∞,+∞)上为增函数.又f(0)=1﹣a,∵a>1.∴1﹣a<0⋯5 分∴f(0)<0.当x→+∞时,f(x)>0 成立.∴f(x)在(﹣∞,+∞)上有且只有一个零点⋯7 分x 2(3)证明:f'(x)=e (x+1),x0 2设点P(x0,y0)则)f'(x)=e (x0+1),x0 2 ∵y=f (x)在点P 处的切线与x轴平行,∴f'(x0)=0,即:e (x0+1)=0,∴x0=﹣1⋯9 分将x0=﹣1 代入y=f (x)得y0= .∴,∴⋯10 分m令g(m)=e ﹣(m+1),m则g'(m)=e ﹣1,由g'(m)=0 得m=0.当m∈(0,+∞)时,g'(m)>0当m∈(﹣∞,0)时,g'(m)<0∴g(m)的最小值为g(0)=0⋯12 分m∴g(m)=e ﹣(m+1)≥0m∴e≥m+111m∴e (m+1)2 3 ≥(m+1)即:∴m≤⋯14 分点评:本题考查了导数在函数单调性和最值上的应用,属于综合应用,在高考中属于压轴题目,有较大难度.2 220.(14 分)(2015 ?广东)已知过原点的动直线l 与圆C1:x+y﹣6x+5=0 相交于不同的两点A ,B.(1)求圆C1 的圆心坐标;(2)求线段A B 的中点M 的轨迹 C 的方程;(3)是否存在实数k,使得直线L:y=k (x﹣4)与曲线 C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.考轨迹方程;直线与圆的位置关系.点:专创新题型;开放型;圆锥曲线的定义、性质与方程.题:分(1)通过将圆C1 的一般式方程化为标准方程即得结论;析:(2)设当直线l 的方程为y=kx ,通过联立直线l 与圆C1 的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L 与圆C1 的方程,利用根的判别式△=0 及轨迹 C 的端点与点解答:(4,0)决定的直线斜率,即得结论.2 2解:(1)∵圆C1:x﹣6x+5=0 ,+y2 2整理,得其标准方程为:(x﹣3)+y =4,∴圆C1 的圆心坐标为(3,0);(2)设当直线l 的方程为y=kx 、A(x1,y1)、B(x2,y2),联立方程组,2 2消去y 可得:(1+k )x﹣6x+5=0 ,2 2由△=36﹣4(1+k )×5>0,可得k <由韦达定理,可得x1+x2= ,∴线段A B 的中点M 的轨迹 C 的参数方程为,其中﹣<k<,∴线段A B 的中点M 的轨迹 C 的方程为:(x﹣)2+y 2 = ,其中<x≤3;12(3)结论:当k∈(﹣,)∪{ ﹣,} 时,直线L:y=k (x﹣4)与曲线C 只有一个交点.理由如下:联立方程组,消去y,可得:(1+k 2 2)x ﹣(3+8k)x+16k 2=0,2 2令△=(3+8k)﹣4(1+k )?16k 2=0,解得k=±,又∵轨迹 C 的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k (x﹣4)与曲线 C 只有一个交点时,k 的取值范围为(﹣,)∪{ ﹣,} .点本题考查求轨迹方程、直线与曲线的位置关系问题,注意解题方法的积累,属于评:中档题.+21.(14 分)(2015 ?广东)数列{a n}满足:a1+2a2+⋯na n=4﹣,n∈N.(1)求a3 的值;(2)求数列{a n} 的前n 项和T n;(3)令b1=a1,b n= +(1+ + +⋯+ )a n(n≥2),证明:数列{b n} 的前n 项和S n 满足S n<2+2lnn .考点:数列与不等式的综合;数列的求和.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)利用数列的递推关系即可求a3 的值;(2)利用作差法求出数列{a n}的通项公式,利用等比数列的前n 项和公式即可求数列{a n} 的前n 项和T n;(3)利用构造法,结合裂项法进行求解即可证明不等式.解答:+解:(1)∵a1+2a2+⋯na n=4﹣,n∈N .∴a1=4﹣3=1,1+2a2=4﹣=2,解得a2= ,∵a1+2a2+⋯+na n=4﹣,n∈N + .+∴a1+2a2+⋯+(n﹣1)a n .﹣1=4﹣,n∈N两式相减得na n=4﹣﹣(4﹣)= ,n≥2,13则a n= ,n≥2,当n=1 时,a1=1 也满足,∴a n= ,n≥1,则a3= ;(2)∵a n= ,n≥1,∴数列{a n} 是公比q= ,1﹣n2.则数列{a n} 的前n 项和T n= =2﹣(3)b n= +(1+ + +⋯+ )a n,∴b1=a1,b2= +(1+ )a2,b3= (1+ + )a3,∴S n=b1+b2+⋯+b n=(1+ + +⋯+ )(a1+a2+⋯+a n)=(1+ + +⋯+ )T n1﹣n)<2×(1+ + +⋯+ ),=(1+ + +⋯+ )(2﹣21,x>1,设f(x)=lnx+﹣.则f′(x)=﹣即f(x)在(1,+∞)上为增函数,∵f(1)=0,即f(x)>0,∵k≥2,且k∈N?时,,∴f()=ln +﹣1>0,即ln >,∴ln ,,⋯,即=lnn,∴2×(1+ + +⋯+ )<2+lnn,即S n<2(1+lnn )=2+2lnn .本题主要考查数列通项公式以及前n 项和的计算,以及数列和不等式的综合,利点评:性力,综合用作差法求出数列的通项公式是解决本题的关键.考查学生的计算能14WORD文档较强,难度较大.152015年广东省高考数学试卷(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5 分)(2015 ?广东)若集合M={x| (x+4)(x+1)=0} ,N={x| (x﹣4)(x﹣1)=0} ,则M ∩N=()A .{ 1,4} B.{ ﹣1,﹣4} C.{0} D.?2.(5 分)(2015 ?广东)若复数z=i(3﹣2i)(i 是虚数单位),则=()A .2﹣3i B.2+3i C.3+2i D.3﹣2i3.(5 分)(2015 ?广东)下列函数中,既不是奇函数,也不是偶函数的是()xA .C.y=2x+ D.y =x+e B.y= y=x+4.(5 分)(2015 ?广东)袋中共有15 个除了颜色外完全相同的球,其中有10 个白球, 5 个红球.从袋中任取 2 个球,所取的 2 个球中恰有 1 个白球,1 个红球的概率为()A .B.C.D.12 25.(5 分)(2015?广东)平行于直线2x+y+1=0 且与圆x +y =5 相切的直线的方程是()A .2x+y+5=0 或2x+y﹣5=0 B.2x+y+ =0 或2x+y ﹣=0C.2x﹣y+5=0 或2x﹣y﹣5=0 D.2x﹣y+ =0 或2x﹣y﹣=06.(5 分)(2015 ?广东)若变量x,y 满足约束条件,则z=3x+2y 的最小值为()A .4 B.C.6 D.7.(5 分)(2015?广东)已知双曲线C:﹣=1 的离心率e= ,且其右焦点为F2(5,0),则双曲线 C 的方程为()A .B.C.D.﹣=1 ﹣=1 ﹣=1 ﹣=18.(5 分)(2015?广东)若空间中n 个不同的点两两距离都相等,则正整数n 的取值()A .至多等于 3 B.至多等于 4 C.等于5 D.大于516二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)49.(5 分)(2015 ?广东)在(﹣1)的展开式中,x 的系数为.10.(5 分)(2015?广东)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8= .11.(5 分)(2015 ?广东)设△ABC 的内角 A ,B,C 的对边分别为a,b,c.若a= ,sinB= ,C= ,则b= .12.(5 分)(2015?广东)某高三毕业班有40 人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)13.(5 分)(2015?广东)已知随机变量X 服从二项分布B(n,p),若E(X)=30,D(X)=20,则P= .14.(5 分)(2015?广东)已知直线l 的极坐标方程为2ρsin(θ﹣)= ,点A 的极坐标.为A(2 ,),则点 A 到直线l 的距离为15.(2015?广东)如图,已知AB 是圆O的直径,AB=4 ,EC 是圆O的切线,切点为C,BC=1.过圆心O 作BC 的平行线,分别交EC 和AC 于D 和点P,则OD= .三、解答题16.(12 分)(2015?广东)在平面直角坐标系xOy 中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx 的值;(2)若与的夹角为,求x 的值.17.(12 分)(2015 ?广东)某工厂36 名工人年龄数据如图:年龄工人编号年龄工人编号年龄年龄工人编号工人编号171 40 10 36 19 27 28 342 44 11 31 20 43 29 393 40 12 38 21 41 30 434 41 13 39 22 37 31 385 33 14 43 23 34 32 426 40 15 45 24 42 33 537 45 16 39 25 37 34 378 42 17 38 26 44 35 499 43 18 36 27 42 36 399的样本,且在第一分段里用随机抽样法抽到(1)用系统抽样法从36 名工人中抽取容量为;的年龄数据为44,列出样本的年龄数据2(2)计算(1)中样本的均值和方差s;0.01%)?s和+s 之间有多少人?所占百分比是多少(精确到(3)36 名工人中年龄在﹣18.(14 分)(2015 ?广东)如图,三角形△PDC 所在的平面与长方形A BCD 所在的平面垂直,PD=PC=4,AB=6 ,BC=3 ,点 E 是CD 的中点,点F、G 分别在线段AB 、BC 上,且AF=2FB ,CG=2GB .(1)证明:PE⊥FG;C的正切值;(2)求二面角P﹣A D﹣(3)求直线PA 与直线FG 所成角的余弦值.2 x)e﹣a. 19.(14 分)(2015 ?广东)设a>1,函数 f (x)=(1+x间;(1)求f(x)的单调区(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f (x)在点P 处的切线与x 轴平行,且在点M(m,n)处的切线与直线OP1.平行,(O 是坐标原点),证明:m≤﹣2 220.(14 分)(2015 ?广东)已知过原点的动直线l 与圆C1:x﹣6x+5=0 相交于不同的两+y点A ,B.(1)求圆C1 的圆心坐标;C的方程;(2)求线段AB 的中点M 的轨迹4)与曲线 C 只有一个交点?若存在,求出(3)是否存在实数k,使得直线L:y=k (x﹣k 的取值范围;若不存在,说明理由.+21.(14 分)(2015 ?广东)数列{a n}满足:a1+2a2+⋯na n=4﹣,n∈N.(1)求a3 的值;(2)求数列{a n} 的前n 项和T n;18(3)令b1=a1,b n= +(1+ + +⋯+ )a n(n≥2),证明:数列{b n} 的前n 项和S n 满足S n<2+2lnn .19。
2015广东省高等职业院校招收中等职业学校毕业生考试试卷数 学 试 题一、选择题:本大题共15小题,每小题5分,满分75分.在每小题给出的四个选项中,只有一项是符合题目要求的.DBBDA ,DBCBB ,CAABC二、填空题:本大题共5小题,每小题5分,满分25分.16.15-n17.0.9518.-319.2220.5三、解答题:本大题共4小题,第21~23题各12分,第24题14分,满分50分. 解答须写出文字说明、证明过程和演算步骤.21.(本小题满分12分)解: (1)连接BD ,则△ABD 为直角三角形, ∴)(516922m AD AB BD =+=+=∴22221316914425CD BC BD ===+=+∴△CBD 为直角三角形,∠CBD = 90°. 故1312cos ==CD BC C . (2)∵)(365122143212m S S S BCD BAD ABCD =⨯⨯+⨯⨯=+=∆∆ 360036100=⨯(元)∴种值草皮需要投入资金3600元.22.(本小题满分12分)解:(1)由题意知,21)62cos(-=+ππa , 即212,216sin -=--=-a a π ∴ 1=a .(2)∵若20,31sin πθθ<<=, ∴322911sin 1cos 2=-=-=θθ. 故 6136 6sin sin 6cos cos )6cos()(-=⋅-⋅=+=πθπθπθθf 23.(本小题满分12分)解:(1)设{}n a 的公差为d ,则有 931=+d a ,①286511=+++d a d a ,即281121=+d a ,②由①,②解得2,31==d a ,故)(12)1(*1N n n d n a a n ∈+=-+=.(2))2(2)123(+=++=n n n n S n . 证明:(3)∵)111(41)1(411)12(11222+-=+=-+=-=n n n n n a b n n . ∴)111(41)]111()3121()2111[(4121+-=+-++-+-=+++=n n n b b b T n n . ∴ 41<n T . 24.(本小题满分14分)解:(1)设椭圆E 的方程为)0(12222>>=+b a by a x , 因为抛物线x y 162=的焦点坐标为(4,0),所以)0,4(),0,4(,421F F c -=.又 因为54=a c ,所以3,522=-==c a b a . 故椭圆E 的方程为192522=+y x . (2)因为直线)0)(4(≠+=k x k y 过焦点1F ,所以D CF 2∆的周长为204=a .周长为20的圆的半径b R =>==310220ππ, 同时,a R =<=510π,∴a R b <<,与椭圆有交点.。
一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合{}1,1M =-,{}2,1,0N =-,则MN =( )A .{}0,1-B .{}0C .{}1D .{}1,1-【答案】C考点:集合的交集运算.2.已知i 是虚数单位,则复数()21i +=( )A .2-B .2C .2i -D .2i 【答案】D 【解析】试题分析:()221121212i i i i i +=++=+-=,故选D .考点:复数的乘法运算.3.下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+B .2cos y x x =- C .122xx y =+D .sin 2y x x =+ 【答案】A 【解析】试题分析:函数()2sin f x x x =+的定义域为R ,关于原点对称,因为()11sin1f =+,()1sin1f x -=-,所以函数()2sin f x x x =+既不是奇函数,也不是偶函数;函数()2cos f x x x =-的定义域为R ,关于原考点:函数的奇偶性.4.若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 【答案】C 【解析】试题分析:作出可行域如图所示:作直线0:l 230x y +=,再作一组平行于0l 的直线:l 23x y z +=,当直线l 经过点A 时,23z x y =+取得最大值,由224x y x +=⎧⎨=⎩得:41x y =⎧⎨=-⎩,所以点A 的坐标为()4,1-,所以()max 24315z =⨯+⨯-=,故选C .考点:线性规划.5.设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,23c =,3cos 2A =,且 b c <,则b =( )A .3B .2C .22D .3 【答案】B 【解析】试题分析:由余弦定理得:2222cos a b c bc =+-A ,所以()22232232232b b =+-⨯⨯⨯,即2680b b -+=,解得:2b =或4b =,因为b c <,所以2b =,故选B .考点:余弦定理.6.若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列 命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 【答案】A 【解析】试题分析:若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则l 至少与1l ,2l 中的一条相交,故选A . 考点:空间点、线、面的位置关系.7.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率 为( )A .0.4B .0.6C .0.8D .1 【答案】B 【解析】试题分析:5件产品中有2件次品,记为a ,b ,有3件合格品,记为c ,d ,e ,从这5件产品中任取2件,有10种,分别是(),a b ,(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,(),c d ,(),c e ,(),d e ,恰有一件次品,有6种,分别是(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,设事件A =“恰有一件次品”,则()60.610P A ==,故选B . 考点:古典概型.8.已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .2 【答案】C 【解析】试题分析:由题意得:222549m =-=,因为0m >,所以3m =,故选C . 考点:椭圆的简单几何性质.9.在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =, 则D C A ⋅A =( )A .2B .3C .4D .5 【答案】D考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算. 10.若集合(){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=( )A .50B .100C .150D .200 【答案】D 【解析】试题分析:当4s =时,p ,q ,r 都是取0,1,2,3中的一个,有44464⨯⨯=种,当3s =时,p ,q ,r 都是取0,1,2中的一个,有33327⨯⨯=种,当2s =时,p ,q ,r 都是取0,1中的一个,有2228⨯⨯=种,当1s =时,p ,q ,r 都取0,有1种,所以()card 642781100E =+++=,当0t =时,u 取1,2,3,4中的一个,有4种,当1t =时,u 取2,3,4中的一个,有3种,当2t =时,u 取3,4中的一个,有2种,当3t =时,u 取4,有1种,所以t 、u 的取值有123410+++=种,同理,v 、w的取值也有10种,所以()card F 1010100=⨯=,所以()()card card F 100100200E +=+=,故选D . 考点:推理与证明.二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(11~13题)11.不等式2340x x --+>的解集为 .(用区间表示) 【答案】()4,1-【解析】试题分析:由2340x x --+<得:41x -<<,所以不等式2340x x --+>的解集为()4,1-,所以答案应填:()4,1-.考点:一元二次不等式.12.已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的 均值为 . 【答案】11考点:均值的性质.13.若三个正数a ,b ,c 成等比数列,其中526a =+,526c =-,则b = . 【答案】1【解析】试题分析:因为三个正数a ,b ,c 成等比数列,所以()()25265261b ac ==+-=,因为0b >,所以1b =,所以答案应填:1.考点:等比中项.(二)选做题(14、15题,考生只能从中选作一题)14.(坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为222x ty t⎧=⎪⎨=⎪⎩(t为参数),则1C 与2C 交点的直角坐标为 . 【答案】()2,4-【解析】试题分析:曲线1C 的直角坐标方程为2x y +=-,曲线2C 的普通方程为28y x =,由228x y y x +=-⎧⎨=⎩得:24x y =⎧⎨=-⎩,所以1C 与2C 交点的直角坐标为()2,4-,所以答案应填:()2,4-. 考点:1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点. 15.(几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的 切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4A B =,C 23E =,则D A = .【答案】3【解析】试题分析:连结C O ,则C D O ⊥E ,因为D D A ⊥E ,所以C//D O A ,所以C D O OE=A AE,由切割线定理得:2C E =BE⋅AE ,所以()412BE BE+=,即24120BE +BE -=,解得:2BE =或6BE =-(舍去),所以C 26D 34O ⋅AE ⨯A ===OE ,所以答案应填:3. 考点:1、切线的性质;2、平行线分线段成比例定理;3、切割线定理.三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)16.(本小题满分12分)已知tan 2α=.(1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求2sin 2sin sin cos cos 21ααααα+--的值.【答案】(1)3-;(2)1. 【解析】试题分析:(1)由两角和的正切公式展开,代入数值,即可得tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)先利用二倍角的正、余弦公式可得222sin 22sin cos sin sin cos cos 21sin sin cos 2cos ααααααααααα=+--+-,再分子、分母都除以2cos α可得22sin 22tan sin sin cos cos 21tan tan 2αααααααα=+--+-,代入数值,即可得2sin 2sin sin cos cos 21ααααα+--的值.试题解析:(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+-- ()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+-22tan tan tan 2ααα=+-222222⨯=+-1=考点:1、两角和的正切公式;2、特殊角的三角函数值;3、二倍角的正、余弦公式;4、同角三角函数的基本关系.17.(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的 方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户? 【答案】(1)0.0075;(2)230,224;(3)5. 【解析】(2)月平均用电量的众数是2202402302+= 因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户,抽取比例11125151055==+++,所以月平均用电量在[)220,240的用户中应抽取12555⨯=户考点:1、频率分布直方图;2、样本的数字特征(众数、中位数);3、分层抽样.18.(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直, D C 4P =P =,6AB =,C 3B =. (1)证明:C//B 平面D P A ; (2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.【答案】(1)证明见解析;(2)证明见解析;(3)372. 【解析】试题分析:(1)由四边形CD AB 是长方形可证C//D B A ,进而可证C//B 平面D P A ;(2)先证C CD B ⊥,再证C B ⊥平面DC P ,进而可证C D B ⊥P ;(3)取CD 的中点E ,连结AE 和PE ,先证PE ⊥平面CD AB ,再设点C 到平面D P A 的距离为h ,利用C D CD V V -P A P-A =三棱锥三棱锥可得h 的值,进而可得点C 到平面D P A 的距离.试题解析:(1)因为四边形CD AB 是长方形,所以C//D B A ,因为C B ⊄平面D P A ,D A ⊂平面D P A ,所以C//B 平面D P A(2)因为四边形CD AB 是长方形,所以C CD B ⊥,因为平面DC P ⊥平面CD AB ,平面DCP 平面CD CD AB =,C B ⊂平面CD AB ,所以C B ⊥平面DC P ,因为D P ⊂平面DC P ,所以C D B ⊥P (3)取CD 的中点E ,连结AE 和PE ,因为D C P =P ,所以CD PE ⊥,在R t D ∆P E 中,22D D PE =P -E22437=-=,因为平面DC P ⊥平面CD AB ,平面DC P 平面CD CD AB =,PE ⊂平面DC P ,所以PE ⊥平面CD AB ,由(2)知:C B ⊥平面DC P ,由(1)知:C//D B A ,所以D A ⊥平面DC P ,因为D P ⊂平面DC P ,所以D D A ⊥P ,设点C 到平面D P A 的距离为h ,因为C D CD V V -P A P-A =三棱锥三棱锥,所以D CD 1133S h S ∆P A ∆A ⋅=⋅PE ,即CD D 136737212342S h S ∆A ∆P A ⨯⨯⨯⋅PE ===⨯⨯,所以点C 到平面D P A 的距离是372考点:1、线面平行;2、线线垂直;3、点到平面的距离.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =, 且当2n ≥时,211458n n n n S S S S ++-+=+. (1)求4a 的值;(2)证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; (3)求数列{}n a 的通项公式.【答案】(1)78;(2)证明见解析;(3)()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭.【解析】试题分析:(1)令2n =可得4a 的值;(2)先将211458n n n n S S S S ++-+=+(2n ≥)转化为2144n n n a a a +++=,再利用等比数列的定义可证112n n a a +⎧⎫-⎨⎬⎩⎭是等比数列;(3)先由(2)可得数列112n n a a +⎧⎫-⎨⎬⎩⎭的通项公式,再将数列112n n a a +⎧⎫-⎨⎬⎩⎭的通项公式转化为数列12n n a ⎧⎫⎪⎪⎪⎪⎨⎬⎛⎫⎪⎪⎪⎪⎪⎝⎭⎩⎭是等差数列,进而可得数列{}n a 的通项公式. 试题解析:(1)当2n =时,4231458S S S S +=+,即435335415181124224a ⎛⎫⎛⎫⎛⎫+++++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得:478a =(2)因为211458n n n n S S S S ++-+=+(2n ≥),所以21114444n n n n n n S S S S S S ++-+-+-=-(2n ≥),即2144n n n a a a +++=(2n ≥),因为3125441644a a a +=⨯+==,所以2144n n n a a a +++=,因为()2121111111114242212142422222n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a +++++++++++-----====----,所以数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列(3)由(2)知:数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列,所以111122n n n a a -+⎛⎫-= ⎪⎝⎭即1141122n n n n a a ++-=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以数列12n n a ⎧⎫⎪⎪⎪⎪⎨⎬⎛⎫⎪⎪ ⎪⎪⎪⎝⎭⎩⎭是以1212a =为首项,公差为4的等差数列,所以()2144212nna n n =+-⨯=-⎛⎫⎪⎝⎭,即()()111422122n n n a n n -⎛⎫⎛⎫=-⨯=-⨯ ⎪ ⎪⎝⎭⎝⎭,所以数列{}n a 的通项公式是()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.20.(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围; 若不存在,说明理由.【答案】(1)()3,0;(2)492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫⎝⎛≤<335x ;(3)存在,752752≤≤-k 或34±=k . 【解析】试题分析:(1)将圆1C 的方程化为标准方程可得圆1C 的圆心坐标;(2)先设线段AB 的中点M 的坐标和直线l 的方程,再由圆的性质可得点M 满足的方程,进而利用动直线l 与圆1C 相交可得0x 的取值范围,即可得线段AB 的中点M 的轨迹C 的方程;(3)先说明直线L 的方程和曲线C 的方程表示的图形,再利用图形可得当直线L:()4y k x =-与曲线C 只有一个交点时,k 的取值范围,进而可得存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点.所以202022054x x m y <=,所以20200543x x x <-,解得350>x 或00<x ,又因为300≤<x ,所以3350≤<x . 所以),(00y x M 满足49232020=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<3350x 即M 的轨迹C 的方程为492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<335x . (3)由题意知直线L 表示过定点T (4,0),斜率为k 的直线. 结合图形,49232020=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<3350x 表示的是一段关于X 轴对称,起点为⎪⎪⎭⎫ ⎝⎛-352,35按逆时针方向运动到⎪⎪⎭⎫ ⎝⎛352,35的圆弧.根据对称性,只需讨论在X 轴对称下方的圆弧.设P⎪⎪⎭⎫ ⎝⎛-352,35,则752354352=-=PT k ,而当直线L 与轨迹C 相切时,.2314232=+-k k k ,解得43±=k .在这里暂取43=k ,因为43752<,所以k k PT <结合图形,可得对于X 轴对称下方的圆弧,当0752≤≤-k 或34=k 时,直线L 与X 轴对称下方的圆弧有且只有一个交点,根据对称性可知752752≤≤-k 或34±=k . 综上所述:当752752≤≤-k 或34±=k 时,直线L:()4y k x =-与曲线C 只有一交点. 考点:1、圆的标准方程;2、直线与圆的位置关系;3、圆锥曲线与圆的位置关系.21.(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.(1)若()01f ≤,求a 的取值范围;(2)讨论()f x 的单调性;(3)当2a ≥时,讨论()4f x x +在区间()0,+∞内的零点个数. 【答案】(1)21≤a ;(2))(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减;(3)当2=a 时,()4f x x+有一个零点x=2;当2>a ,)(x f y =与xy 4-=有两个零点. 【解析】试题分析:(1)先由()01f <可得1≤+a a ,再对a 的取值范围进行讨论可得1≤+a a 的解,进而可得a 的取值范围;(2)先写函数()f x 的解析式,再对a 的取值范围进行讨论确定函数()f x 的单调性;(3)先由(2)得函数()f x 的最小值,再对a 的取值范围进行讨论确定()4f x x +在区间()0,+∞内的零点个数. 试题解析:(1)22(0)f a a a a a a =+-+=+,因为()01f ≤,所以1≤+a a当0≤a 时,10≤,显然成立;当0>a ,则有12≤a ,所以21≤a .所以210≤<a综上所述,a 的取值范围是21≤a . (2)()⎪⎩⎪⎨⎧<++-≥--=ax a x a x a x x a x x f ,2)12(,12)(22 对于()x a x u 1221--=,其对称轴为a a a x <-=-=21212,开口向上, 所以)(x f 在),(+∞a 上单调递增; 对于()a x a x u 21221++-=,其对称轴为a a a x >+=+=21212,开口向上, 所以)(x f 在),(a -∞上单调递减. 综上,)(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减.(3)由(2)得)(x f 在),(+∞a 上单调递增,在),0(a 上单调递减,所以2min )()(a a a f x f -==. (i)当2=a 时,2)2()(min-==f x f ,⎪⎩⎪⎨⎧<+-≥-=2,452,3)(22x x x x x x x f 令()4f x x +=0,即xx f 4)(-=(x>0). 因为)(x f 在)2,0(上单调递减,所以2)2()(-=>f x f 而x y 4-=在)2,0(上单调递增,2)2(-=<f y ,所以)(x f y =与xy 4-=在)2,0(无交点. 当2≥x 时,xx x x f 43)(2-=-=,即04323=+-x x ,所以042223=+--x x x ,所以()0)1(22=+-x x ,因为2≥x ,所以2=x ,即当2=a 时,()4f x x +有一个零点x=2. (ii)当2>a 时,2min )()(a a a f x f -==,当),0(a x ∈时,42)0(>=a f ,2)(a a a f -=,而xy 4-=在),0(a x ∈上单调递增, 当a x =时,a y 4-=.下面比较2)(a a a f -=与a4-的大小 因为0)2)(2()4()4(2232<++--=---=---a a a a a a a a a a 所以aa a a f 4)(2-<-=结合图像不难得当2>a ,)(x f y =与x y 4-=有两个交点. 综上,当2=a 时,()4f x x +有一个零点x=2;当2>a ,)(x f y =与xy 4-=有两个零点. 考点:1、绝对值不等式;2、函数的单调性;3、函数的最值;4、函数的零点.。
2015年广东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)24.(5分)(2015•广东)若变量x,y满足约束条件,则z=2x+3y的最大值为()5.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()6.(5分)(2015•广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是7.(5分)(2015•广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任8.(5分)(2015•广东)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()9.(5分)(2015•广东)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()10.(5分)(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)(2015•广东)不等式﹣x2﹣3x+4>0的解集为.(用区间表示)12.(5分)(2015•广东)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为.13.(5分)(2015•广东)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=.坐标系与参数方程选做题14.(5分)(2015•广东)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为.几何证明选讲选做题15.(2015•广东)如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=.三、解答题(共6小题,满分80分)16.(12分)(2015•广东)已知tanα=2.(1)求tan(α+)的值;(2)求的值.17.(12分)(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220.240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220.240)的用户中应抽取多少户?18.(14分)(2015•广东)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.19.(14分)(2015•广东)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当a≥2时,4S n+2+5S n=8S n+1+S n﹣1.(1)求a4的值;(2)证明:{a n+1﹣a n}为等比数列;(3)求数列{a n}的通项公式.20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.21.(14分)(2015•广东)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.2015年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)2,是偶函数;4.(5分)(2015•广东)若变量x,y满足约束条件,则z=2x+3y的最大值为()y=y=,解得,5.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=(),cosA=×6.(5分)(2015•广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是7.(5分)(2015•广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任件的取法为8.(5分)(2015•广东)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()利用椭圆+椭圆=19.(5分)(2015•广东)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()==∴10.(5分)(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)(2015•广东)不等式﹣x2﹣3x+4>0的解集为(﹣4,1).(用区间表示)12.(5分)(2015•广东)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为11.的平均数为均值的均值为:13.(5分)(2015•广东)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=1.,2∴坐标系与参数方程选做题14.(5分)(2015•广东)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为(2,﹣4).,把的参数方程为,解得,几何证明选讲选做题15.(2015•广东)如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD=3.,可得∴∴三、解答题(共6小题,满分80分)16.(12分)(2015•广东)已知tanα=2.(1)求tan(α+)的值;(2)求的值.+===117.(12分)(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220.240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220.240)的用户中应抽取多少户?)月平均用电量的众数是=×18.(14分)(2015•广东)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.PE==.h==的距离是.19.(14分)(2015•广东)设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当a≥2时,4S n+2+5S n=8S n+1+S n﹣1.(1)求a4的值;(2)证明:{a n+1﹣a n}为等比数列;(3)求数列{a n}的通项公式.,求得,由此可得数列{}是以为首项,公比为的{为首项,公比为{为首项,∵∵{是以为首项,公比为的等比数列;{是以为首项,公比为的等比数列,∴为首项,∴,即的通项公式是20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.联立方程组,,其中﹣<)=,其中<,﹣,联立方程组,±,的端点(,±±的取值范围为(﹣,}21.(14分)(2015•广东)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.+a,a.,x==a+=a﹣=时,=═,.当,=.,即参与本试卷答题和审题的老师有:wkl197822;changq;maths;双曲线;刘长柏;吕静;孙佑中;qiss;lincy;sxs123;cst(排名不分先后)菁优网2015年7月20日。
2015年广东省高等职业院校招收中等职业学校毕业生考试数 学班级 学号 姓名本试卷共4页,24小题,满分150分,考试用时120分钟一、选择题:(本大题共15小题,每小题5分,满分75分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 设集合{}1,4M =,{}1,3,5N =,则=M N ( ). A.{}0 B. {}1 C. {}0,1,2 D. {}1,0,1,2-2. 函数()f x = ( ). A. (),1-∞ B. [)1,-+∞ C. (],1-∞ D. (,)-∞+∞3. 不等式2760x x -+>的解集是 ( ). A. ()1,6 B. ()(),16,-∞+∞ C. φ D. (,)-∞+∞4. 设0a >且1a ≠,,x y 为任意实数,则下列算式错误的是 ( ) . A. 01a = B. xyx ya a a+= C. xx y y a a a-= D. ()22x x a a =5. 在平面直角坐标系中,已知三点()1,2A -,()2,1B -,()0,2C -,则AB BC +=( ). A. 1 B. 2 C. 3 D. 46.下列方程的图像为双曲线的是 ( ). A. 220x y -= B. 22x y = C. 22341x y += D. 2222x y -=7.已知函数()f x 是奇函数,且(2)1f =,则[]3(2)f -= ( ).A. 8-B. 1-C. 1D. 88. “01a <<”是“log 2log 3a a >”的 ( ). A. 必要非充分条件 B. 充分非必要条件 C. 充分必要条件 D. 非充分非必要条件9. 若函数()2sin f x x ω=的最小正周期为3π,则ω= ( ). A.13 B. 23C. 1D. 2 10. 当0x >时,下列不等式正确的是 ( ). A. 44x x+≤ B. 44x x+≥ C. 48x x+≤ D. 48x x+≥11. 已知向量(sin ,2)a θ=,(1,cos )b θ=,若a b ⊥,则tan θ= ( ).A. 12- B.12C. 2-D. 2 12. 在各项为正数的等比数列{}n a 中,若1413a a =,则3233log log a a += ( ).A. 1-B. 1C. 3-D. 313. 若圆22(1)(1)2x y -++=与直线0x y k +-=相切,则k = ( ). A.2± B. C. ± D. 4±14.七位顾客对某商品的满意度(满分10分)打出的分数为:8,5,7,6,9,6,8.去掉一个最高分和最低分后,所剩数据的平均值为 ( ). A. 6 B. 7 C. 8 D. 915.甲班和乙班各有两名男羽毛球运动员,从这四人中任意选取两人配对参加双打比赛,则这对运动员来自不同班的概率是 ( ). A.13 B.12 C. 23 D. 43二、填空题:(本大题共5个小题,每小题5分,满分25分。
2015年广东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1、(5分)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A、{0、﹣1}B、{0}C、{1}D、{﹣1,1}2、(5分)已知i是虚数单位,则复数(1+i)2=()A、2iB、﹣2iC、2D、﹣23、(5分)下列函数中,既不是奇函数,也不是偶函数的是()A、y=x+sin2xB、y=x2﹣cosxC、y=2x+D、y=x2+sinx4、(5分)若变量x,y满足约束条件,则z=2x+3y的最大值为()A、2B、5C、8D、105、(5分)设△ABC的内角A,B,C的对边分别为a,b,c、若a=2,c=2,cosA=、且b<c,则b=()A、B、2 C、2 D、36、(5分)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A、l与l1,l2都不相交B、l与l1,l2都相交C、l至多与l1,l2中的一条相交D、l至少与l1,l2中的一条相交7、(5分)已知5件产品中有2件次品,其余为合格品、现从这5件产品中任取2件,恰有一件次品的概率为()A、0.4B、0.6C、0.8D、18、(5分)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A、2B、3C、4D、99、(5分)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A、5B、4C、3D、210、(5分)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A、200 B、150 C、100 D、50二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11、(5分)不等式﹣x2﹣3x+4>0的解集为、(用区间表示)12、(5分)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为、13、(5分)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b=、坐标系与参数方程选做题14、(5分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系、曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为、几何证明选讲选做题15、如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D、若AB=4、CE=2,则AD=、三、解答题(共6小题,满分80分)16、(12分)已知tanα=2、(1)求tan(α+)的值;(2)求的值、17、(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图、(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?18、(14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3、(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离、19、(14分)设数列{a n}的前n项和为S n,n∈N*、已知a1=1,a2=,a3=,且当n≥2时,4S n+5S n=8S n+1+S n﹣1、+2(1)求a4的值;(2)证明:{a n﹣a n}为等比数列;+1(3)求数列{a n}的通项公式、20、(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B、(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由、21、(14分)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1)、(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数、参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1、(5分)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A、{0、﹣1}B、{0}C、{1}D、{﹣1,1}题目分析:进行交集的运算即可、试题解答解:M∩N={﹣1,1}∩{﹣2,1,0}={1}、故选:C、点评:考查列举法表示集合,交集的概念及运算、2、(5分)已知i是虚数单位,则复数(1+i)2=()A、2iB、﹣2iC、2D、﹣2题目分析:利用完全平方式展开化简即可、试题解答解:(1+i)2=12+2i+i2=1+2i﹣1=2i;故选:A、点评:本题考查了复数的运算;注意i2=﹣1、3、(5分)下列函数中,既不是奇函数,也不是偶函数的是()A、y=x+sin2xB、y=x2﹣cosxC、y=2x+D、y=x2+sinx题目分析:利用函数奇偶性的判断方法对选项分别分析选择、试题解答解:四个选项中,函数的定义域都是R,对于A,﹣x+sin(﹣2x)=﹣(x+sin2x);是奇函数;对于B,(﹣x)2﹣cos(﹣x)=x2﹣cosx;是偶函数;对于C,,是偶函数;对于D,(﹣x)2+sin(﹣x)=x2﹣sinx≠x2+sinx,x2﹣sinx≠﹣(x2+sinx);所以是非奇非偶的函数;故选:D、点评:本题考查了函数奇偶性的判断,在定义域关于原点对称的前提下,判断f(﹣x)与f(x)的关系,相等就是偶函数,相反就是奇函数、4、(5分)若变量x,y满足约束条件,则z=2x+3y的最大值为()A、2B、5C、8D、10题目分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值、试题解答解:作出不等式对应的平面区域(阴影部分),由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点B时,直线y=的截距最大,此时z最大、由,解得,即B(4,﹣1)、此时z的最大值为z=2×4+3×(﹣1)=8﹣3=5,故选:B、点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法、5、(5分)设△ABC的内角A,B,C的对边分别为a,b,c、若a=2,c=2,cosA=、且b<c,则b=()A、B、2 C、2 D、3题目分析:运用余弦定理:a2=b2+c2﹣2bccosA,解关于b的方程,结合b<c,即可得到b=2、试题解答解:a=2,c=2,cosA=、且b<c,由余弦定理可得,a2=b2+c2﹣2bccosA,即有4=b2+12﹣4×b,解得b=2或4,由b<c,可得b=2、故选:B、点评:本题考查三角形的余弦定理及应用,主要考查运算能力,属于中档题和易错题、6、(5分)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A、l与l1,l2都不相交B、l与l1,l2都相交C、l至多与l1,l2中的一条相交D、l至少与l1,l2中的一条相交题目分析:可以画出图形来说明l与l1,l2的位置关系,从而可判断出A,B,C 是错误的,而对于D,可假设不正确,这样l便和l1,l2都不相交,这样可推出和l1,l2异面矛盾,这样便说明D正确、试题解答解:A、l与l1,l2可以相交,如图:∴该选项错误;B、l可以和l1,l2中的一个平行,如上图,∴该选项错误;C、l可以和l1,l2都相交,如下图:,∴该选项错误;D、“l至少与l1,l2中的一条相交”正确,假如l和l1,l2都不相交;∵l和l1,l2都共面;∴l和l1,l2都平行;∴l1∥l2,l1和l2共面,这样便不符合已知的l1和l2异面;∴该选项正确、故选:D、点评:考查异面直线的概念,在直接说明一个命题正确困难的时候,可说明它的反面不正确、7、(5分)已知5件产品中有2件次品,其余为合格品、现从这5件产品中任取2件,恰有一件次品的概率为()A、0.4B、0.6C、0.8D、1题目分析:首先判断这是一个古典概型,而基本事件总数就是从5件产品任取2件的取法,取到恰有一件次品的取法可利用分步计数原理求解,最后带入古典概型的概率公式即可、试题解答解:这是一个古典概型,从5件产品中任取2件的取法为;∴基本事件总数为10;设“选的2件产品中恰有一件次品”为事件A,则A包含的基本事件个数为=6;∴P(A)==0.6、故选:B、点评:考查古典概型的概念,以及古典概型的概率求法,明白基本事件和基本事件总数的概念,掌握组合数公式,分步计数原理、8、(5分)已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A、2B、3C、4D、9题目分析:利用椭圆+=1(m>0 )的左焦点为F1(﹣4,0),可得25﹣m2=16,即可求出m、试题解答解:∵椭圆+=1(m>0 )的左焦点为F1(﹣4,0),∴25﹣m2=16,∵m>0,∴m=3,故选:B、点评:本题考查椭圆的性质,考查学生的计算能力,比较基础、9、(5分)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A、5B、4C、3D、2题目分析:由向量加法的平行四边形法则可求=的坐标,然后代入向量数量积的坐标表示可求试题解答解:由向量加法的平行四边形法则可得,==(3,﹣1)、∴=3×2+(﹣1)×1=5、故选:A、点评:本题主要考查了向量加法的平行四边形法则及向量数量积的坐标表示,属于基础试题、10、(5分)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A、200 B、150 C、100 D、50题目分析:对于集合E,s=4时,p,q,r从0,1,2,3任取一数都有4种取法,从而构成的元素(p,q,r,s)有4×4×4=64个,再讨论s=3,2,1的情况,求法一样,把每种情况下元素个数相加即可得到集合E的元素个数,而对于集合F,需讨论两个数:u,w,方法类似,最后把求得的集合E,F元素个数相加即可、试题解答解:(1)s=4时,p,q,r的取值的排列情况有4×4×4=64种;s=3时,p,q,r的取值的排列情况有3×3×3=27种;s=2时,有2×2×2=8种;s=1时,有1×1×1=1种;∴card(E)=64+27+8+1=100;(2)u=4时:若w=4,t,v的取值的排列情况有4×4=16种;若w=3,t,v的取值的排列情况有4×3=12种;若w=2,有4×2=8种;若w=1,有4×1=4种;u=3时:若w=4,t,v的取值的排列情况有3×4=12种;若w=3,t,v的取值的排列情况有3×3=9种;若w=2,有3×2=6种;若w=1,有3×1=3种;u=2时:若w=4,t,v的取值的排列情况有2×4=8种;若w=3,有2×3=6种;若w=2,有2×2=4种;若w=1,有2×1=2种;u=1时:若w=4,t,v的取值的排列情况有1×4=4种;若w=3,有1×3=3种;若w=2,有1×2=2种;若w=1,有1×1=1种;∴card(F)=100;∴card(E)+card(F)=200、故选:A、点评:考查描述法表示集合,分布计数原理的应用,注意要弄清讨论谁,做到不重不漏、二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11、(5分)不等式﹣x2﹣3x+4>0的解集为(﹣4,1)、(用区间表示)题目分析:首先将二次项系数化为正数,然后利用因式分解法解之、试题解答解:原不等式等价于x2+3x﹣4<0,所以(x+4)(x﹣1)<0,所以﹣4<x<1;所以不等式的解集为(﹣4,1);故答案为:(﹣4,1)、点评:本题考查了一元二次不等式的解法;一般的首先将二次项系数化为正数,然后选择适当的方法解之;属于基础题、12、(5分)已知样本数据x1,x2,…,x n的均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为11、题目分析:利用平均数计算公式求解试题解答解:∵数据x1,x2,…,x n的平均数为均值=5,则样本数据2x1+1,2x2+1,…,2x n+1 的均值为:=5×2+1=11;故答案为:11、点评:本题考查数据的平均数的求法,是基础题、13、(5分)若三个正数a,b,c 成等比数列,其中a=5+2,c=5﹣2,则b= 1、题目分析:由已知可得,b2=ac,代入已知条件即可求解b试题解答解:∵三个正数a,b,c 成等比数列,∴b2=ac,∵a=5+2,c=5﹣2,∴=1,故答案为:1、点评:本题主要考查了等比数列的性质,属于基础试题坐标系与参数方程选做题14、(5分)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系、曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为(2,﹣4)、题目分析:曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,把代入可得直角坐标方程、曲线C2的参数方程为(t为参数),化为普通方程:y2=8x、联立解出即可、试题解答解:曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,化为直角坐标方程:x+y+2=0、曲线C2的参数方程为(t为参数),化为普通方程:y2=8x、联立,解得,则C1与C2交点的直角坐标为(2,﹣4)、故答案为:(2,﹣4)、点评:本题考查了极坐标化为直角坐标方程、参数方程化为普通方程、曲线的交点,考查了推理能力与计算能力,属于中档题、几何证明选讲选做题15、如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D、若AB=4、CE=2,则AD=3、题目分析:连接OC,则OC⊥DE,可得,由切割线定理可得CE2=BE•AE,求出BE,即可得出结论、试题解答解:连接OC,则OC⊥DE,∵AD⊥DE,∴AD∥OC,∴由切割线定理可得CE2=B E•AE,∴12=BE•(BE+4),∴BE=2,∴OE=4,∴,∴AD=3故答案为:3、点评:本题考查切割线定理,考查学生分析解决问题的能力,比较基础、三、解答题(共6小题,满分80分)16、(12分)已知tanα=2、(1)求tan(α+)的值;(2)求的值、题目分析:(1)直接利用两角和的正切函数求值即可、(2)利用二倍角公式化简求解即可、试题解答解:tanα=2、(1)tan(α+)===﹣3;(2)== ==1、点评:本题考查两角和的正切函数的应用,三角函数的化简求值,二倍角公式的应用,考查计算能力、17、(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图、(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?题目分析:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095++0.011)×20+0.0125×(a﹣220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数、试题解答解:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得x=0.0075,∴直方图中x的值为0.0075;(2)月平均用电量的众数是=230,∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5可得a=224,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有0.0125×20×100=25,月平均用电量为[240,260)的用户有0.0075×20×100=15,月平均用电量为[260,280)的用户有0.005×20×100=10,月平均用电量为[280,300)的用户有0.0025×20×100=5,∴抽取比例为=,∴月平均用电量在[220,240)的用户中应抽取25×=5户、点评:本题考查频率分布直方图,涉及众数和中位数以及分层抽样,属基础题、18、(14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3、(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离、题目分析:(1)利用四边形ABCD是长方形,可得BC∥AD,根据线面平行的判定定理,即可得出结论;(2)利用平面与平面垂直的性质定理得出BC⊥平面PDC,即可证明BC⊥PD;(3)利用等体积法,求点C到平面PDA的距离、试题解答(1)证明:因为四边形ABCD是长方形,所以BC∥AD,因为BC⊄平面PDA,AD⊂平面PDA,所以BC∥平面PDA;(2)证明:因为四边形ABCD是长方形,所以BC⊥CD,因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,BC⊂面ABCD,所以BC⊥平面PDC,因为PD⊂平面PDC,所以BC⊥PD;(3)解:取CD的中点E,连接AE和PE,因为PD=PC,所以PE⊥CD,在Rt△PED中,PE===、因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PDC,所以PE⊥平面ABCD、由(2)知:BC⊥平面PDC,由(1)知:BC∥AD,所以AD⊥平面PDC,因为PD⊂平面PDC,所以AD⊥PD、设点C到平面PDA的距离为h、因为V C=V P﹣ACD,﹣PDA所以,所以h==,所以点C到平面PDA的距离是、点评:本题考查平面与平面垂直的性质,线面垂直与线线垂直的判定,考查三棱锥体积等知识,注意解题方法的积累,属于中档题、19、(14分)设数列{a n}的前n项和为S n,n∈N*、已知a1=1,a2=,a3=,且+5S n=8S n+1+S n﹣1、当n≥2时,4S n+2(1)求a4的值;﹣a n}为等比数列;(2)证明:{a n+1(3)求数列{a n}的通项公式、题目分析:(1)直接在数列递推式中取n=2,求得;+5S n=8S n+1+S n﹣1(n≥2),变形得到4a n+2+a n=4a n+1(n≥2),进一步得(2)由4S n+2到,由此可得数列{}是以为首项,公比为的等比数列;(3)由{}是以为首项,公比为的等比数列,可得、进一步得到,说明{}是以为首项,4为公差的等差数列,由此可得数列{a n}的通项公式、试题解答(1)解:当n=2时,4S4+5S2=8S3+S1,即,解得:;+5S n=8S n+1+S n﹣1(n≥2),∴4S n+2﹣4S n+1+S n﹣S n﹣1=4S n+1﹣4S n (2)证明:∵4S n+2(n≥2),即4a n+a n=4a n+1(n≥2),+2∵,∴4a n+a n=4a n+1、+2∵=、∴数列{}是以=1为首项,公比为的等比数列;(3)解:由(2)知,{}是以为首项,公比为的等比数列,∴、即,∴{}是以为首项,4为公差的等差数列,∴,即,∴数列{a n}的通项公式是、点评:本题考查了数列递推式,考查了等比关系的确定,考查了等比数列的通项公式,关键是灵活变形能力,是中档题、20、(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B、(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由、题目分析:(1)通过将圆C1的一般式方程化为标准方程即得结论;(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L与圆C1的方程,利用根的判别式△=0及轨迹C的端点与点(4,0)决定的直线斜率,即得结论、试题解答解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点、理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k2)x+16k2=0,令△=(3+8k2)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k(x﹣4)与曲线C只有一个交点时,k的取值范围为[﹣,]∪{﹣,}、点评:本题考查求轨迹方程、直线与曲线的位置关系问题,注意解题方法的积累,属于难题、21、(14分)设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1)、(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数、题目分析:(1)利用f(0)≤1,得到|a|+a﹣1≤0,对a分类讨论求解不等式的解集即可、(2)化简函数f(x)的解析式,通过当x<a时,当x≥a时,利用二次函数f (x)的对称轴求解函数的单调区间即可、(3)化简F(x)=f(x)+,求出函数的导数,利用导函数的符号,通过a的讨论判断函数的单调性,然后讨论函数的零点的个数、试题解答解:(1)若f(0)≤1,即:a2+|a|﹣a(a﹣1)≤1、可得|a|+a﹣1≤0,当a≥0时,a,可得a∈[0,]、当a<0时,|a|+a﹣1≤0,恒成立、综上a、∴a的取值范围:;(2)函数f(x)==,当x<a时,函数f(x)的对称轴为:x==a+>a,y=f(x)在(﹣∞,a)时是减函数,当x≥a时,函数f(x)的对称轴为:x==a﹣<a,y=f(x)在(a,+∞)时是增函数,(3)F(x)=f(x)+=,,当x<a 时,=,所以,函数F(x)在(0,a)上是减函数、当x≥a时,因为a≥2,所以,F′(x)=═,所以,函数F(x)在(a,+∞)上是增函数、F(a)=a﹣a2+、当a=2时,F(2)=0,此时F(x)有一个零点,当a>2时,F(a)=a﹣a2+,F′(a)=1﹣2a ==、所以F(ah)在(2,+∞)上是减函数,所以F(a )<,即F(a)<0,当x>0且x→0时,F(x)→+∞;当x→+∞时,F(x)→+∞,所以函数F(x)有两个零点综上所述,当a=2时,F(x)有一个零点,a>2时F(x)有两个零点点评:本题考查的知识点比较多,包括绝对值不等式的解法,函数的零点,函数的导数以及导数与函数的单调性的关系,考查分类讨论思想的应用,函数与方程的思想,转化思想的应用,也考查化归思想的应用21/ 21。
绝密★启用前 试卷类型:B2015年普通高等学校招生全国统一考试【广东卷】数学【理科】本试题共4页,21小题,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名和考生号、考场号、 座位号填写在答题卡上.用2B 铅笔将试卷类型【A 】填涂在答题卡相应位置 上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点 涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指 定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案; 不准使用铅笔和涂改液.不按以上要求做大的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏 涂、错涂、多涂的,答案无效.5.考生必须保持答题卡得整洁.考试结束后,将试卷和答题卡一并交回. 参考公式: 样本数据12,,,n x x x 的方差2222121[()()()]n s x x x x x x n=-+-++-,其中x 表示样本均值.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只 有一项是符合题目要求的.1、若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则MN =A 、∅B 、{}1,4--C 、{}0D 、{}1,4 2、若复数z=i ( 3 – 2 i ) ( i 是虚数单位 ),则z =A 、3-2iB 、3+2iC 、2+3iD 、2-3i 3、下列函数中,既不是奇函数,也不是偶函数的是A 、xe x y += B 、x x y 1+= C 、x xy 212+= D 、21x y += 4、袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为 A 、1 B.2111 C. 2110 D. 215 5、平行于直线012=++y x 且与圆522=+y x 相切的直线的方程是A 、052=+-y x 或052=--y x B. 052=++y x 或052=-+y x C. 052=+-y x 或052=--y x D. 052=++y x 或052=-+y x6、若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x 则y x z 23+=的最小值为A 、531 B. 6 C. 523 D. 4 7、已知双曲线C :12222=-by a x 的离心率e =45,且其右焦点F 2( 5 , 0 ),则双曲线C 的方程为A 、13422=-y x B. 191622=-y x C. 116922=-y x D. 14322=-y x8、若空间中n 个不同的点两两距离都相等,则正整数n 的取值A 、大于5 B. 等于5 C. 至多等于4 D. 至多等于3二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分、 【一】必做题【9-13题】9、在4)1(-x 的展开式中,x 的系数为 .10、在等差数列{n a }中,若2576543=++++a a a a a ,则82a a += . 11、设△ABC 的内角A ,B ,C 的对边分别为a,b,c .若a =3,sinB=21,C=6π,则b = . 12、某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.【用数字做答】13、已知随机变量X 服从二项分布(,)B n p .若()30E X =,()20D X =,则p = .【二】选做题【14-15题,考生只能从中选做一题】14、(坐标系与参数方程选做题)已知直线l 的极坐标方程为24sin(2=-)πθρ,点A 的极坐标为A(22,47π),则点A 到直线l 的距离为 . 15.【几何证明选讲选作题】如图1,已知AB 是圆O 的直径,AB=4,EC 是圆O 的切线,切点为C , BC=1,过圆心O 做BC 的平行线,分别交EC 和AC 于点D 和点P ,则OD= . 图1三、解答题:本大题共6小题,满分80分、解答须写出文字说明、证明过程和演算步骤、 16、【本小题满分12分】在平面直角坐标系xOy 中,已知向量m =【22,22-】,n =【sin x ,cos x 】,x ∈【0,2π】.【1】若m ⊥n ,求tan x 的值 【2】若m 与n 的夹角为3π,求x 的值.17、【本小题满分12分】【1】用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;【2】计算【1】中样本的平均值x 和方差2s ;【3】36名工人中年龄在s x -与s x +之间有多少人?所占的百分比是多少【精确到0.01%】? 18、【本小题满分14分】如图2,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,4PD PC ==,6AB =,3BC =.点E 是CD 边的中点,点F ,G 分别在线段AB ,BC 上,且2AF FB =,2CG GB =.【1】证明:PE FG ⊥;【2】求二面角P AD C --的正切值; 【3】求直线PA 与直线FG 所成角的余弦值. 图219、【本小题满分14分】设a>1,函数a e x x f x -+=)1()(2. (1) 求)(x f 的单调区间 ;(2) 证明:)(x f 在【∞-,+∞】上仅有一个零点;(3) 若曲线()y f x =在点P 处的切线与x 轴平行,且在点(,)M m n 处的切线与直线OP 平行【O 是坐标原点】,证明:123--≤ea m 20、【本小题满分14分】已知过原点的动直线l 与圆221:650C x y x +-+=相交于不同的两点A ,B . 【1】求圆1C 的圆心坐标;【2】求线段AB 的中点M 的轨迹C 的方程;【3】是否存在实数k ,使得直线:(4)L y k x =-与曲线C 只有一个交点:若存在,求出k 的取值范围;若不存在,说明理由. 21、【本小题满分14分】数列{}n a 满足1212242-+-=+⋅⋅⋅++n n n na a a , *N n ∈. (1) 求3a 的值;(2) 求数列{}n a 前n 项和Tn ; (3) 令11b a =,n n n a nn T b )131211(1+⋅⋅⋅++++=-【2≥n 】,证明:数列{n b }的前n 项和n S 满足n S n ln 22+<。
绝密★启用前 试卷类型:A2015年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合()(){}410x x x M =++=,()(){}410x x x N =--=,则M⋂N =( )A 、{}1,4B 、{}1,4--C 、{}0D 、∅2、若复数()32z i i =-(i 是虚数单位),则z =( )A 、23i -B 、23i +C 、32i +D 、32i -3、下列函数中,既不是奇函数,也不是偶函数的是( )A、y 、1y x x =+ C 、122xx y =+ D 、x y x e =+4、袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A 、521B 、1021C 、1121D 、15、平行于直线210x y ++=且与圆225x y +=相切的直线的方程是( )A 、250x y ++=或250x y +-= B、20x y +=或20x y +-= C 、250x y -+=或250x y --= D、20x y -+=或20x y --=6、若变量x ,y 满足约束条件4581302x y x y +≥⎧⎪≤≤⎨⎪≤≤⎩,则32z x y =+的最小值为( )A 、4B 、235C 、6D 、3157、已知双曲线C:22221x y a b -=的离心率54e =,且其右焦点为()2F 5,0,则双曲线C 的方程为( )A 、22143x y -= B 、221916x y -= C 、221169x y -= D 、22134x y -=8、若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )A 、至多等于3B 、至多等于4C 、等于5D 、大于5二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题) 9、在()41x -的展开式中,x 的系数为 .10、在等差数列{}n a 中,若3456725a a a a a ++++=,则28a a += .11、设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若3a =,1sin 2B =,C 6π=,则b = .12、某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答)13、已知随机变量X 服从二项分布(),n p B ,若()30E X =,()D 20X =,则p = .(二)选做题(14、15题,考生只能从中选作一题)14、(坐标系与参数方程选做题)已知直线l 的极坐标方程为2sin 24πρθ⎛⎫-= ⎪⎝⎭,点A 的极坐标为722,4π⎛⎫A ⎪⎝⎭,则点A 到直线l 的距离为 .15、(几何证明选讲选做题)如图1,已知AB 是圆O 的直径,4AB =,C E 是圆O 的切线, 切点为C ,C 1B =.过圆心O 作C B 的平行线,分别交C E 和C A 于 点D 和点P ,则D O = .三、解答题16、(本小题满分12分)在平面直角坐标系xoy 中,已知向量22(,)22m →=-,(sin ,cos ),(0,)2n x x x π→=∈; (1)若m n →→⊥,求tan x 的值; (2)若m →与n →的夹角为3π,求x 的值.17、(本小题满分12分)某工厂36名工人年龄数据如下表(1)用分成抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值x -和方差2S ;(3)36名工人中年龄在x S --和x S -+之间有多少人?所占百分比是多少(精确到0.01%)?18、(本小题满分14分)如图2,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,4PD PC ==,6,3AB BC ==, 点E 是CD 的中点,点,F G 分别在线段AB BC 、上,且2,2AF FB CG GB ==; (1)证明:PE FG ⊥;(2)求二面角P AD C --的正切值;(3)求直线PA 与直线FG 所成角的余弦值.19、(本小题满分14分)设1a >,函数2()(1)xf x x e a =+-;(1)求()f x 的单调区间;(2)证明()f x 在(,)-∞+∞上仅有一个零点;(3)若曲线()y f x =在点P 处的切线与x 轴平行,且在点(,)M m n 处的切线与直线OP 平行,(O 是坐标原点),证明:321m a e≤-.20、(本小题满分14分)已知过原点的动直线l 与圆221:650C x y x +-+=相交于不同的两点,A B ;(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线:(4)L y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由。
2015年广东省普通高校高职考试
数学试题
一、 选择题(共15小题,每题5分,共75分)
1、(2015)已知集合{}1,4M =,{}1,3,5N =,则M N =( )
A. {}1
B. {}4,5
C. {}1,4,5
D. {}1,3,4,5
(2015)函数()f x = )
A 、(],1-∞-
B 、[)1,-+∞
C 、(],1-∞
D 、(),-∞+∞
(2015)不等式2760x x -+>的解集是( )
A 、()1,6
B 、()(),16,-∞+∞
C 、∅
D 、(),-∞+∞
3、(2015)设0a >且1,,a x y ≠为任意实数,则下列算式错误的是( )
A 、01a =
B 、x y x y a a a +⋅=
C 、x
x y y a a a
-= D 、()22x x a a = (2015)在平面直角坐标系中,已知三点()()()1,2,2,1,0,2A B C ---,则AB BC +=( )
A 、1
B 、2
C 、3
D 、4
(2015)下列方程的图像为双曲线的是( )
A 、220x y -=
B 、22x y =
C 、22341x y +=
D 、2222x y -=
7、(2015)已知函数()f x 是奇函数,且()21f =,则()3
2f -=⎡⎤⎣⎦( )
A 、8-
B 、1-
C 、1
D 、8
5、(2015)“01a <<”是“log 2log 3a a >”的( )
A 、充分非必要条件
B 、必要非充分条件
C 、充分必要条件
D 、非充分非必要条件
(2015)函数()2sin f x x ϖ=的最小正周期为3π,则ϖ=( )
A 、13
B 、23
C 、1
D 、2
(2015)当0x >时,下列不等式正确的是( )
A 、44x x +≤
B 、44x x +≥
C 、48x x +≤
D 、48x x
+≥ (2015)已知向量()()sin ,2,1,cos a b θθ==,若a b ⊥,则tan θ=( )
A 、12-
B 、12
C 、2-
D 、2 (2015)在各项为正数的等比数列{}n a 中,若1413
a a ⋅=则3233log log a a +=( ) A 、1- B 、1 C 、3- D 、 3
(2015)若圆()()22
112x y -++=与直线0x y k +-=相切,则k =( )
A 、2±
B 、
C 、±
D 、4±
3、(2015)七位顾客对某商品的满意度(满分为10分)打出的分数为:8,5,7,6,9,6,8.去掉一个最高分和最低分后,所剩数据的平均值为( )
A 、6
B 、7
C 、8
D 、9
(2015)甲班和乙班各有两名男羽毛球运动员,从这四人中任意选出两人配对参加双打比赛,则这对运动员来自不同班的概率是( )
A 、 13
B 、 12
C 、 23
D 、 43 填空题
16、(2015)若等比数列{}n a 满足124,20a a ==,则{}n a 的前n 项和n S = ;
17、(2015)质检部门从某工厂生产的同一批产品中随机抽取100件进行质检,发现其中有5件不合格品,由此估计这批产品中合格品的概率是 ;
18、(2015)已知向量a 和b 夹角为34
π,且2,3a b ==,则 a b ⋅= ; 19、(2015)在ABC ∆中,内角A ,B ,C ,所对应的边分别为,,.a b c 已知13,1,cos 3
a c B ===,则
b = ;
20、(2015)已知点(2,1)A 和点(4,3)B -,则线段AB 的垂直平分线在y 轴上的截距为 ;
解答题
21、(2015)某单位有一块如图所示的四边形空地ABCD ,已知90,A ∠=︒3,AB m = 4,AD m =12,13BC m CD m ==.
(1)求cos C 的值;
(2)若在该空地上种植每平方米100元的草皮,问需要投入多少资金?
22、(2015)已知函数在()cos 6f x a x π⎛⎫=+ ⎪⎝⎭的图像经过点1,22π⎛⎫- ⎪⎝⎭
(1)求a 的值;
(2)若1sin ,032
πθθ=<<,求()f θ。
23、(2015)在等差数列{}n a 中,已知4679,28a a a =+=,
(1)求数列{}n a 的通项公式
(2)求{}n a 的前n 项和n S ;
(3)若()*211n n b n N a =
∈-,数列{}n b 的前n 项和n T ,证明:14
n T <;
24(2015)已知中心在坐标原点,两个焦点12,F F 在x 轴上的椭圆的离心率为45
,抛物线216y x =的焦点与2F 重合。
(1)求椭圆E 的方程;
(2)若直线(4)(0)y k x k =+≠交椭圆E 于,C D 两点,试判断以坐标原点为圆心,周长等于2CF D ∆周长的圆O 与椭圆E 是否有交点?请说明理由。