温度传感器——半导体热敏电阻
- 格式:doc
- 大小:75.00 KB
- 文档页数:3
各种温度传感器分类及其原理温度传感器是一种集成电路或器件,用于测量环境或物体的温度。
根据其工作原理和分类,常见的温度传感器包括热敏电阻、热电偶、热电阻、红外线传感器以及半导体温度传感器等。
1. 热敏电阻(Thermistor)热敏电阻是一种元件,其电阻值随温度的变化而变化。
根据电阻与温度之间的关系,热敏电阻分为两种类型:负温度系数(NTC)热敏电阻和正温度系数(PTC)热敏电阻。
NTC热敏电阻的电阻值随温度的升高而下降,常用于测量环境温度。
PTC热敏电阻的电阻值随温度的升高而增加,常用于过载保护和温度控制。
2. 热电偶(Thermocouple)热电偶是由两种不同金属线组成的开路回路。
当热电偶的两个接头处于不同温度下时,会产生温差电势。
该电势与两个接头之间的温差成正比。
通过测量温差电势,可以计算出温度值。
热电偶具有广泛的测温范围和较高的准确性,因此被广泛应用于工业领域。
3.热电阻(RTD)热电阻是一种利用材料的电阻与温度之间的关系来测量温度的传感器。
常见的热电阻材料是铂(Pt),因为铂的电阻与温度之间的关系比较稳定和预测性好。
热电阻的工作原理是利用热电阻材料的电阻随温度的变化而变化,通过测量电阻值来计算温度。
4. 红外线传感器(Infrared Sensor)红外线传感器是利用物体释放的热辐射来测量温度的传感器。
红外线传感器可以通过测量物体辐射的红外线能量来计算出物体的温度。
红外线传感器常用于非接触式测温,特别适用于测量高温、移动对象或远距离测温。
5. 半导体温度传感器(Semiconductor Temperature Sensor)半导体温度传感器是利用半导体材料的电特性随温度变化而变化的传感器。
根据不同的半导体材料和工作原理,半导体温度传感器可以分为基于PN结的温度传感器(比如二极管温度传感器)、基于电压输出的温度传感器(比如温度传感器芯片)以及基于电流输出的温度传感器(比如恒流源温度传感器)等。
半导体热敏电阻特性研究实验报告大学热敏电阻实验报告大学热敏电阻实验报告摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。
本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。
关键词:热敏电阻、非平衡直流电桥、电阻温度特性1、引言热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-0.003~+0.6)℃-1。
因此,热敏电阻一般可以分为:Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。
国产的主要是指MF91~MF96型半导体热敏电阻。
由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。
大多应用于测温控温技术,还可以制成流量计、功率计等。
Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。
这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。
载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。
应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。
2、实验装置及原理【实验装置】FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(2.7kΩ)以及控温用的温度传感器),连接线若干。
【实验原理】根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为(1—1)式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。
温度传感器原理温度传感器是一种用于测量温度的装置,它可以将温度的物理量转换为电信号输出。
温度传感器的工作原理基于不同物质的温度敏感性不同,当温度改变时,物质的电阻、电压或电流也会相应地改变,从而实现温度的测量。
一、热敏电阻传感器热敏电阻传感器是一种基于热敏材料电阻随温度变化而变化的温度传感器。
热敏电阻传感器中常用的热敏材料有铂、镍、铜等,它们具有较大的温度系数,即温度变化时,电阻值变化较大。
在热敏电阻传感器中,热敏电阻元件与电路相连,形成一个电阻电路。
当热敏电阻传感器与被测温度环境接触时,温度的变化会导致热敏电阻元件的电阻值发生变化,进而改变整个电路的电阻。
通过测量电路的电阻值的变化,在一定的电路条件下,可以计算出对应的温度值。
二、热电偶传感器热电偶传感器是一种基于热电效应的温度传感器。
热电偶传感器由两种不同材料的金属导线组成,这两种导线的连接处形成一个测温点,称为热电接头或热电焊点。
当热电偶传感器的测温点与被测物体接触时,由于两种金属导线的热电效应不同,形成了一个由温度差产生的电动势,即热电势。
通过测量热电偶传感器产生的电动势,可以推算出对应的温度。
热电偶传感器具有较宽的测温范围、较高的测温精度和较快的响应速度,因此在工业领域应用十分广泛。
三、半导体温度传感器半导体温度传感器是一种基于半导体材料的电阻随温度变化而变化的温度传感器。
半导体温度传感器常采用硅、锗等材料制成,具有较高的灵敏度和较快的响应速度。
半导体温度传感器的工作原理是通过利用半导体材料的温度特性,即随着温度的升高,电阻值发生变化。
通过测量半导体温度传感器的电阻值变化,可以计算出对应的温度值。
半导体温度传感器体积小、响应快,因此在电子设备中得到广泛应用。
四、红外温度传感器红外温度传感器是一种基于物体辐射的温度测量器。
它利用物体在不同温度下的红外辐射特性,通过检测红外辐射能量来测量物体表面的温度。
红外温度传感器通过接收物体发出的红外辐射能量,并将其转换为电信号。
半导体热敏电阻感温原理半导体热敏电阻是一种温度敏感的电阻,其电阻值随温度的变化而变化。
它是利用半导体材料的特性来实现的。
半导体材料的电阻随温度的变化而变化,这种变化是非常显著的,因此可以用来制作热敏电阻。
半导体热敏电阻的工作原理是基于半导体材料的能带结构。
半导体材料的能带结构是指电子在材料中的能量分布情况。
在半导体材料中,电子的能量分布在两个能带之间,分别是价带和导带。
在低温下,电子主要分布在价带中,因此半导体材料的电阻很大。
随着温度的升高,电子会逐渐跃迁到导带中,导致电阻的减小。
半导体热敏电阻的温度系数是指电阻随温度变化的比例。
温度系数越大,电阻随温度变化的幅度就越大。
半导体热敏电阻的温度系数一般在几百到几千ppm/℃之间。
半导体热敏电阻的应用非常广泛。
它可以用于温度测量、温度控制、温度补偿等方面。
在温度测量方面,半导体热敏电阻可以用来制作温度传感器。
温度传感器可以将温度转换为电信号,从而实现对温度的测量。
在温度控制方面,半导体热敏电阻可以用来制作温度控制器。
温度控制器可以根据温度的变化来控制电路的开关,从而实现对温度的控制。
在温度补偿方面,半导体热敏电阻可以用来补偿电路中其他元件的温度漂移,从而提高电路的稳定性和精度。
半导体热敏电阻的制作方法有很多种。
其中比较常见的方法是采用氧化锌、硅、碳化硅等半导体材料制作。
制作过程中需要控制材料的成分、结构和制备工艺等因素,以保证半导体热敏电阻的性能和稳定性。
半导体热敏电阻是一种非常重要的温度敏感元件,具有广泛的应用前景。
随着科技的不断发展,半导体热敏电阻的性能和应用将会得到进一步的提高和拓展。
电阻式温度传感器电阻式传感器广泛应用于测量-200~960℃范围内的温度。
它是利用导体或半导体的电阻率随温度变化而变化原理而工作的,用仪表测量出电阻的变化,从而得到与电阻值相对应的温度值。
电阻式传感器按照其制造材料分可分为:金属(铂和铜)热电阻及半导体热电阻(热敏电阻)两大类。
一、 常用的金属热电阻金属热电阻传感器一般称作热电阻传感器,是利用金属导体的电阻值随温度的升高而增大的原理进行测温的。
温度是分子平均动能的标志,当温度升高,金属晶格的动能增加,从而导致振动加剧,使自由电子通过金属内部时阻碍增加,金属导电能力下降,即电阻增加。
通过测量导体的电阻变化情况就可以得到温度变化情况。
最基本的热电阻传感器由热电阻、连接导线及显示仪表组成,如图7-1所示。
主要制造材料是铂和铜。
测量温度范围-220~+850℃。
在特殊情况下,低温可测量至1K (-272℃),高温可测量至1000℃。
1、铂热电阻铂热电阻是目前公认的制造热电阻最好的材料,它性能稳定,重复性好,长时间稳定的复现性可达10-4 K ,是目前测温复现性最好的一种温度计。
同时其测量精度高。
在氧化性介质中、甚至在高温下,其物理、化学性能都很稳定,其阻值与温度之间几乎成线性变化。
但其在还原性介质中,特别是高温易从氧化物中还原出来的气体所污染,改变它的电阻与温度关系,此外其电阻温度系数小,价格较高。
因此,主要作为标准电阻温度计和高精度温度测量。
铂电阻的精度与铂的提纯程度有关,因此铂电阻的纯度是以W (100)表示:100)100(R R W =(6-1) W (100)越高,表示铂丝纯度越高。
国际实用温标规定,作为基准器的铂电阻,W (100)≥1.3925。
目前技术水平已达到W (100)=1.3930,工业用铂电阻的纯度W (100)为1.387~1.390。
中国常用的铂电阻有两种,分度号分别为Pt50和Pt100。
即在0℃时电阻分别为50Ω和100Ω。
半导体热敏电阻用途
半导体热敏电阻是一种特殊材料制成的电阻器,可以通过测量其电阻值来确定环境的温度变化。
这种电阻器主要有两大类:正温度系数(PTC)和负温度系数(NTC)。
半导体热敏电阻的用途广泛,具体如下:
1. 温度传感器:半导体热敏电阻最常见的用途之一是作为温度传感器。
例如,NTC热敏电阻被广泛应用于工业温度测量领域,如电机、变压器、电源和
电子设备的温度保护。
在汽车热管理系统中,NTC热敏电阻也作为空气侧、介质侧的温度测量工具,如蒸发器温度传感器、制冷剂温度传感器、驾驶室内温度传感器、冷却液温度传感器等。
2. 防浪涌保护:为了避免电路导通时产生的瞬时浪涌电流,通常会串联一个功率NTC热敏电阻。
这样可以有效地抵抗启动时的浪涌电流,保护电路。
3. 抑制爆震:NTC热敏电阻可以用在爆震传感器中,当发动机爆震时,NTC热敏电阻会因为发动机的温度变化而改变阻值,这个阻值变化可以触
发电路来减少发动机的爆震。
4. 电磁炉的感应加热:NTC热敏电阻可以用在电磁炉的感应加热部分,通
过热敏电阻控制加热的温度。
5. 电子设备中的温度控制:在计算机和其他电子设备中,热敏电阻可以用于检测内部温度并控制风扇运行速度,以避免过热而造成的故障。
6. 医学领域:热敏电阻还可用于医学领域,例如病人体温监测。
以上内容仅供参考,如有需要,建议查阅相关文献或咨询电子工程专家。
热敏温度传感器工作原理
热敏温度传感器工作原理:
①热敏电阻作为一类广泛应用的温度测量元件其核心原理在于利用半导体材料电阻值随温度变化特性实现量化检测;
②根据温度系数不同热敏电阻可分为正温度系数PTC负温度系数NTC以及临界温度系数CTR三种类型各有特点适用场合;
③NTC最为常见初始电阻较低随温度升高呈指数衰减适用于常规温度区间测量如家电医疗设备等领域;
④PTC则相反低温时阻值较小遇热迅速增大常用于过温保护自限温加热装置中起到保险丝作用;
⑤CTR类热敏电阻通常基于某些半导体合金临界温度附近出现电阻突变现象适合制作高精度温度开关;
⑥在实际应用中为了提高测量精度稳定性往往需要配合精密恒流源或恒压源电路确保激励条件一致性;
⑦测量时首先向热敏电阻施加已知电流或电压读取两端电压降根据欧姆定律计算出当前阻值大小;
⑧接着通过查阅厂商提供标准曲线或自行拟合算法将阻值转换成对应温度读数完成整个检测流程;
⑨由于热敏电阻自身也会消耗电能导致自加热效应影响测量结果因此在电路设计时需控制功耗尽量减小该影响;
⑩为克服单一元件局限性有时会采用多个热敏电阻串联并联构成补偿网络抵消环境变化带来的误差提高系统可靠性;
⑪在物联网智能家居等新兴领域中集成微处理器无线通信模块等功能于一体智能温感节点逐渐成为主流趋势;
⑫展望未来随着纳米技术新材料研究不断突破更灵敏响应速度更快工作范围更广的新型热敏传感器将不断涌现。
热敏电阻温度传感器工作原理
热敏电阻温度传感器是一种利用热敏电阻材料的电阻随温度变化的特性来测量温度的装置。
其工作原理如下:
热敏电阻材料是一种电阻值随温度变化的半导体材料,其电阻值随温度的升高而降低,反之亦然。
这是因为在材料内部,随着温度的升高,电子和空穴的浓度也随之升高,导致电流通过材料时的阻力降低。
因此,热敏电阻的电阻值可以通过测量电流经过它时的电压得到。
根据欧姆定律,电阻值可以通过测量电流和电压之间的关系得到。
因此热敏电阻温度传感器会将电流通过热敏电阻,然后测量电阻两端的电压,再根据欧姆定律计算出电阻值。
为了准确测量温度,通常会使用一个补偿电路来消除电线电阻的影响,这样可以提高测量的精度。
补偿电路通常会根据热敏电阻温度特性的知识,调节所加的电压或电流来抵消电线电阻对温度测量的影响。
总之,热敏电阻温度传感器通过测量热敏电阻材料电阻值随温度变化的特性,来间接地测量温度。
实验十九温度传感器——半导体热敏电阻
实验原理:
热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的热敏元件。
它呈负温度特性,灵敏度高,可以测量小于0.01℃的温差变化。
图(11)为金属与热敏电阻温度曲线的比较。
(图11)
实验所需部件:
MF型热敏电阻、温控电加热器、温度传感器实验模块(一)、{温度传感器实验模块}、电压表、温度计(自备)
实验步骤:
1、观察已置于加热炉上的热敏电阻,温度计置于与传感器相同的感温位置。
连接主机与实验模块的电源线及传感器接口线,热敏电阻测温电路输出端接数字电压表。
2、打开主机电源,调节热敏转换电路电压输出,使其值尽量大但不饱和。
3、设定加热炉加热温度后开启加热电源。
作出V-T曲线,(因为热敏电阻负温度特性呈非线性,所以实验时建议多采几个点)。
得出用热敏电阻测温结果的结论。
注意事项:
热敏电阻感受到的温度与温度计上的温度相同,并不是加热炉数字表上显示的温度。
而且热敏电阻的阻值随温度不同变化较大,故应在温度稳定后记录数据。
实验二十温度传感器——集成温度传感器
实验原理:
用集成工艺制成的双端电流型温度传感器,在一定的温度范围内按1μA/K 的恒定比值输出与温度成正比的电流,通过对电流的测量即可得知温度值(K 氏温度),经K氏-摄氏转换电路直接显示℃温度值。
实验所需部件:
集成温度传感器、温控电加热炉、温度传感器实验模块(二)、{温度传感器实验模块}、电压表、温度计(自备)
实验步骤:
1、观察置于加热炉上的集成温度传感器,温度计置于传感器同一感温处。
连接主机与实验模块电源与传感器接口线,输出端接电压表。
2、打开主机电源,根据温度计示值调节转换电路电位器,使电压表(2V 档)所示当前温度值(设定电压显示值最后一位为1/10℃值,如电压表2V档显示0.256就表示25.6℃)。
3、开启加热开关,设定加热器温度,观察随温度上升,电路输出电压值,并与温度计显示值比较,得出定性结论。
本实验台所用的几种温度传感器性能比较:。