2019届江苏省泰州市高三第一次模拟考试数学试卷及答案
- 格式:doc
- 大小:253.00 KB
- 文档页数:21
2019届江苏省泰州市高三第一次模拟考试数 学 文 科(满分160分,考试时间120分钟)99-参考公式:柱体的体积V =Sh ,锥体的体积V =13Sh一、 填空题:本大题共14小题,每小题5分,共计70分. 1. 函数f(x)=sin 2x 的最小正周期为________.2. 已知集合A ={4,a 2},B ={-1,16},若A ∩B ≠∅,则实数a =________.3. 复数z 满足z i =4+3i (i 是虚数单位),则|z|=________.4. 函数y =1-x 2的定义域是________.5. 从1,2,3,4,5这五个数中随机取两个数,则这两个数的和为6的概率为________.6. 一个算法的伪代码如图所示,执行此算法,最后输出的T 的值是________.7. 已知数列{a n }满足log 2a n +1-log 2a n =1,则a 5+a 3a 3+a 1=________.8. 若抛物线y 2=2px(p>0)的准线与双曲线x 2-y 2=1的一条准线重合,则p =________.9. 如图,在直三棱柱ABCA 1B 1C 1中,M 为棱AA 1的中点,记三棱锥A 1MBC 的体积为V 1,四棱锥A 1BB 1C 1C 的体积为V 2,则V 1V 2的值是________.10. 已知函数f(x)=2x 4+4x 2,若f(a +3)>f(a -1),则实数a 的取值范围为________.11. 在平面直角坐标系xOy 中,过圆C 1:(x -k)2+(y +k -4)2=1上任一点P 作圆C 2:x 2+y 2=1的一条切线,切点为Q ,则当线段PQ 的长最小时,k =________.12. 已知P 为平行四边形ABCD 所在平面上任一点,且满足PA →+PB →+2PD →=0,λPA →+μPB →+PC →=0,则λμ=________.13. 已知函数f(x)=⎩⎪⎨⎪⎧x 3-3x +2a ,x ≥a ,x 3+3x -4a ,x<a ,若存在x 0<0,使得f(x 0)=0,则实数a 的取值范围是________.14. 在△ABC 中,已知sin A sin B sin (C -θ)=λsin 2C ,其中tan θ=12⎝⎛⎭⎫0<θ<π2,若1tan A +1tan B +2tan C 为定值,则实数λ=________.二、解答题:本大题共6小题,共计90分.解答时应写出文字说明,证明过程或演算步骤. 15. (本小题满分14分)已知向量a =(sin x ,1),b =⎝⎛⎭⎫12,cos x ,其中x ∈(0,π).(1) 若a ∥b ,求x 的值;(2) 若tan x =-2,求|a +b |的值.16. (本小题满分14分)如图,在四棱锥PABCD 中,底面ABCD 为平行四边形,O 为对角线BD 的中点,E ,F 分别为棱PC ,PD 的中点,已知PA ⊥AB ,PA ⊥AD.求证:(1) 直线PB ∥平面OEF ; (2) 平面OEF ⊥平面ABCD.如图,三个小区分别位于扇形OAB 的三个顶点上,Q 是弧AB 的中点,现欲在线段OQ 上找一处开挖工作坑P(不与点O ,Q 重合),为小区铺设三条地下电缆管线PO ,PA ,PB ,已知OA =2千米,∠AOB =π3,记∠APQ =θ rad ,地下电缆管线的总长度为y 千米.(1) 将y 表示成θ的函数,并写出θ的范围;(2) 请确定工作坑P 的位置,使地下电缆管线的总长度最小.如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左顶点为A ,B 是椭圆C 上异于左、右顶点的任意一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q ,已知椭圆C 的离心率为12,点A 到右准线的距离为6.(1) 求椭圆C 的标准方程;(2) 设点Q 的横坐标为x 0,求x 0的取值范围.设A ,B 为函数y =f(x)图象上相异两点,且点A ,B 的横坐标互为倒数,过点A ,B 分别作函数y =f(x)的切线,若这两条切线存在交点,则称这个交点为函数f(x)的“优点”.(1) 若函数f(x)=⎩⎪⎨⎪⎧ln x ,0<x<1,ax 2, x>1不存在“优点”,求实数a 的值;(2) 求函数f(x)=x 2的“优点”的横坐标的取值范围;(3) 求证:函数f(x)=ln x 的“优点”一定落在第一象限.已知首项不为0的数列{a n}的前n项和为S n,2a1+a2=a3,且对任意的n∈N,n≥2都有2nS n+1-(2n +5)S n+S n-1=ra1.(1) 若a2=3a1,求r的值;(2) 数列{a n}能否是等比数列?说明理由;(3) 当r=1时,求证:数列{a n}是等差数列.2019届高三年级第一次模拟考试(泰州)数学参考答案1. π2. ±43. 54. [-1,1]5. 15 6. 87. 4 8. 2 9. 14 10. (-1,+∞) 11. 212. -34 13. [-1,0) 14. 51015. (1) 因为a ∥b ,所以sin x cos x =12,即sin 2x =1.因为x ∈(0,π),所以x =π4.(2) 因为tan x =sin xcos x =-2,所以sin x =-2cos x .因为a +b =⎝⎛⎭⎫sin x +12,1+cos x , 所以|a +b |=⎝⎛⎭⎫sin x +122+(1+cos x )2=94+sin x +2cos x =32.16. (1) O 为BD 的中点,F 为PD 的中点, 所以PB ∥FO.因为PB ⊄平面OEF ,FO ⊂平面OEF , 所以PB ∥平面OEF.(2) 连结AC ,因为四边形ABCD 为平行四边形, 所以AC 与BD 交于点O ,O 为AC 的中点. 因为E 为PC 的中点, 所以PA ∥OE.因为PA ⊥AB ,PA ⊥AD ,AB ∩AD =A ,AB ,AD ⊂平面ABCD , 所以PA ⊥平面ABCD , 所以OE ⊥平面ABCD. 因为OE ⊂平面OEF ,所以平面OEF ⊥平面ABCD.17. (1) 因为Q 为弧AB 的中点,由对称性,知PA =PB ,∠AOP =∠BOP =π6,又∠APO =π-θ,∠OAP =θ-π6,由正弦定理,得PA sin π6=OA sin (π-θ)=OPsin ⎝⎛⎭⎫θ-π6,又OA =2,所以PA =1sin θ,OP =2sin ⎝⎛⎭⎫θ-π6sin θ,所以y =PA +PB +OP =2PA +OP =2+2sin ⎝⎛⎭⎫θ-π6sin θ=3sin θ-cos θ+2sin θ,因为∠APQ >∠AOP ,所以θ>π6,∠OAQ =∠OQA =12(π-π6)=5π12,所以θ∈⎝⎛⎭⎫π6,5π12. (2) 令f(θ)=3sin θ-cos θ+2sin θ,θ∈⎝⎛⎭⎫π6,5π12, f′(θ)=1-2cos θsin 2θ=0,得θ=π3, f(θ)在区间⎝⎛⎭⎫π6,π3上单调递减,在区间(π3,5π12)上单调递增, 所以当θ=π3,即OP =233千米时,f(θ)有唯一的极小值,即是最小值,则f(θ)min =2 3.答:当工作坑P 与O 的距离为233千米时,地下电缆管线的总长度最小.18. (1) 依题意,得⎩⎨⎧c a =12,a +a 2c =6,解得⎩⎪⎨⎪⎧a =2,c =1,所以b =a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1.(2) 由(1)知,A(-2,0),设AB :x =my -2,m ≠0,联立⎩⎪⎨⎪⎧x =my -2,3x 2+4y 2=12, 解得⎩⎪⎨⎪⎧x =6m 2-83m 2+4,y =12m 3m 2+4或⎩⎪⎨⎪⎧x =-2,y =0,即B(6m 2-83m 2+4,12m 3m 2+4),则P(-83m 2+4,6m 3m 2+4),所以k OP =-3m 4,OP :y =-3m 4x.因为AB ⊥BQ ,所以k BQ =-m ,所以直线BQ 的方程为BQ :y =-mx +6m 3+4m3m 2+4,联立⎩⎨⎧y =-3m 4x ,y =-mx +6m 3+4m3m 2+4,得x 0=8(3m 2+2)3m 2+4=8-163m 2+4∈(4,8).19. (1) 由题意可知,f′(x)=f′⎝⎛⎭⎫1x 对x ∈(0,1)∪(1,+∞)恒成立, 不妨取x ∈(0,1),则f′(x)=1x =2a x =f′⎝⎛⎭⎫1x 恒成立,即a =12, 经验证,a =12符合题意.(2) 设A(t ,t 2),B ⎝⎛⎭⎫1t ,1t 2(t ≠0且t ≠±1), 因为f′(x)=2x ,所以A ,B 两点处的切线方程分别为y =2tx -t 2,y =2t x -1t 2,令2tx -t 2=2t x -1t 2,解得x =12⎝⎛⎭⎫t +1t ∈(-∞,-1)∪(1,+∞), 所以“优点”的横坐标取值范围为(-∞,-1)∪(1,+∞). (3) 设A(t ,ln t),b ⎝⎛⎭⎫1t ,-ln t ,t ∈(0,1), 因为f ′(x)=1x,所以A ,B 两点处的切线方程分别为y =1t x +ln t -1,y =tx -ln t -1,令1t x +ln t -1=tx -ln t -1, 解得x =2ln tt -1t>0,所以y =1t ·2ln tt -1t +ln t -1=t 2+1t 2-1(ln t -t 2-1t 2+1),设h(m)=ln m -m 2-1m 2+1,m ∈(0,1),则h′(m)=(m 2-1)2m (m 2+1)2>0,所以h(m)单调递增, 所以h(m)<h(1)=0, 即ln t -t 2-1t 2+1<0.因为t 2+1t 2-1<0,所以y =1t ·2ln tt -1t+ln t -1>0,所以“优点”的横坐标和纵坐标均为正数,在第一象限.20. (1)令n=2,得4S3-9S2+S1=ra1,即4(a3+a2+a1)-9(a2+a1)+a1=ra1,化简,得4a3-5a2-4a1=ra1.因为2a1+a2=a3,a2=3a1,所以4×5a1-5×3a1-4a1=ra1,解得r=1.(2) 假设数列{a n}是等比数列,公比为q,则由2a1+a2=a3得2a1+a1q=a1q2,且a1≠0,解得q=2或q=-1,由2nS n+1-(2n+5)S n+S n-1=ra1,得4S n=2na n+1-a n-ra1(n≥2),所以4S n-1=2(n-1)a n-a n-1-ra1(n≥3),两式相减,整理得2na n+1+a n-1=(2n+3)a n,两边同除以a n-1,可得2n(q2-q)=3q-1.因为q=2或-1,所以q2-q≠0,所以上式不可能对任意n≥3恒成立,故数列{a n}不可能是等比数列.(3) r=1时,令n=2,整理得-4a1-5a2+4a3=a1,又由2a1+a2=a3可知a2=3a1,a3=5a1,令n=3,可得6S4-11S3+S2=a1,解得a4=7a1,由(2)可知4S n=2na n+1-a n-a1(n≥2),所以4S n-1=2(n-1)a n-a n-1-a1(n≥3),两式相减,整理得2na n+1+a n-1=(2n+3)a n(n≥3),所以2(n-1)a n+a n-2=(2n+1)a n-1(n≥4),两式相减,可得2n[(a n+1-a n)-(a n-a n-1)]=(a n-a n-1)-(a n-1-a n-2)(n≥4).因为(a4-a3)-(a3-a2)=0,所以(a n-a n-1)-(a n-1-a n-2)=0(n≥4),即a n-a n-1=a n-1-a n-2(n≥4),又因为a3-a2=a2-a1=2a1,所以数列{a n}是以a1为首项,2a1为公差的等差数列.。
2019届泰州、南通、扬州、苏北四市高三数学第一次调研测试数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分. 1. 已知集合{}13=A ,,{}01=B ,,则集合AB = ▲ .【答案】{}013,,【解析】注意集合中元素的互异姓2. 已知复数2i 3i 1iz --=(i 为虚数单位),则复数z 的模为 ▲ .【答案【解析】23(1)2i 33i =1i 11i i i i z i i -----+==--,31i z i -+===-3. 某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:则平均每人参加活动的次数为 ▲ . 【答案】3 【解析】22031541055350x ⨯+⨯+⨯+⨯==4. 如图是一个算法流程图,则输出的b 的值为 ▲ .【答案】7【解析】当0,1a b ==时,1,3a b == 当1,3a b == 时,5,5a b ==(第4题)当5,5a b ==时,21,7a b ==5. 有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参 加一个,则这两位同学参加不同兴趣小组的概率为 ▲ . 【答案】23【解析】62333p ==⨯6. 已知正四棱柱的底面边长是3 cm ,侧面的对角线长是, 则这个正四棱柱的体积为 ▲ cm 3. 【答案】54【解析】6h == ,9654V =⨯=【应该改成体对角线比较好的哦,难道考查考生审题能力】 7. 若实数x y ,满足2+3x y x ≤≤,则x y +的最小值为 ▲ .【答案】6-【解析】2333x y x x x +≤++≤+,23,3x x x ≤+≥- ,min ()3x y +≤8. 在平面直角坐标系xOy 中,已知抛物线22(0)=>y px p 的准线为l ,直线l 与双曲线2214x y -=的两条渐近线分别交于A ,B 两点,AB =p 的值为 ▲ .【答案】【解析】双曲线渐近线方程,2x y =± ,根据双曲线对称性可知,24PAB =⨯=解之得p =9. 在平面直角坐标系xOy 中,已知直线3y x t =+与曲线()sin cos y a x b x a b t =+∈R ,,相切于点()01,,则()a b t +的值为 ▲ .。
江苏省泰州市2019届高三第一次模拟考试高三数学(理)试卷★祝考试顺利★ 注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合{}m P ,1-=,⎭⎬⎫⎩⎨⎧<<-=431x x Q ,若∅≠Q P ,则整数=m ▲ . 2.已知α为第三象限的角,且4sin(),tan 25则παα+=-= ▲ .3. 若函数()f x =a 的值为 ▲ .4.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y = ▲ .5.若存在实数x ∈[1,2]满足2x 2﹣ax+2>0,则实数a 的取值范围是 ▲ .6.设sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan 2α的值是 ▲ . 7.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ= ▲ .8.设a ∈R ,函数f (x )=e x+a e x 是偶函数,若曲线y =f (x )的一条切线的斜率是32,则切点的横坐标为 ▲ .9.已知x R ∈,()f x 为sin x 与cos x 中的较小者,设()m f x n ≤≤,则m n -= ▲ . 10.设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ= ▲ . 11.经过函数1y x=上一点M 引切线l 与x 轴、y 轴分别交于点A 和点B ,O 为坐标原点,记OAB ∆的面积为S ,则S = ▲ .12.函数f(x)=Asin(ωx +φ)(A ,ω,φ是常数,A>0,ω>0)的图象如右图所示,若2236f f f πππ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则ω= ▲ . 13.若关于x 的方程4x e x kx -=有四个实数根,则实数k 的取值范围是 ▲ .14.已知函数ax x x x f +-=ln )(在(0,e)上是增函数,函数)(x g =|a e x-|+22a 在[0,ln3]上的最大值M 与最小值m 的差为52,则a= ▲ . 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15(本题满分14分)已知函数f(x)=2x+k·2-x,k∈R.(1)若函数f(x)为奇函数,求实数k 的值;(2)若对任意的x∈[)0,+∞都有f(x)>2-x成立,求实数k 的取值范围.16. (本小题满分14分)已知πsin()410A +=ππ(,)42A ∈. (Ⅰ)求cos A 的值; (Ⅱ)求函数5()cos 2sin sin 2f x x A x =+的值域.17.(本小题满分14分)北京市某旅游景点预计2017年1月份起前x 个月的旅游人数的和p(x) (单位:万人)与x 的关系近似满足1()(1)(392),(,12)2p x x x x x N x *=+∙-∈≤已知第x 月的人均消费额q(x)(单位:元)与x 的近似关系是 q(x)=352,(,16)16,(,712)x x N x x N x x**⎧-∈≤≤⎪⎨∈≤≤⎪⎩ (1)写出2017年第x 月的旅游人数f(x)(单位:万人)与x 的函数关系式; (2)试问2017年哪个月的旅游消费总额最大,最大旅游消费额为多少万元?18.(本小题满分16分)已知cos ⎝⎛⎭⎪⎫π6+αcos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈(π3,π2). (1) 求sin 2α的值; (2) 求tan α-1tan α的值.19. (本题满分16分)已知函数2()(21)ln f x x a x a x =-++(1)当a=1时,求函数f(x)的单调增区间;(2)求函数f(x)区间[]e ,1上的最小值; (3)设()(1)g x a x =-,若存在01,x e e ⎡⎤∈⎢⎥⎣⎦,使得00()()f x g x ≥成立,求实数a 的取值范围.20.(本题满分16分) 已知函数2()ln f x a x x =-。
-2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A ={1,3},B ={0,1},则集合A ∪B =.2.(5分)已知复数(i 为虚数单位),则复数z 的模为.3.(5分)某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:次数2345人数2015105则平均每人参加活动的次数为.4.(5分)如图是一个算法流程图,则输出的b 的值为.5.(5分)有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为.6.(5分)已知正四棱柱的底面边长为3cm ,侧面的对角线长是3cm ,则这个正四棱柱的体积是cm 3.7.(5分)若实数x ,y 满足x ≤y ≤2x+3,则x+y 的最小值为.8.(5分)在平面直角坐标系xOy 中,已知抛物线y 2=2px (p >0)的准线为l ,直线l 与双曲线的两条渐近线分别交于A ,B 两点,,则p 的值为.9.(5分)在平面直角坐标系xOy 中,已知直线y =3x+t 与曲线y =asinx+bcosx (a ,b ,t ∈R )相切于点(0,1),则(a+b )t 的值为.10.(5分)已知数列{a n }是等比数列,有下列四个命题:①数列{|a n |}是等比数列;②数列{a n a n+1}是等比数列;③数列是等比数列;④数列{lga n 2}是等比数列.其中正确的命题有个.11.(5分)已知函数f (x )是定义在R 上的奇函数,且f (x+2)=f (x ).当0<x ≤1时,f (x )=x 3﹣ax+1,则实数a 的值为.12.(5分)在平面四边形ABCD 中,AB =1,DA =DB ,=3,=2,则|的最小值为.13.(5分)在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆C :(x ﹣4)2+y 2=4.若存在过点P (m ,0)的直线l ,l 被两圆截得的弦长相等,则实数m 的取值范围.14.(5分)已知函数f (x )=(2x+a )(|x ﹣a|+|x+2a|)(a <0).若f (1)+f (2)+f (3)+…+f (672)=0,则满足f (x )=2019的x 的值为.二、解答题:本大题共6小题,共计90分.15.(14分)如图,在四棱锥P ﹣ABCD 中,M ,N 分别为棱PA ,PD 的中点.已知侧面P AD⊥底面ABCD ,底面ABCD 是矩形,DA =DP .求证:(1)MN ∥平面PBC ;(2)MD ⊥平面PAB .16.(14分)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对边的长,,.(1)求角B 的值;(2)若,求△ABC 的面积.17.(14分)如图,在平面直角坐标系xOy 中,椭圆(a >b >0)的左焦点为F ,右顶点为A,上顶点为B.(1)已知椭圆的离心率为,线段AF中点的横坐标为,求椭圆的标准方程;(2)已知△ABF外接圆的圆心在直线y=﹣x上,求椭圆的离心率e的值.18.(16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别为和4m,上部是圆心为O的劣弧CD,.(1)求图1中拱门最高点到地面的距离;(2)现欲以B点为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示.设BC与地面水平线l所成的角为θ.记拱门上的点到地面的最大距离为h,试用θ的函数表示h,并求出h的最大值.19.(16分)已知函数.(1)讨论f(x)的单调性;(2)设f(x)的导函数为f'(x),若f(x)有两个不相同的零点x1,x2.①求实数a的取值范围;②证明:x1f'(x1)+x2f'(x2)>2lna+2.20.(16分)已知等差数列{a n}满足a4=4,前8项和S8=36.(1)求数列{a n}的通项公式;(2)若数列{b n}满足.①证明:{b n}为等比数列;②求集合.【选做题】本题包括21、22、C23三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分0分)21.已知矩阵,,且,求矩阵M.[选修4-4:坐标系与参数方程](本小题满分0分)22.在平面直角坐标系xOy中,曲线C的参数方程是(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是ρsin(θ﹣)=.求:(1)直线l的直角坐标方程;(2)直线l被曲线C截得的线段长.[选修4-5:不等式选讲](本小题满分0分)23.已知实数a,b,c满足a 2+b2+c2≤1,求证:.【必做题】第22、23题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E (ξ).25.设集合B是集合A n={1,2,3,……,3n﹣2,3n﹣1,3n},n∈N *的子集.记B中所有元素的和为S(规定:B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1)集合A1的“和谐子集”的个数;(2)集合A n的“和谐子集”的个数.2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A={1,3},B={0,1},则集合A∪B={0,1,3}.【解答】解:根据题意,集合A={1,3},B={0,1},则A∪B={0,1,3};故答案为:{0,1,3}.2.(5分)已知复数(i为虚数单位),则复数z的模为.【解答】解:=,则复数z的模为.故答案为:.3.(5分)某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:次数2345人数2015105则平均每人参加活动的次数为3.【解答】解:根据题意,计算这组数据的平均数为:=×(20×2+15×3+10×4+5×5)=3.故答案为:3.4.(5分)如图是一个算法流程图,则输出的b的值为7.【解答】解:模拟程序的运行,可得a=0,b=1满足条件a<15,执行循环体,a=1,b=3满足条件a<15,执行循环体,a=5,b=5满足条件a<15,执行循环体,a=21,b=7此时,不满足条件a<15,退出循环,输出b的值为7.故答案为:7.5.(5分)有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为.【解答】解:有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,基本事件总数n=3×3=9,这两位同学参加不同兴趣小组包含的基本事件个数m=3×2=6,则这两位同学参加不同兴趣小组的概率为p==.故答案为:.6.(5分)已知正四棱柱的底面边长为3cm,侧面的对角线长是3cm,则这个正四棱柱的体积是54cm3.【解答】解:设正四棱柱的高为h,∵正四棱柱的底面边长为3cm,侧面的对角线长是3cm,∴=3,解得h=6(cm),∴这个正四棱柱的体积V=Sh=3×3×6=54(cm3).故答案为:54.7.(5分)若实数x,y满足x≤y≤2x+3,则x+y的最小值为﹣6.【解答】解:画出实数x,y满足x≤y≤2x+3的平面区域,如图示:由,解得A(﹣3,﹣3),由z=x+y得:y=﹣x+z,显然直线过A时z最小,z的最小值是﹣6,故答案为:﹣6.8.(5分)在平面直角坐标系xOy 中,已知抛物线y 2=2px (p >0)的准线为l ,直线l 与双曲线的两条渐近线分别交于A ,B 两点,,则p 的值为.【解答】解:抛物线y 2=2px (p >0)的准线为l :x =﹣,双曲线的两条渐近线方程为y =±x ,可得A (﹣,﹣),B ((﹣,),|AB|==,可得p =2.故答案为:2.9.(5分)在平面直角坐标系xOy 中,已知直线y =3x+t 与曲线y =asinx+bcosx (a ,b ,t ∈R )相切于点(0,1),则(a+b )t 的值为4.【解答】解:根据题意得,t =1y ′=acosx ﹣bsinx ∴k =acos0﹣bsin0=a ∴a =3,bcos0=1∴a =3,b =1故答案为4.10.(5分)已知数列{a n }是等比数列,有下列四个命题:①数列{|a n |}是等比数列;②数列{a n a n+1}是等比数列;③数列是等比数列;④数列{lga n 2}是等比数列.其中正确的命题有3个.【解答】解:由{a n}是等比数列可得=q(q为常数,q≠0),①==|q|为常数,故是等比数列;②==q2为常数,故是等比数列;③==常数,故是等比数列;④数列a n=1是等比数列,但是lga n2=0不是等比数列;故答案为:311.(5分)已知函数f(x)是定义在R上的奇函数,且f(x+2)=f(x).当0<x≤1时,f(x)=x 3﹣ax+1,则实数a的值为2.【解答】解:∵f(x)是定义在R上的奇函数,且f(x+2)=f(x).∴当x=﹣1时,f(﹣1+2)=f(﹣1)=f(1),即﹣f(1)=f(1),则f(1)=0,∵当0<x≤1时,f(x)=x3﹣ax+1.∴f(1)=1﹣a+1=0,得a=2,故答案为:212.(5分)在平面四边形ABCD中,AB=1,DA=DB,=3,=2,则|的最小值为2.【解答】解:如图,以A为原点,建立平面直角坐标系,则A(0,0),B(1,0),因为DA=DB,可设D(,m),因为?=3,AB=1,所以可设C(3,n),又?=2,所以+mn=2,即mn=,+2=(4,n+2m)|+2|==≥=2,当且仅当n=2m,即n=1,m=时,等号成立.故答案为:213.(5分)在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆C :(x ﹣4)2+y 2=4.若存在过点P (m ,0)的直线l ,l 被两圆截得的弦长相等,则实数m 的取值范围﹣4<m.【解答】解:显然直线l 有斜率,设直线l :y =k (x ﹣m ),即kx ﹣y ﹣km =0,依题意得1﹣()2=4﹣()2>0有解,即,∴13﹣8m >0且3m 2+8m ﹣16<0解得﹣4<m <,故答案为:﹣4<m .14.(5分)已知函数f (x )=(2x+a )(|x ﹣a|+|x+2a|)(a <0).若f (1)+f (2)+f (3)+…+f (672)=0,则满足f (x )=2019的x 的值为337.【解答】解:注意到:,又因为:,,因此.所以,函数f (x )关于点对称,所以,解得:a =﹣673,f (x )=(2x ﹣673)(|x+673|+|x ﹣2×673|)=2019,显然有:0<2x ﹣673<2019,即,所以,f (x )=(2x ﹣673)(x+673+2×673﹣x )=2019,2x﹣673=1,解得:x=337.故答案为:337.二、解答题:本大题共6小题,共计90分.15.(14分)如图,在四棱锥P﹣ABCD中,M,N分别为棱PA,PD的中点.已知侧面P AD ⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;(2)MD⊥平面PAB.【解答】证明:(1)在四棱锥P﹣ABCD中,M,N分别为棱PA,PD的中点,所以MN∥AD.……………………2分又底面ABCD是矩形,所以BC∥AD,所以MN∥BC.…………………………………………………………………4分又BC?平面PBC,MN?平面PBC,所以MN∥平面PBC.…………………………………………………………6分(2)因为底面ABCD是矩形,所以AB⊥AD.又侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,AB?底面ABCD,所以AB⊥侧面P AD.……………………………………………………………8分又MD?侧面PAD,所以AB⊥MD.………………………………………………………………10分因为DA=DP,又M为AP的中点,从而MD⊥P A.………………………………………………………………12分又P A,AB在平面PAB内,P A∩AB=A,所以MD⊥平面P AB.…………………………………………………………14分16.(14分)在△ABC中,a,b,c分别为角A,B,C所对边的长,,.(1)求角B的值;(2)若,求△ABC的面积.【解答】(本题满分为14分)解:(1)在△ABC中,因为,0<A<π,所以.………………………………………………………2分因为,由正弦定理,得.所以cosB=sinB.…………………………………………………………………4分若cosB=0,则sinB=0,与sin2B+cos2B=1矛盾,故cosB≠0.于是.又因为0<B<π,所以.…………………………………………………………………………7分(2)因为,,由(1)及正弦定理,得,所以.………………………………………………………………………9分又sin C=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=.……………………………………………12分所以△ABC的面积为.……14分17.(14分)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左焦点为F,右顶点为A,上顶点为B.(1)已知椭圆的离心率为,线段AF中点的横坐标为,求椭圆的标准方程;(2)已知△ABF外接圆的圆心在直线y=﹣x上,求椭圆的离心率e的值.【解答】解:(1)因为椭圆(a>b>0)的离心率为,所以,则a=2c.因为线段AF中点的横坐标为,所以.所以,则a2=8,b2=a2﹣c2=6.所以椭圆的标准方程为.…………………………………………………4分(2)因为A(a,0),F(﹣c,0),所以线段AF的中垂线方程为:.又因为△ABF外接圆的圆心C在直线y=﹣x上,所以. (6)分因为A(a,0),B(0,b),所以线段AB的中垂线方程为:.由C在线段AB的中垂线上,得,整理得,b(a﹣c)+b2=ac,…………………………………………………………10分即(b﹣c)(a+b)=0.因为a+b>0,所以b=c.……………………………………………………………12分所以椭圆的离心率.…………………………………………14分18.(16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别为和4m,上部是圆心为O的劣弧CD,.(1)求图1中拱门最高点到地面的距离;(2)现欲以B点为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示.设BC与地面水平线l所成的角为θ.记拱门上的点到地面的最大距离为h,试用θ的函数表示h,并求出h的最大值.【解答】解:(1)如图,过O作与地面垂直的直线交AB,CD于点O1,O2,交劣弧CD 于点P,O1P的长即为拱门最高点到地面的距离.在Rt△O2OC中,,,所以OO2=1,圆的半径R=OC=2.所以O1P=R+OO1=R+O1O2﹣OO2=5.答:拱门最高点到地面的距离为5m.…………………4分(2)在拱门放倒过程中,过点O作与地面垂直的直线与“拱门外框上沿”相交于点P.当点P在劣弧CD上时,拱门上的点到地面的最大距离h等于圆O的半径长与圆心O到地面距离之和;当点P在线段AD上时,拱门上的点到地面的最大距离h等于点D到地面的距离.由(1)知,在Rt△OO1B中,.以B为坐标原点,直线l为x轴,建立如图所示的坐标系.(2.1)当点P在劣弧CD上时,.由,,由三角函数定义,得O,则.…………………………………………………………8分所以当即时,h取得最大值.……………………………………………………10分(2.2)当点P在线段AD上时,.设∠CBD=φ,在Rt△BCD中,,.由∠DBx=θ+φ,得.所以=.……………………………………14分又当时,.所以在上递增.所以当时,h取得最大值5.因为,所以h的最大值为.答:;艺术拱门在放倒的过程中,拱门上的点到地面距离的最大值为()m.……………………………………………16分19.(16分)已知函数.(1)讨论f(x)的单调性;(2)设f(x)的导函数为f'(x),若f(x)有两个不相同的零点x1,x2.①求实数a的取值范围;②证明:x1f'(x1)+x2f'(x2)>2lna+2.【解答】解:(1)f(x)的定义域为(0,+∞),且.(i)当a≤0时,f'(x)>0成立,所以f(x)在(0,+∞)为增函数;………2分(ii)当a>0时,①当x>a时,f'(x)>0,所以f(x)在(a,+∞)上为增函数;②当0<x<a时,f'(x)<0,所以f(x)在(0,a)上为减函数.………4分(2)①由(1)知,当a≤0时,f(x)至多一个零点,不合题意;当a>0时,f(x)的最小值为f(a),依题意知f(a)=1+lna<0,解得.……………………………………6分一方面,由于1>a,f(1)=a>0,f(x)在(a,+∞)为增函数,且函数f(x)的图象在(a,1)上不间断.所以f(x)在(a,+∞)上有唯一的一个零点.另一方面,因为,所以,,令,当时,,所以又f(a)<0,f(x)在(0,a)为减函数,且函数f(x)的图象在(a2,a)上不间断.所以f(x)在(0,a)有唯一的一个零点.综上,实数a的取值范围是.……………………………………………10分②证明:设.又则p=2+ln(x1x2).………………………………………12分下面证明.不妨设x1<x2,由①知0<x1<a<x2.要证,即证.因为,f(x)在(0,a)上为减函数,所以只要证.又f(x1)=f(x2)=0,即证.……………………………………14分设函数.所以,所以F(x)在(a,+∞)为增函数.所以F(x2)>F(a)=0,所以成立.从而成立.所以p=2+ln(x1x2)>2lna+2,即x1f'(x1)+x2f'(x2)>2lna+2成立.…16分20.(16分)已知等差数列{a n}满足a4=4,前8项和S8=36.(1)求数列{a n}的通项公式;(2)若数列{b n}满足.①证明:{b n}为等比数列;②求集合.【解答】解:(1)设等差数列{a n}的公差为d.因为等差数列{a n}满足a4=4,前8项和S8=36,所以,解得所以数列{a n}的通项公式为a n=n.(2)①设数列{b n}前n项的和为B n.由(1)及得,由③﹣④得3(2n﹣1)﹣3(2n﹣1﹣1)=(b1a2n﹣1+b2a2n﹣3+…+b n﹣1a3+b n a1+2n)﹣(b1a2n ﹣3+b2a2n﹣5+…+b n﹣1a1+2n﹣2)=[b1(a2n﹣3+2)+b2(a2n﹣5+2)+…+b n﹣1(a1+2)+b n a1+2n]﹣(b1a2n﹣3+b2a2n﹣5+…+b n﹣1a1+2n﹣2)=2(b1+b2+…+b n﹣1)+b n+2=2(B n﹣b n)+b n+2.所以3?2n﹣1=2B n﹣b n+2(n≥2,n∈N*),又3(21﹣1)=b1a1+2,所以b1=1,满足上式.所以当n≥2时,由⑤﹣⑥得,.=,所以,,所以数列{b n}是首项为1,公比为2的等比数列.②由,得,即.记,由①得,,所以,所以c n≥c n+1(当且仅当n=1时等号成立).由,得c m=3c p>c p,所以m<p;设t=p﹣m(m,p,t∈N*),由,得.当t=1时,m=﹣3,不合题意;当t=2时,m=6,此时p=8符合题意;当t=3时,,不合题意;当t=4时,,不合题意.下面证明当t≥4,t∈N*时,.不妨设f(x)=2x﹣3x﹣3(x≥4),f'(x)=2x ln2﹣3>0,所以f(x)在[4,+∞)上单调增函数,所以f(x)≥f(4)=1>0,所以当t≥4,t∈N*时,,不合题意.综上,所求集合={(6,8)}.【选做题】本题包括21、22、C23三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分0分)21.已知矩阵,,且,求矩阵M.【解答】解:由题意,,则.……………………………………4分因为,则.……………………………………………………6分所以矩阵.………………………………………………10分[选修4-4:坐标系与参数方程](本小题满分0分)22.在平面直角坐标系xOy中,曲线C的参数方程是(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是ρsin(θ﹣)=.求:(1)直线l的直角坐标方程;(2)直线l被曲线C截得的线段长.【解答】解:(1)直线l的极坐标方程是ρsin(θ﹣)=.转换为直角坐标方程为:x﹣y+2=0;(2)曲线C的参数方程是(t为参数):转换为直角坐标方程为:x2=y.由,得x2﹣x﹣2=0,所以直线l与曲线C的交点A(﹣1,1),B(2,4).所以直线l被曲线C截得的线段长为.[选修4-5:不等式选讲](本小题满分0分)23.已知实数a,b,c满足a 2+b2+c2≤1,求证:.【解答】证明:由柯西不等式,得, (5)分所以.…………………………10分【必做题】第22、23题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E (ξ).【解答】解:(1)记“X是‘回文数’”为事件A.9个不同2位“回文数”乘以4的值依次为:44,88,132,176,220,264,308,352,396.其中“回文数”有:44,88.所以,事件A的概率.……………………………………………………3分(2)根据条件知,随机变量ξ的所有可能取值为0,1,2.由(1)得.…………………………………………………………………5分设“Y是‘回文数’”为事件B,则事件A,B相互独立.根据已知条件得,.;;……………………………………………………8分所以,随机变量ξ的概率分布为ξ012P所以,随机变量ξ的数学期望为:. (10)分25.设集合B是集合A n={1,2,3,……,3n﹣2,3n﹣1,3n},n∈N *的子集.记B中所有元素的和为S(规定:B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1)集合A1的“和谐子集”的个数;(2)集合A n的“和谐子集”的个数.【解答】解:(1)由题意有:A1=,则集合A1的“和谐子集”为:?,,,共4个,故答案为:4;(2)记A n的“和谐子集”的个数等于a n,即A n有a n个所有元素的和为3的整数倍的子集,另记A n有b n个所有元素的和为3的整数倍余1的子集,有c n个所有元素的和为3的整数倍余2的子集,易知:a1=4,b1=2,c1=2,集合A n+1={1,2,3,……,3n﹣2,3n﹣1,3n,3n+1,3n+2,3n+3}的“和谐子集”有以下4种情况,(考查新增元素3n+1,3n+2,3n+3)①集合集合A n={1,2,3,……,3n﹣2,3n﹣1,3n}的“和谐子集”共a n个,②仅含一个元素3(n+1)的“和谐子集”共a n个,同时含两个元素3n+1,3n+2的“和谐子集”共a n个,同时含三个元素3n+1,3n+2,3(n+1)的“和谐子集”共a n个,③仅含一个元素3n+1的“和谐子集”共c n个,同时含两个元素3n+1,3n+3的“和谐子集”共c n个,④仅含一个元素3n+2的“和谐子集”共b n个,同时含两个元素3n+2,3n+3的“和谐子集”共b n个,所以集合A n+1的“和谐子集”共有a n+1=4a n+2b n+2c n,同理:b n+1=4b n+2a n+2c n,c n+1=4c n+2a n+2c n,所以a n+1﹣b n+1=2(a n﹣b n),所以数列是以a1﹣b1=2为首项,2为公比的等比数列,求得:a n=b n+2n,同理a n=c n+2n,又a n+b n+c n=23n,解得:a n=+(n∈N*)故答案为:+(n∈N*)。
2019届高三年级第一次模拟考试数学(满分160分,考试时间120分钟)参考公式:柱体的体积V =Sh ,锥体的体积V =13Sh 一、填空题:本大题共14小题,每小题5分,共计70分.1. 函数f(x)=sin 2x 的最小正周期为________.2. 已知集合A ={4,a 2},B ={-1,16},若A ∩B ≠∅,则实数a =________.3. 复数z 满足z i =4+3i (i 是虚数单位),则|z|=________.4. 函数y =1-x 2的定义域是________.5. 从1,2,3,4,5这五个数中随机取两个数,则这两个数的和为6的概率为________.6. 一个算法的伪代码如图所示,执行此算法,最后输出的T 的值是________.7. 已知数列{a n }满足log 2a n +1-log 2a n =1,则a 5+a 3a 3+a 1=________. 8. 若抛物线y 2=2px(p>0)的准线与双曲线x 2-y 2=1的一条准线重合,则p =________.9. 如图,在直三棱柱ABCA 1B 1C 1中,M 为棱AA 1的中点,记三棱锥A 1MBC 的体积为V 1,四棱锥A 1BB 1C 1C 的体积为V 2,则V 1V 2的值是________. 10. 已知函数f(x)=2x 4+4x 2,若f(a +3)>f(a -1),则实数a 的取值范围为________.11. 在平面直角坐标系xOy 中,过圆C 1:(x -k)2+(y +k -4)2=1上任一点P 作圆C 2:x 2+y 2=1的一条切线,切点为Q ,则当线段PQ 的长最小时,k =________.12. 已知P 为平行四边形ABCD 所在平面上任一点,且满足PA →+PB →+2PD →=0,λPA →+μPB →+PC →=0,则λμ=________.13. 已知函数f(x)=⎩⎪⎨⎪⎧x 3-3x +2a ,x ≥a ,x 3+3x -4a ,x<a ,若存在x 0<0,使得f(x 0)=0,则实数a 的取值范围是________.14. 在△ABC 中,已知sin A sin B sin (C -θ)=λsin 2C ,其中tan θ=12⎝⎛⎭⎫0<θ<π2,若1tan A +1tan B +2tan C 为定值,则实数λ=________.二、解答题:本大题共6小题,共计90分.解答时应写出文字说明,证明过程或演算步骤.15. (本小题满分14分)已知向量a =(sin x ,1),b =⎝⎛⎭⎫12,cos x ,其中x ∈(0,π).(1) 若a ∥b ,求x 的值;(2) 若tan x =-2,求|a +b |的值.16. (本小题满分14分)如图,在四棱锥PABCD 中,底面ABCD 为平行四边形,O 为对角线BD 的中点,E ,F 分别为棱PC ,PD 的中点,已知PA ⊥AB ,PA ⊥AD.求证:(1) 直线PB ∥平面OEF ;(2) 平面OEF ⊥平面ABCD.17. (本小题满分14分)如图,三个小区分别位于扇形OAB 的三个顶点上,Q 是弧AB 的中点,现欲在线段OQ 上找一处开挖工作坑P(不与点O ,Q 重合),为小区铺设三条地下电缆管线PO ,PA ,PB ,已知OA =2千米,∠AOB =π3,记∠APQ =θ rad ,地下电缆管线的总长度为y 千米. (1) 将y 表示成θ的函数,并写出θ的范围;(2) 请确定工作坑P 的位置,使地下电缆管线的总长度最小.。
江苏省泰州市2019-2020学年第一次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()ln f x x =,()()23g x m x n =++,若对任意的()0,x ∈+∞总有()()f x g x ≤恒成立,记()23m n +的最小值为(),f m n ,则(),f m n 最大值为( )A .1B .1eC .21eD 【答案】C 【解析】 【分析】对任意的()0,x ∈+∞总有()()f x g x ≤恒成立,因为ln (23)x m x n ≤++,对()0,x ∈+∞恒成立,可得230m +>,令ln (23)y x m x n =-+-,可得1(23)y m x'=-+,结合已知,即可求得答案. 【详解】Q 对任意的()0,x ∈+∞总有()()f x g x ≤恒成立∴ln (23)x m x n ≤++,对()0,x ∈+∞恒成立, ∴230m +>令ln (23)y x m x n =-+-,可得1(23)y m x'=-+ 令0y '=,得123x m =+ 当123x m >+,0y '<当1023x m <<+0y '> ∴123x m =+,max 1ln1023y n m =--≤+,123n m e --+≥ 故1(23)(,)n nm n f m n e ++≥=Q 11(,)n nf m n e+-'=令110n ne+-=,得 1n = ∴当1n >时,(,)0f m n '<当1n <,(,)0f m n '>∴当1n =时,max 21(,)f m n e=故选:C. 【点睛】本题主要考查了根据不等式恒成立求最值问题,解题关键是掌握不等式恒成立的解法和导数求函数单调性的解法,考查了分析能力和计算能力,属于难题.2.设等差数列{}n a 的前n 项和为n S ,若31425a a a =+=,,则6S =( ) A .10 B .9C .8D .7【答案】B 【解析】 【分析】 根据题意3141152223a a a a d a d =+=+=+=,,解得14a =,1d =-,得到答案.【详解】3141152223a a a a d a d =+=+=+=,,解得14a =,1d =-,故616159S a d =+=.故选:B . 【点睛】本题考查了等差数列的求和,意在考查学生的计算能力.3.设复数z 满足()117i z i +=-,则z 在复平面内的对应点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C 【解析】 【分析】化简得到34z i =--,得到答案. 【详解】()117i z i +=-,故()()()()1711768341112i i i iz i i i i -----====--++-,对应点在第三象限. 故选:C . 【点睛】本题考查了复数的化简和对应象限,意在考查学生的计算能力.4.已知向量(1,2),(3,1)a b =-=-r r,则( )A .a r∥b rB .a r⊥b rC .a r∥(a b -rr)D .a r⊥( a b -rr)【答案】D【解析】 【分析】由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论. 【详解】∵向量a =r(1,﹣2),b =r(3,﹣1),∴a r和b r的坐标对应不成比例,故a r、b r不平行,故排除A ; 显然,a r •b =r3+2≠0,故a r、b r不垂直,故排除B ;∴a b -=rr(﹣2,﹣1),显然,a r和a b -rr的坐标对应不成比例,故a r和a b -rr不平行,故排除C ;∴a r •(a b -r r )=﹣2+2=0,故 a r ⊥(a b -r r ),故D 正确,故选:D. 【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.5.已知向量a r 与a b +r r的夹角为60︒,1a =r ,b =r ,则a b ⋅=r r ( )A .B .0C .0或32-D .32-【答案】B 【解析】 【分析】由数量积的定义表示出向量a r 与a b +r r的夹角为60︒,再由22a a =r r ,22b b =r r 代入表达式中即可求出a b ⋅r r .【详解】由向量a r 与a b +r r的夹角为60︒,得()2cos 60a a b a a b a a b ⋅+=+⋅=+︒r r r r r r r r r,所以21122a ab +⋅==r r r r又1a =r ,b =r ,22a a =r r ,22b b =r r ,所以1112a b +⋅=⨯r r 0a b ⋅=r r .故选:B 【点睛】本题主要考查向量数量积的运算和向量的模长平方等于向量的平方,考查学生的计算能力,属于基础题. 6.函数sin ln ||2y x x π⎛⎫=-⋅ ⎪⎝⎭图像可能是( )A .B .C .D .【答案】D 【解析】 【分析】先判断函数的奇偶性可排除选项A,C ,当0x +→时,可分析函数值为正,即可判断选项. 【详解】sin ln ||cos ln ||2y x x x x π⎛⎫=-⋅=- ⎪⎝⎭Q ,cos()ln ||cos ln ||x x x x ∴---=-,即函数为偶函数, 故排除选项A,C ,当正数x 越来越小,趋近于0时,cos 0,ln ||0x x -<<,所以函数sin ln ||02y x x π⎛⎫=-⋅> ⎪⎝⎭,故排除选项B,故选:D 【点睛】本题主要考查了函数的奇偶性,识别函数的图象,属于中档题. 7.已知复数(1)(3)(z i i i =+-为虚数单位) ,则z 的虚部为( ) A .2 B .2iC .4D .4i【答案】A 【解析】 【分析】对复数z 进行乘法运算,并计算得到42z i =+,从而得到虚部为2. 【详解】因为(1)(3)42z i i i =+-=+,所以z 的虚部为2. 【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意21i =-.8.二项式22)nx+的展开式中只有第六项的二项式系数最大,则展开式中的常数项是( ) A .180 B .90C .45D .360【答案】A 【解析】试题分析:因为22)nx+的展开式中只有第六项的二项式系数最大,所以10n =,551021101022•?()2r r rr r rr T C C x x--+==,令5502r -=,则2r =,23104180T C ==.考点:1.二项式定理;2.组合数的计算.9.在ABC V 中,AD 为BC 边上的中线,E 为AD 的中点,且||1,||2AB AC ==u u u r u u u r,120BAC ∠=︒,则||EB =u u u r( )A B .C D 【答案】A 【解析】 【分析】根据向量的线性运算可得3144EB AB AC =-u u u r u u u r u u u r ,利用22||B EB E =u u r u u u r u 及||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒计算即可. 【详解】因为11131()22244EB EA AB AD AB AB AC AB AB AC =+=-+=-⨯++=-u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r u u u r ,所以22229311216441||6EB AB AB B AC AC E =-⨯=⨯⋅+u u u r u u u r u u ur u u u r u u r u u u r u 229311112()2168216=⨯-⨯⨯⨯-+⨯ 1916=,所以||EB =u u u r ,故选:A 【点睛】本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题. 10.阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )A .1112B .6C .112D .223【答案】D 【解析】 【分析】用列举法,通过循环过程直接得出S 与n 的值,得到8n =时退出循环,即可求得. 【详解】执行程序框图,可得0S =,2n =,满足条件,12S =,4n =,满足条件,113244S =+=,6n =,满足条件,1111124612S =++=,8n =,由题意,此时应该不满足条件,退出循环,输出S 的值为11228123⨯=. 故选D . 【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的S 与n 的值是解题的关键,难度较易.11.定义在上的函数满足,且为奇函数,则的图象可能是( )A .B .C .D .【答案】D 【解析】 【分析】 根据为奇函数,得到函数关于中心对称,排除,计算排除,得到答案.为奇函数,即,函数关于中心对称,排除.,排除.故选:. 【点睛】本题考查了函数图像的识别,确定函数关于中心对称是解题的关键.12.已知复数为纯虚数(为虚数单位),则实数( ) A .-1 B .1C .0D .2【答案】B 【解析】 【分析】 化简得到,根据纯虚数概念计算得到答案.【详解】为纯虚数,故且,即.故选:. 【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力. 二、填空题:本题共4小题,每小题5分,共20分。
2019届高三第一次调研测试数学试题一、填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合{}13=A ,,{}01=B ,,则集合A B = ▲ .2. 已知复数2i 3i 1iz --=(i 为虚数单位),则复数z 的模为 ▲ . 3. 某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:则平均每人参加活动的次数为 ▲ .4. 如图是一个算法流程图,则输出的b 的值为 ▲ . 5. 有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为 ▲ . 6. 已知正四棱柱的底面边长是3 cm ,侧面的对角线长是cm ,则这个正四棱柱的体积为 ▲ cm 3.7. 若实数x y ,满足2+3x y x ≤≤,则x y +的最小值为 ▲ .8. 在平面直角坐标系xOy 中,已知抛物线22(0)=>y px p 的准线为l ,直线l 与双曲线2214x y -=的两条渐近线分别交于A ,B 两点,AB p 的值为 ▲ .9. 在平面直角坐标系xOy 中,已知直线3y x t =+与曲线()sin cos y a x b x a b t =+∈R ,,相切于点()01,,则()a b t +的值为 ▲ .10.已知数列{}n a 是等比数列,有下列四个命题:①数列{}n a 是等比数列; ②数列{}1+n n a a 是等比数列; ③数列1⎧⎫⎨⎬⎩⎭n a 是等比数列; ④数列{}2lg n a 是等比数列.其中正确的命题有 ▲ 个.11.已知函数()f x 是定义在R 上的奇函数,且(2)()f x f x +=.当01<x ≤时,()=f x 31x ax -+,则实数a 的值为 ▲ .(第4题)12.在平面四边形ABCD 中,1AB DA DB ==,,32AB AC AC AD ⋅=⋅=,,则2AC AD +的最小值为 ▲ .13.在平面直角坐标系xOy 中,圆221O x y +=:,圆()2244C x y -+=:.若存在过点()0P m ,的直线l ,l 被两圆截得的弦长相等,则实数m 的取值范围是 ▲ .14.已知函数()()()2|||2|(0)f x x a x a x a a =+-++<.若(1)(2)(3)f f f +++…(672)0f +=,则满足()2019f x =的x 的值为 ▲ .二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)如图,在四棱锥P ABCD -中,M ,N 分别为棱P A ,PD 的中点.已知侧面P AD ⊥底面ABCD ,底面ABCD 是矩形,DA =DP .求证:(1)MN ∥平面PBC ; (2)MD ⊥平面P AB .16.(本小题满分14分)在△ABC 中,a ,b ,c 分别为角A ,B ,C所对边的长,cos cos a B A =,cos A =. (1)求角B 的值;(2)若a =ABC 的面积.(第15题)BCDPMN如图,在平面直角坐标系xOy 中,椭圆22221y x a b+=(0)a b >>的左焦点为F ,右顶点为A ,上顶点为B .(1)已知椭圆的离心率为12,线段AF,求椭圆的标准方程;(2)已知△ABF 外接圆的圆心在直线y x -=上,求椭圆的离心率e 的值.18.(本小题满分16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD ,AB AD ,的长分别为和 4m ,上部是圆心为O 的劣弧CD ,=3COD 2π∠.(1)求图1中拱门最高点到地面的距离;(2)现欲以B 点为支点将拱门放倒,放倒过程中矩形ABCD 所在的平面始终与地面垂直,如图2、图3、图4所示.设BC 与地面水平线l 所成的角为θ.记拱门上的点到地面 的最大距离为h ,试用θ的函数表示h ,并求出h 的最大值.OOODDDCCAAACDO(第17题)已知函数()()ln a f x x a x =+∈R .(1)讨论()f x 的单调性;(2)设()f x 的导函数为()f x ',若()f x 有两个不相同的零点12x x ,.① 求实数a 的取值范围;② 证明:1122()()2ln 2x f x x f x a ''+>+.20.(本小题满分16分)已知等差数列{}n a 满足44a =,前8项和836S =. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()()212123(21)nn k n k n k b a a n *+-=+=-∈∑N ,.① 证明:{}n b 为等比数列;② 求集合*3()=p m m p a a m p m p b b ⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭N ,,,.21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题,并在.........答题卡...相应的答题区域内作答........... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵=a b c d ⎡⎤⎢⎥⎣⎦M ,10=102⎡⎤⎢⎥⎢⎥⎣⎦N ,且()110402-⎡⎤⎢⎥=⎢⎥⎣⎦MN ,求矩阵M .B .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,曲线C 的参数方程是2x t y t =⎧⎨=⎩,(t 为参数).以原点O 为极点, x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程是sin()4ρθπ-=求:(1)直线l 的直角坐标方程; (2)直线被曲线C 截得的线段长.C .[选修4-5:不等式选讲](本小题满分10分)已知实数a b c ,,满足222a b c ++≤1,求证:22211191114a b c +++++≥.l【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位 “回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4, 其结果记为X ;从9个不同2位“回文数”中任取2个相加,其结果记为Y . (1)求X 为“回文数”的概率;(2)设随机变量ξ表示X ,Y 两数中“回文数”的个数,求ξ的概率分布和数学期望()E ξ.23.(本小题满分10分)设集合B 是集合{123n A =,,,…,32313}n n n n *--∈N ,,,的子集.记B 中所有元素的 和为S (规定:B 为空集时,S =0).若S 为3的整数倍,则称B 为n A 的“和谐子集”. 求:(1)集合1A 的“和谐子集”的个数;(2)集合n A 的“和谐子集”的个数.2019届高三第一次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合{}13=A ,,{}01=B ,,则集合A B = ▲ .【答案】{}013,,2. 已知复数2i 3i 1iz --=(i 为虚数单位),则复数z 的模为 ▲ . 【答案】3. 某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:则平均每人参加活动的次数为 ▲ . 【答案】34. 如图是一个算法流程图,则输出的b 的值为 ▲ .【答案】75. 有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为 ▲ . 【答案】236. 已知正四棱柱的底面边长是3 cm ,侧面的对角线长是,则这个正四棱柱的体积为 ▲ cm 3. 【答案】547. 若实数x y ,满足2+3xy x ≤≤,则x y +的最小值为 ▲ .【答案】6-8. 在平面直角坐标系xOy 中,已知抛物线22(0)=>y px p 的准线为l ,直线l 与双曲线221x y -= 的两条渐近线分别交于A ,B 两点,AB p 的值为 ▲ . 【答案】9. 在平面直角坐标系xOy 中,已知直线3y x t =+与曲线()sin cos y a x b x a b t =+∈R ,,相切于(第4题)点()01,,则()a b t +的值为 ▲ . 【答案】410.已知数列{}n a 是等比数列,有下列四个命题:①数列{}n a 是等比数列; ②数列{}1+n n a a 是等比数列; ③数列1⎧⎫⎨⎬⎩⎭n a 是等比数列; ④数列{}2lg n a 是等比数列.其中正确的命题有 ▲ 个.【答案】311.已知函数()f x 是定义在R 上的奇函数,且(2)()f x f x +=.当01<x ≤时,()=f x 31x ax -+,则实数a 的值为 ▲ . 【答案】212.在平面四边形ABCD 中,1AB DA DB ==,,32AB AC AC AD ⋅=⋅=,,则2AC AD +的最小值为 ▲ .【答案】13.在平面直角坐标系xOy 中,圆221O x y +=:,圆()2244C x y -+=:.若存在过点()0P m ,的直线l ,l 被两圆截得的弦长相等,则实数m 的取值范围是 ▲ .【答案】()44-,14.已知函数()()()2|||2|(0)f x x a x a x a a =+-++<.若(1)(2)(3)f f f +++…(672)0f +=,则满足()2019f x =的x 的值为 ▲ .【答案】337二、解答题:本大题共6小题,共计90分.15.(本小题满分14分)如图,在四棱锥P ABCD -中,M ,N 分别为棱P A ,PD 的中点.已知侧面P AD ⊥底面ABCD ,底面ABCD 是矩形,DA =DP .求证:(1)MN ∥平面PBC ; (2)MD ⊥平面P AB .【证明】(1)在四棱锥P ABCD -中,M ,N 分别为(第15题)ABCDPMN棱P A ,PD 的中点,所以MN ∥AD .……………………2分 又底面ABCD 是矩形, 所以BC ∥AD .所以MN ∥BC . …………………………………………………………………4分 又⊂⊄BC PBC MN PBC 平面,平面,所以MN ∥平面PBC . …………………………………………………………6分(2)因为底面ABCD 是矩形, 所以AB ⊥AD .又侧面P AD ⊥底面ABCD ,侧面P AD ∩底面ABCD =AD ,AB ⊂底面ABCD , 所以AB ⊥侧面P AD .……………………………………………………………8分 又MD ⊂侧面P AD ,所以AB ⊥MD . ………………………………………………………………10分 因为DA =DP ,又M 为AP 的中点,从而MD ⊥PA . ………………………………………………………………12分 又PA ,AB 在平面P AB 内,=PAAB A ,所以MD ⊥平面P AB .…………………………………………………………14分 16.(本小题满分14分)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对边的长,cos cos a B A =,cos A =.(1)求角B 的值;(2)若a =ABC 的面积.【解】(1)在△ABC 中,因为cos A ,0π<<A ,所以sin =A .………………………………………………………2分因为cos cos a B A =,由正弦定理=a b ,得sin cos cos A B B A .所以cos sin =B B . ………………………………………………………………… 4分若cos =0B ,则sin =0B ,与22sin cos 1B B +=矛盾,故cos 0B ≠.于是sin tan 1cos ==B B B .又因为0π<<B ,所以π4B =. …………………………………………………………………………7分(2)因为a =sin A ,由(1)及正弦定理sin sin =a b A B,所以=b . ………………………………………………………………………9分又()()sin sin πsin C A B A B =--=+sin cos cos sin =+A B A B.……………………………………………12分 所以△ABC的面积为11sin ==S ab C .……14分17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆22221y x a b+=(0)a b >>的左焦点为F ,右顶点为A ,上顶点为B .(1)已知椭圆的离心率为12,线段AF,求椭圆的标准方程;(2)已知△ABF 外接圆的圆心在直线y x -=上,求椭圆的离心率e 的值.【解】(1)因为椭圆22221x y a b +=(0)a b >>的离心率为12,所以12c a =,则2a c =.因为线段AF,所以2a c -.所以c 28a =,2226b a c -==.所以椭圆的标准方程为22186x y +=. …………………………………………………4分(2)因为(0)(0)A a F c -,,,, 所以线段AF 的中垂线方程为:2a cx -=.(第17题)又因为△ABF 外接圆的圆心C 在直线y x -=上, 所以()22a c a cC ---,.…………………………………………………………………6分 因为(0)(0)A a B b ,,,, 所以线段AB 的中垂线方程为:()22b a ay x b --=. 由C 在线段AB 的中垂线上,得()2222a cb a ac ab -----=,整理得,2()b a c b ac -+=,…………………………………………………………10分 即()()0b c a b -+=.因为0a b +>,所以b c =.……………………………………………………………12分所以椭圆的离心率c e a ===. …………………………………………14分18.(本小题满分16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD ,AB AD ,的长分别为和 4m ,上部是圆心为O 的劣弧CD ,=3COD 2π∠.(1)求图1中拱门最高点到地面的距离;(2)现欲以B 点为支点将拱门放倒,放倒过程中矩形ABCD 所在的平面始终与地面垂直,如图2、图3、图4所示.设BC 与地面水平线l 所成的角为θ.记拱门上的点到地面 的最大距离为h ,试用θ的函数表示h ,并求出h 的最大值.【解】(1)如图,过O 作与地面垂直的直线交A B,于点12O O ,,交劣弧CD 于点P ,1O P 的长即为拱门最高点到地面的距离. 在2Rt O OC △中,23O OC π∠=,2CO = 所以21OO =,圆的半径2R OC ==. 所以11122=5O P R OO R O O OO +=+-=.答:拱门最高点到地面的距离为5m . …………………4分OOODDDCCAAACDO(2)在拱门放倒过程中,过点O 作与地面垂直的直线与“拱门外框上沿”相交于点P .当点P 在劣弧CD 上时,拱门上的点到地面的最大距离h 等于圆O 的半径长与圆心O 到地面距离之和;当点P 在线段AD 上时,拱门上的点到地面的最大距离h 等于点D 到地面的距离. 由(1)知,在1Rt OO B △中,OB =以B 为坐标原点,直线l 为x 轴,建立如图所示的坐标系.(2.1)当点P 在劣弧CD 上时,ππ62θ<≤. 由π6OBx θ∠=+,OB =由三角函数定义,得O ππ))66()θθ++,则π2)6h θ=++. …………………………………………………………8分所以当ππ62θ+=即π3θ=时, h取得最大值2+ ……………………………………………………10分(2.2)当点P 在线段AD 上时,06θπ≤≤.设=CBD ϕ∠,在Rt BCD △中,DBsin cos ϕϕ===. 由DBx θϕ∠=+,得))()D θϕθϕ++,.所以)h θϕ=+4sin θθ=+.……………………………………14分 又当06θπ<<时,4cos 4cos 066h θθππ'=->-.所以4sin h θθ=+在[0]6π,上递增.所以当6θπ=时,h 取得最大值5.因为25+,所以h的最大值为2+θODCB Axy答:4sin 06π2)662h θθθθθπ⎧+⎪⎪=⎨ππ⎪++<⎪⎩,≤≤,,≤;艺术拱门在放倒的过程中,拱门上的点到地面距离的最大值为(2+m . ……………………………………………16分19.(本小题满分16分)已知函数()()ln a f x x a x =+∈R . (1)讨论()f x 的单调性;(2)设()f x 的导函数为()f x ',若()f x 有两个不相同的零点12x x ,.① 求实数a 的取值范围;② 证明:1122()()2ln 2x f x x f x a ''+>+.【解】(1)()f x 的定义域为()0+∞,,且2()x a f x x-'=. (1.1)当0a ≤时,()0f x '>成立,所以()f x 在()0+∞,为增函数; ………2分 (1.2)当0a >时,(i )当x a >时,()0f x '>,所以()f x 在()+a ∞,上为增函数; (ii )当0x a <<时,()0f x '<,所以()f x 在()0a ,上为减函数.………4分 (2)①由(1)知,当0a ≤时,()f x 至多一个零点,不合题意;当0a >时,()f x 的最小值为()f a ,依题意知()=f a 1ln 0a +<,解得10a <<.……………………………………6分一方面,由于1a >,()10f a =>,()f x 在()+∞a ,为增函数,且函数()f x 的图 象在()1a ,上不间断. 所以()f x 在()a +∞,上有唯一的一个零点. 另一方面, 因为10e a <<,所以210e <<<a a .2211()ln 2ln f a a a =+=+,令()12ln =+g a a ,当10e a <<时,()2212210-'=-+=<a g a a a,所以()()211()2ln 20f a g a a g e a e==+>=->又()0f a <,()f x 在()0a ,为减函数,且函数()f x 的图象在()2a a ,上不间断.所以()f x 在()0a ,有唯一的一个零点. 综上,实数a 的取值范围是()10e ,.……………………………………………10分 ② 设()()1122121211=2+a a a a p x f x x f x x x x x ⎛⎫''=+=-+-- ⎪⎝⎭.又1122ln 0ln 0a x x a x x ⎧+=⎪⎪⎨⎪+=⎪⎩,, 则()122ln p x x =+.………………………………………12分 下面证明212x x a >.不妨设12x x <,由①知120x a x <<<. 要证212x x a >,即证212a x >.因为()2120a x a x ∈,,,()f x 在()0a ,上为减函数, 所以只要证()212a f f x x >⎛⎫ ⎪⎝⎭. 又()()12==0f x f x ,即证()222a f f x x >⎛⎫ ⎪⎝⎭.……………………………………14分 设函数()()()()22ln 2ln a x a F x f f x x a x a x a x=-=--+>. 所以()()220x a F x ax -'=>,所以()F x 在()+a ∞,为增函数.所以()()20F x F a >=,所以()222a f f x x >⎛⎫ ⎪⎝⎭成立. 从而212x x a >成立.所以()122ln 2ln 2p x x a =+>+,即()()11222ln 2''+>+x f x x f x a 成立. …16分20.(本小题满分16分)已知等差数列{}n a 满足44a =,前8项和836S =. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()()212123(21)nn k n k n k b a a n *+-=+=-∈∑N ,.① 证明:{}n b 为等比数列;② 求集合*3()=p m m pa a m p m pb b ⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭N ,,,.【解】(1)设等差数列{}n a 的公差为d .因为等差数列{}n a 满足44a =,前8项和836S =, 所以1134878362a d a d +=⎧⎪⎨⨯+=⎪⎩,,解得111a d =⎧⎨=⎩,. 所以数列{}n a 的通项公式为n a n =. ………………………………………………3分(2)①设数列{}n b 前n 项的和为n B .由(1)及()()212123(21)nn k n k n k b a a n *+-=+=-∈∑N ,得,()()()()()()21211121213212321212nnk n k k n n k n k k b a n b an n +-=----=⎧-=+⎪⎪⎨⎪-=+-⎪⎩∑∑,③≥, ④ 由③-④得()()()1121223131321321+2n n n n n n b a b a b a b a n -------=++++ ()12322511+22n n n b a b a b a n ----+++-[]123225111(2)(2)+(2)2n n n n b a b a b a b a n ---=+++++++()12322511+22n n n b a b a b a n ----+++-()()1212+222n n n n n b b b b B b b -=++++=-++.所以13222n n n B b -⋅=-+()2n n *∈N ≥,, 又()1113212b a -=+,所以11b =,满足上式. 所以()12232n n n B b n -*-+=⋅∈N ⑤…………………………………………6分 当2n ≥时,2112232n n n B b ----+=⋅⑥由⑤-⑥得,2132n n n b b --+=⋅.………………………………………………………8分()12122n n n n b b ----=--=()()11120n b -=--=,所以12n n b -=,12n nb b +=, 所以数列{}n b 是首项为1,公比为2的等比数列.………………………………10分②由3=p m m p a a b b ,得11322m p p m --=,即32p mp m -=. 记n n n a c b =,由①得,12n n n n an c b -==, 所以1112n n c n c n++=≤,所以1n n c c +≥(当且仅当1n =时等号成立). 由3=p m m pa ab b ,得3m p pc c c =>, 所以m p <.…………………………………………………………………………12分 设t p m =-()*m p t ∈N ,,,由32p m pm -=,得323t t m =-. 当1t =时,3m =-,不合题意;当2t =时,6m =,此时8p =符合题意; 当3t =时,95m =,不合题意;当4t =时,121m =<,不合题意.下面证明当4t t *∈N ≥,时,3123t t m =<-. 不妨设()233x f x x =--()4x ≥,()2ln 230x f x '=->,所以()f x 在4+[)∞,上单调增函数, 所以()(4)10f x f =>≥,所以当4t t *∈N ≥,时,3123t t m =<-,不合题意. 综上,所求集合*3()=p m m p a a m p m p b b ⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭N ,,,(){}=68,.………………16分21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题,并在.........答题卡...相应的答题区域内作答........... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵=a b c d ⎡⎤⎢⎥⎣⎦M ,10=102⎡⎤⎢⎥⎢⎥⎣⎦N ,且()110402-⎡⎤⎢⎥=⎢⎥⎣⎦MN ,求矩阵M . 【解】由题意,()110402-⎡⎤⎢⎥=⎢⎥⎣⎦MN ,则40102⎡⎤⎢⎥=⎢⎥⎣⎦MN . ……………………………………4分因为10=102⎡⎤⎢⎥⎢⎥⎣⎦N ,则110=02-⎡⎤⎢⎥⎣⎦N .……………………………………………………6分 所以矩阵401040=1020102⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦M .………………………………………………10分 B .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,曲线C 的参数方程是2x t y t =⎧⎨=⎩,(t 为参数).以原点O 为极点, x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程是sin()4ρθπ-=求:(1)直线l 的直角坐标方程; (2)直线被曲线C 截得的线段长.【解】(1)直线l的极坐标方程可化为(sin cos cos sin )44ρθθππ-sin cos 2ρθρθ-=.又cos sin x y ρθρθ==,, 所以直线l 的直角坐标方程为20x y -+=. …………………………4分(2)曲线C : 2x t y t =⎧⎨=⎩,(t 为参数)的普通方程为2x y =. 由220x y x y ⎧=⎨-+=⎩,,得220x x --=,所以直线l 与曲线C 的交点()11A -,,()24B ,. ……………………………8分 所以直线被曲线C 截得的线段长为AB .………10分C .[选修4-5:不等式选讲](本小题满分10分)已知实数a b c ,,满足222a b c ++≤1,求证:22211191114a b c +++++≥. 【证明】由柯西不等式,得()()()222222111111111a b c ++a b c ⎛⎫⎡⎤+++++ ⎪⎣⎦+++⎝⎭29=≥,…………………………5分 所以2222221119991113134++a b c a b c =+++++++≥≥. …………………………10分 【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)l l“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位 “回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4, 其结果记为X ;从9个不同2位“回文数”中任取2个相加,其结果记为Y . (1)求X 为“回文数”的概率;(2)设随机变量ξ表示X ,Y 两数中“回文数”的个数,求ξ的概率分布和数学期望()E ξ. 【解】(1)记“X 是‘回文数’”为事件A .9个不同2位“回文数”乘以4的值依次为:44,88,132,176,220,264,308, 352,396.其中“回文数”有:44,88.所以,事件A 的概率2()9P A =.……………………………………………………3分(2)根据条件知,随机变量ξ的所有可能取值为0,1,2.由(1)得2()9P A =.…………………………………………………………………5分设“Y 是‘回文数’”为事件B ,则事件A ,B 相互独立.根据已知条件得,()29205=9P B C =. ()()()()()2528=0=119981P P A P B ξ=--=;()()()()()()()252543=1=11999981P P A P B P A P B ξ+=-+-=;()()()2510=2=P P A P B ξ=⋅= ……………………………………………………8分 所以,随机变量ξ的概率分布为所以,随机变量ξ的数学期望为2843107()0128181819E ξ=⨯+⨯+⨯=.……………10分23.(本小题满分10分)设集合B 是集合{123n A =,,,…,32313}n n n n *--∈N ,,,的子集.记B 中所有元素的 和为S (规定:B 为空集时,S =0).若S 为3的整数倍,则称B 为n A 的“和谐子集”. 求:(1)集合1A 的“和谐子集”的个数;(2)集合n A 的“和谐子集”的个数.【解】(1)集合{}1=123A ,,的子集有:φ,{}1,{}2,{}3,{}12,,{}13,,{}23,,{}123,,.其中所有元素和为3的整数倍的集合有:φ,{}3,{}12,,{}123,,. 所以1A 的“和谐子集”的个数等于4.……………………………………………3分 (2)记n A 的“和谐子集”的个数等于n a ,即n A 有n a 个所有元素和为3的整数倍的子集;另记n A 有n b 个所有元素和为3的整数倍余1的子集,有n c 个所有元素和为3的整数 倍余2的子集.由(1)知,111=4=2=2a b c ,,.集合()+1{12332313313231}n A n n n n n n =--+++,,,,,,,,,的“和谐子集” 有以下四类(考察新增元素()313231n n n +++,,):第一类 集合{123n A =,,,…,32313}n n n --,,的“和谐子集”,共n a 个; 第二类 仅含一个元素()31n +的“和谐子集”,共n a 个;同时含两个元素3132n n ++,的“和谐子集”,共n a 个;同时含三个元素()313231n n n +++,,的“和谐子集”,共n a 个;第三类 仅含一个元素31n +的“和谐子集”,共n c 个;同时含两个元素()313+1n n +,的“和谐子集”,共n c 个;第四类 仅含一个元素32n +的“和谐子集”,共n b 个;同时含有两个元素()3231n n ++,的“和谐子集”,共n b 个,所以集合+1n A 的“和谐子集”共有1422n n n n a a b c +=++个.同理得1422n n n n b b c a +=++,1422n n n n c c a b +=++.………………………………7分 所以+112()n n n n a b a b +-=-,112a b -=,所以数列{}n n a b -是以2为首项,公比为2 的等比数列. 所以=2n n n a b -.同理得=2n n n a c -.又3=2n n n n a b c ++,所以()321=2233n n n a n *⨯+⨯∈N ,. ………………………10分。
2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A={1,3},B={0,1},则集合A∪B=.2.(5分)已知复数(i为虚数单位),则复数z的模为.3.(5分)某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:则平均每人参加活动的次数为.4.(5分)如图是一个算法流程图,则输出的b的值为.5.(5分)有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为.6.(5分)已知正四棱柱的底面边长为3cm,侧面的对角线长是3cm,则这个正四棱柱的体积是cm3.7.(5分)若实数x,y满足x≤y≤2x+3,则x+y的最小值为.8.(5分)在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线为l,直线l与双曲线的两条渐近线分别交于A,B两点,,则p的值为.9.(5分)在平面直角坐标系xOy中,已知直线y=3x+t与曲线y=a sin x+b cos x(a,b,t∈R)相切于点(0,1),则(a+b)t的值为.10.(5分)已知数列{a n}是等比数列,有下列四个命题:①数列{|a n|}是等比数列;②数列{a n a n+1}是等比数列;③数列是等比数列;④数列{lga n2}是等比数列.其中正确的命题有个.11.(5分)已知函数f(x)是定义在R上的奇函数,且f(x+2)=f(x).当0<x≤1时,f(x)=x3﹣ax+1,则实数a的值为.12.(5分)在平面四边形ABCD中,AB=1,DA=DB,=3,=2,则|的最小值为.13.(5分)在平面直角坐标系xOy中,圆O:x2+y2=1,圆C:(x﹣4)2+y2=4.若存在过点P(m,0)的直线l,l被两圆截得的弦长相等,则实数m的取值范围.14.(5分)已知函数f(x)=(2x+a)(|x﹣a|+|x+2a|)(a<0).若f(1)+f(2)+f(3)+…+f(672)=0,则满足f(x)=2019的x的值为.二、解答题:本大题共6小题,共计90分.15.(14分)如图,在四棱锥P﹣ABCD中,M,N分别为棱P A,PD的中点.已知侧面P AD ⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;(2)MD⊥平面P AB.16.(14分)在△ABC中,a,b,c分别为角A,B,C所对边的长,,.(1)求角B的值;(2)若,求△ABC的面积.17.(14分)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左焦点为F,右顶点为A,上顶点为B.(1)已知椭圆的离心率为,线段AF中点的横坐标为,求椭圆的标准方程;(2)已知△ABF外接圆的圆心在直线y=﹣x上,求椭圆的离心率e的值.18.(16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别为和4m,上部是圆心为O的劣弧CD,.(1)求图1中拱门最高点到地面的距离;(2)现欲以B点为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示.设BC与地面水平线l所成的角为θ.记拱门上的点到地面的最大距离为h,试用θ的函数表示h,并求出h的最大值.19.(16分)已知函数.(1)讨论f(x)的单调性;(2)设f(x)的导函数为f'(x),若f(x)有两个不相同的零点x1,x2.①求实数a的取值范围;②证明:x1f'(x1)+x2f'(x2)>2lna+2.20.(16分)已知等差数列{a n}满足a4=4,前8项和S8=36.(1)求数列{a n}的通项公式;(2)若数列{b n}满足.①证明:{b n}为等比数列;②求集合.【选做题】本题包括21、22、C23三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分0分)21.已知矩阵,,且,求矩阵M.[选修4-4:坐标系与参数方程](本小题满分0分)22.在平面直角坐标系xOy中,曲线C的参数方程是(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是ρsin(θ﹣)=.求:(1)直线l的直角坐标方程;(2)直线l被曲线C截得的线段长.[选修4-5:不等式选讲](本小题满分0分)23.已知实数a,b,c满足a2+b2+c2≤1,求证:.【必做题】第22、23题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E (ξ).25.设集合B是集合A n={1,2,3,……,3n﹣2,3n﹣1,3n},n∈N*的子集.记B中所有元素的和为S(规定:B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1)集合A1的“和谐子集”的个数;(2)集合A n的“和谐子集”的个数.2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.【解答】解:根据题意,集合A={1,3},B={0,1},则A∪B={0,1,3};故答案为:{0,1,3}.2.【解答】解:=,则复数z的模为.故答案为:.3.【解答】解:根据题意,计算这组数据的平均数为:=×(20×2+15×3+10×4+5×5)=3.故答案为:3.4.【解答】解:模拟程序的运行,可得a=0,b=1满足条件a<15,执行循环体,a=1,b=3满足条件a<15,执行循环体,a=5,b=5满足条件a<15,执行循环体,a=21,b=7此时,不满足条件a<15,退出循环,输出b的值为7.故答案为:7.5.【解答】解:有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,基本事件总数n=3×3=9,这两位同学参加不同兴趣小组包含的基本事件个数m=3×2=6,则这两位同学参加不同兴趣小组的概率为p==.故答案为:.6.【解答】解:设正四棱柱的高为h,∵正四棱柱的底面边长为3cm,侧面的对角线长是3cm,∴=3,解得h=6(cm),∴这个正四棱柱的体积V=Sh=3×3×6=54(cm3).故答案为:54.7.【解答】解:画出实数x,y满足x≤y≤2x+3的平面区域,如图示:由,解得A(﹣3,﹣3),由z=x+y得:y=﹣x+z,显然直线过A时z最小,z的最小值是﹣6,故答案为:﹣6.8.【解答】解:抛物线y2=2px(p>0)的准线为l:x=﹣,双曲线的两条渐近线方程为y=±x,可得A(﹣,﹣),B((﹣,),|AB|==,可得p=2.故答案为:2.9.【解答】解:根据题意得,t=1y′=a cos x﹣b sin x∴k=a cos0﹣b sin0=a∴a=3,b cos0=1∴a=3,b=1故答案为4.10.【解答】解:由{a n}是等比数列可得=q(q为常数,q≠0),①==|q|为常数,故是等比数列;②==q2为常数,故是等比数列;③==常数,故是等比数列;④数列a n=1是等比数列,但是lga n2=0不是等比数列;故答案为:311.【解答】解:∵f(x)是定义在R上的奇函数,且f(x+2)=f(x).∴当x=﹣1时,f(﹣1+2)=f(﹣1)=f(1),即﹣f(1)=f(1),则f(1)=0,∵当0<x≤1时,f(x)=x3﹣ax+1.∴f(1)=1﹣a+1=0,得a=2,故答案为:212.【解答】解:如图,以A为原点,建立平面直角坐标系,则A(0,0),B(1,0),因为DA=DB,可设D(,m),因为•=3,AB=1,所以可设C(3,n),又•=2,所以+mn=2,即mn=,+2=(4,n+2m)|+2|==≥=2,当且仅当n=2m,即n=1,m=时,等号成立.故答案为:213.【解答】解:显然直线l有斜率,设直线l:y=k(x﹣m),即kx﹣y﹣km=0,依题意得1﹣()2=4﹣()2>0有解,即,∴13﹣8m>0且3m2+8m﹣16<0解得﹣4<m<,故答案为:﹣4<m.14.【解答】解:注意到:,又因为:,,因此.所以,函数f(x)关于点对称,所以,解得:a=﹣673,f(x)=(2x﹣673)(|x+673|+|x﹣2×673|)=2019,显然有:0<2x﹣673<2019,即,所以,f(x)=(2x﹣673)(x+673+2×673﹣x)=2019,2x﹣673=1,解得:x=337.故答案为:337.二、解答题:本大题共6小题,共计90分.15.【解答】证明:(1)在四棱锥P﹣ABCD中,M,N分别为棱P A,PD的中点,所以MN∥AD.……………………2分又底面ABCD是矩形,所以BC∥AD,所以MN∥BC.…………………………………………………………………4分又BC⊂平面PBC,MN⊄平面PBC,所以MN∥平面PBC.…………………………………………………………6分(2)因为底面ABCD是矩形,所以AB⊥AD.又侧面P AD⊥底面ABCD,侧面P AD∩底面ABCD=AD,AB⊂底面ABCD,所以AB⊥侧面P AD.……………………………………………………………8分又MD⊂侧面P AD,所以AB⊥MD.………………………………………………………………10分因为DA=DP,又M为AP的中点,从而MD⊥P A.………………………………………………………………12分又P A,AB在平面P AB内,P A∩AB=A,所以MD⊥平面P AB.…………………………………………………………14分16.【解答】(本题满分为14分)解:(1)在△ABC中,因为,0<A<π,所以.………………………………………………………2分因为,由正弦定理,得.所以cos B=sin B.…………………………………………………………………4分若cos B=0,则sin B=0,与sin2B+cos2B=1矛盾,故cos B≠0.于是.又因为0<B<π,所以.…………………………………………………………………………7分(2)因为,,由(1)及正弦定理,得,所以.………………………………………………………………………9分又sin C=sin(π﹣A﹣B)=sin(A+B)=sin A cos B+cos A sin B=.……………………………………………12分所以△ABC的面积为.……14分17.【解答】解:(1)因为椭圆(a>b>0)的离心率为,所以,则a=2c.因为线段AF中点的横坐标为,所以.所以,则a2=8,b2=a2﹣c2=6.所以椭圆的标准方程为.…………………………………………………4分(2)因为A(a,0),F(﹣c,0),所以线段AF的中垂线方程为:.又因为△ABF外接圆的圆心C在直线y=﹣x上,所以. (6)分因为A(a,0),B(0,b),所以线段AB的中垂线方程为:.由C在线段AB的中垂线上,得,整理得,b(a﹣c)+b2=ac,…………………………………………………………10分即(b﹣c)(a+b)=0.因为a+b>0,所以b=c.……………………………………………………………12分所以椭圆的离心率.…………………………………………14分18.【解答】解:(1)如图,过O作与地面垂直的直线交AB,CD于点O1,O2,交劣弧CD 于点P,O1P的长即为拱门最高点到地面的距离.在Rt△O 2OC中,,,所以OO2=1,圆的半径R=OC=2.所以O1P=R+OO1=R+O1O2﹣OO2=5.答:拱门最高点到地面的距离为5m.…………………4分(2)在拱门放倒过程中,过点O作与地面垂直的直线与“拱门外框上沿”相交于点P.当点P在劣弧CD上时,拱门上的点到地面的最大距离h等于圆O的半径长与圆心O到地面距离之和;当点P在线段AD上时,拱门上的点到地面的最大距离h等于点D到地面的距离.由(1)知,在Rt△OO1B中,.以B为坐标原点,直线l为x轴,建立如图所示的坐标系.(2.1)当点P在劣弧CD上时,.由,,由三角函数定义,得O,则.…………………………………………………………8分所以当即时,h取得最大值.……………………………………………………10分(2.2)当点P在线段AD上时,.设∠CBD=φ,在Rt△BCD中,,.由∠DBx=θ+φ,得.所以=.……………………………………14分又当时,.所以在上递增.所以当时,h取得最大值5.因为,所以h的最大值为.答:;艺术拱门在放倒的过程中,拱门上的点到地面距离的最大值为()m.……………………………………………16分19.【解答】解:(1)f(x)的定义域为(0,+∞),且.(i)当a≤0时,f'(x)>0成立,所以f(x)在(0,+∞)为增函数;………2分(ii)当a>0时,①当x>a时,f'(x)>0,所以f(x)在(a,+∞)上为增函数;②当0<x<a时,f'(x)<0,所以f(x)在(0,a)上为减函数.………4分(2)①由(1)知,当a≤0时,f(x)至多一个零点,不合题意;当a>0时,f(x)的最小值为f(a),依题意知f(a)=1+lna<0,解得.……………………………………6分一方面,由于1>a,f(1)=a>0,f(x)在(a,+∞)为增函数,且函数f(x)的图象在(a,1)上不间断.所以f(x)在(a,+∞)上有唯一的一个零点.另一方面,因为,所以,,令,当时,,所以又f(a)<0,f(x)在(0,a)为减函数,且函数f(x)的图象在(a2,a)上不间断.所以f(x)在(0,a)有唯一的一个零点.综上,实数a的取值范围是.……………………………………………10分②证明:设.又则p=2+ln(x1x2).………………………………………12分下面证明.不妨设x1<x2,由①知0<x1<a<x2.要证,即证.因为,f(x)在(0,a)上为减函数,所以只要证.又f(x1)=f(x2)=0,即证.……………………………………14分设函数.所以,所以F(x)在(a,+∞)为增函数.所以F(x2)>F(a)=0,所以成立.从而成立.所以p=2+ln(x1x2)>2lna+2,即x1f'(x1)+x2f'(x2)>2lna+2成立.…16分20.【解答】解:(1)设等差数列{a n}的公差为d.因为等差数列{a n}满足a4=4,前8项和S8=36,所以,解得所以数列{a n}的通项公式为a n=n.(2)①设数列{b n}前n项的和为B n.由(1)及得,由③﹣④得3(2n﹣1)﹣3(2n﹣1﹣1)=(b1a2n﹣1+b2a2n﹣3+…+b n﹣1a3+b n a1+2n)﹣(b1a2n+b2a2n﹣5+…+b n﹣1a1+2n﹣2)=[b1(a2n﹣3+2)+b2(a2n﹣5+2)+…+b n﹣1(a1+2)+b n a1+2n]﹣3﹣(b1a2n﹣3+b2a2n﹣5+…+b n﹣1a1+2n﹣2)=2(b1+b2+…+b n﹣1)+b n+2=2(B n﹣b n)+b n+2.所以3•2n﹣1=2B n﹣b n+2(n≥2,n∈N*),又3(21﹣1)=b1a1+2,所以b1=1,满足上式.所以当n≥2时,由⑤﹣⑥得,.=,所以,,所以数列{b n}是首项为1,公比为2的等比数列.②由,得,即.记,由①得,,所以,所以c n≥c n+1(当且仅当n=1时等号成立).由,得c m=3c p>c p,所以m<p;设t=p﹣m(m,p,t∈N*),由,得.当t=1时,m=﹣3,不合题意;当t=2时,m=6,此时p=8符合题意;当t=3时,,不合题意;当t=4时,,不合题意.下面证明当t≥4,t∈N*时,.不妨设f(x)=2x﹣3x﹣3(x≥4),f'(x)=2x ln2﹣3>0,所以f(x)在[4,+∞)上单调增函数,所以f(x)≥f(4)=1>0,所以当t≥4,t∈N*时,,不合题意.综上,所求集合={(6,8)}.【选做题】本题包括21、22、C23三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分0分)21.【解答】解:由题意,,则.……………………………………4分因为,则.……………………………………………………6分所以矩阵.………………………………………………10分[选修4-4:坐标系与参数方程](本小题满分0分)22.【解答】解:(1)直线l的极坐标方程是ρsin(θ﹣)=.转换为直角坐标方程为:x﹣y+2=0;(2)曲线C的参数方程是(t为参数):转换为直角坐标方程为:x2=y.由,得x2﹣x﹣2=0,所以直线l与曲线C的交点A(﹣1,1),B(2,4).所以直线l被曲线C截得的线段长为.[选修4-5:不等式选讲](本小题满分0分)23.【解答】证明:由柯西不等式,得, (5)分所以.…………………………10分【必做题】第22、23题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.【解答】解:(1)记“X是‘回文数’”为事件A.9个不同2位“回文数”乘以4的值依次为:44,88,132,176,220,264,308,352,396.其中“回文数”有:44,88.所以,事件A的概率.……………………………………………………3分(2)根据条件知,随机变量ξ的所有可能取值为0,1,2.由(1)得.…………………………………………………………………5分设“Y是‘回文数’”为事件B,则事件A,B相互独立.根据已知条件得,.;;……………………………………………………8分所以,随机变量ξ的概率分布为所以,随机变量ξ的数学期望为:. (10)分25.【解答】解:(1)由题意有:A1=,则集合A1的“和谐子集”为:∅,,,共4个,故答案为:4;(2)记A n的“和谐子集”的个数等于a n,即A n有a n个所有元素的和为3的整数倍的子集,另记A n有b n个所有元素的和为3的整数倍余1的子集,有c n个所有元素的和为3的整数倍余2的子集,易知:a1=4,b1=2,c1=2,集合A n+1={1,2,3,……,3n﹣2,3n﹣1,3n,3n+1,3n+2,3n+3}的“和谐子集”有以下4种情况,(考查新增元素3n+1,3n+2,3n+3)①集合集合A n={1,2,3,……,3n﹣2,3n﹣1,3n}的“和谐子集”共a n个,②仅含一个元素3(n+1)的“和谐子集”共a n个,同时含两个元素3n+1,3n+2的“和谐子集”共a n个,同时含三个元素3n+1,3n+2,3(n+1)的“和谐子集”共a n个,③仅含一个元素3n+1的“和谐子集”共c n个,同时含两个元素3n+1,3n+3的“和谐子集”共c n个,④仅含一个元素3n+2的“和谐子集”共b n个,同时含两个元素3n+2,3n+3的“和谐子集”共b n个,所以集合A n+1的“和谐子集”共有a n+1=4a n+2b n+2c n,同理:b n+1=4b n+2a n+2c n,c n+1=4c n+2a n+2c n,所以a n+1﹣b n+1=2(a n﹣b n),所以数列是以a1﹣b1=2为首项,2为公比的等比数列,求得:a n=b n+2n,同理a n=c n+2n,又a n+b n+c n=23n,解得:a n=+(n∈N*)故答案为:+(n∈N*)。
2019年江苏省泰州市高考数学一模试卷学校:________ 班级:________ 姓名:________ 学号:________一、填空题(共14小题)1.函数f(x)=sin2x的最小正周期为.2.已知集合A={4,a2},B={﹣1,16},若A∩B≠∅,则a=.3.复数z满足zi=4+3i(i是虚数单位),则|z|=.4.函数y=的定义域为﹣.5.从1,2,3,4,5这5个数中,随机抽取2个不同的数,则这2个数的和为6的概率是.6.一个算法的伪代码如图所示,执行此算法,最后输出的T的值是.7.已知数列{a n}满足log2a n+1﹣log2a n=1,则=.8.若抛物线y2=2px(p>0)的准线与双曲线x2﹣y2=1的一条准线重合,则p=.9.如图,在直三棱柱ABC﹣A1B1C1中,点M为棱AA1的中点,记三棱锥A1﹣MBC的体积为V1,四棱锥A1﹣BB1C1C的体积为V2,则的值是.10.已知函数f(x)=2x4+4x2,若f(a+3)>f(a﹣1),则实数a的取值范围为﹣11.在平面直角坐标系xOy中,过圆C1:(x﹣k)2+(y+k﹣4)2=1上任一点P作圆C2:x2+y2=1的一条切线,切点为Q,则当线段PQ长最小时,k=.12.已知点P为平行四边形ABCD所在平面上任一点,且满足,,则λμ=﹣.13.已知函数,若存在x0<0,使得f(x0)=0,则实数a的取值范围是﹣.14.在△ABC中,已知sin A sin B sin(C﹣θ)=λsin2C,其中,若为定值,则实数λ=.二、解答题(共6小题)15.已知向量,,其中x∈(0,π).(1)若,求x的值;(2)若tan x=﹣2,求||的值.16.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,点O为对角线BD的中点,点E,F分别为棱PC,PD的中点,已知P A⊥AB,P A⊥AD.求证:(1)直线PB∥平面OEF;(2)平面OEF⊥平面ABCD.17.如图,三个校区分别位于扇形OAB的三个顶点上,点Q是弧AB的中点,现欲在线段OQ上找一处开挖工作坑P(不与点O,Q重合),为小区铺设三条地下电缆管线PO,P A,PB,已知OA=2千米,∠AOB=,记∠APQ=θrad,地下电缆管线的总长度为y千米.(1)将y表示成θ的函数,并写出θ的范围;(2)请确定工作坑P的位置,使地下电缆管线的总长度最小.18.如图,在平面直角坐标系xOy中,椭圆C:的左顶点为A,点B是椭圆C上异于左、右顶点的任一点,P是AB的中点,过点B且与AB垂直的直线与直线OP交于点Q,已知椭圆C 的离心率为,点A到右准线的距离为6.(1)求椭圆C的标准方程;(2)设点Q的横坐标为x0,求x0的取值范围.19.设A,B为函数y=f(x)图象上相异两点,且点A,B的横坐标互为倒数,过点A,B分别做函数y=f(x)的切线,若这两条切线存在交点,则称这个交点为函数f(x)的“优点”.(1)若函数不存在“优点,求实数a的值;(2)求函数f(x)=x2的“优点”的横坐标的取值范围;(3)求证:函数f(x)=lnx的“优点”一定落在第一象限.20.已知数列{a n}的前n项和为S n,2a1+a2=a3,且对任意的n∈N*,n≥2都有2nS n+1﹣(2n+5)S n+S n﹣1=ra1.(1)若a1≠0,a2=3a1,求r的值;(2)数列{a n}能否是等比数列?说明理由;(3)当r=1时,求证:数列{a n}是等差数列.2019年江苏省泰州市高考数学一模试卷参考答案一、填空题(共14小题)1.【分析】利用函数y=A sin(ωx+φ)的周期为,得出结论.【解答】解:函数f(x)=sin2x的最小正周期为=π,故答案为:π.【知识点】三角函数的周期性及其求法2.【分析】利用交集定义直接求解.【解答】解:∵集合A={4,a2},B={﹣1,16},A∩B≠∅,∴a2=16,解得a=±4.故答案为:±4.【知识点】交集及其运算3.【分析】把已知等式变形,再由复数代数形式的乘除运算化简,利用复数模的计算公式求解.【解答】解:由zi=4+3i,得z=,∴|z|=.故答案为:5.【知识点】复数求模4.【分析】令被开方数大于等于0,解不等式求出定义域.【解答】解:要使函数有意义,需满足1﹣x2≥0解得﹣1≤x≤1故答案为{x|﹣1≤x≤1}【知识点】函数的定义域及其求法5.【分析】基本事件总数n==10,这2个数的和为6包含的基本事件有2个,由此能求出这2个数的和为6的概率.【解答】解:从1,2,3,4,5这5个数中,随机抽取2个不同的数,基本事件总数n==10,这2个数的和为6包含的基本事件有:(1,5),(2,4),共2个,则这2个数的和为6的概率是p==.故答案为:.【知识点】古典概型及其概率计算公式6.【分析】模拟程序的运行过程,即可得出程序运行后输出的S值.【解答】解:模拟程序的运行,可得i=1,T=1满足条件i≤2,执行循环体,T=1×21=2,i=2满足条件i≤2,执行循环体,T=2×22=8,i=3不满足条件i≤2,退出循环,输出T的值为8.故答案为:8.【知识点】伪代码7.【分析】由对数的运算性质结合等比数列的通项公式可得结果.【解答】解:∵log2a n+1﹣log2a n=1,∴=2,∴数列{a n}是公比q为2的等比数列,∴=q2=4.故答案为:4.【知识点】等比数列8.【分析】求出抛物线的准线方程,双曲线的左准线方程,建立关系,即可求出p的值.【解答】解:抛物线y2=2px的准线为:x=﹣,双曲线x2﹣y2=1的左准线为:x=﹣=﹣,由题意可知﹣=﹣,p=.故答案为:.【知识点】圆锥曲线的综合9.【分析】设出棱柱的棱长,然后求解三棱锥A1﹣MBC的体积为V1,四棱锥A1﹣BB1C1C的体积为V2,推出结果.【解答】解:在直三棱柱ABC﹣A1B1C1中,点M为棱AA1的中点,A到BC是距离为:t,记三棱锥A1﹣MBC的体积为V1=•t=•t四棱锥A1﹣BB1C1C的体积为V2=则==.故答案为:.【知识点】棱柱、棱锥、棱台的体积10.【分析】根据f(x)的解析式可看出f(x)是偶函数,并且在(0,+∞)上单调递增,从而由f(a+3)>f(a﹣1)得到f(|a+3|)>f(|a﹣1|),从而得出|a+3|>|a﹣1|,两边平方即可解出a的范围.【解答】解:f(x)=2x4+4x2是偶函数,且在(0,+∞)上单调递增;∴由f(a+3)>f(a﹣1)得:f(|a+3|)>f(|a﹣1|);∴|a+3|>|a﹣1|;∴(a+3)2>(a﹣1)2;解得a>﹣1;∴实数a的取值范围为(﹣1,+∞).故答案为:(﹣1,+∞).【知识点】奇偶性与单调性的综合11.【分析】根据题意,由圆C1的方程求出圆心的坐标,分析可得圆心在直线y=﹣x﹣4上,结合圆与圆的位置关系分析可得当C1C2的连线与直线y=﹣x+4垂直时,线段PQ长最小,据此可得=1,解可得k的值,即可得答案.【解答】解:根据题意,圆C1:(x﹣k)2+(y+k﹣4)2=1的圆心为(k,4﹣k),半径r=1,则圆心在直线y=﹣x+4上,点P为圆C1上任意一点,过点P作圆C2:x2+y2=1的一条切线,切点为Q,当C1C2的连线与直线y=﹣x+4垂直时,线段PQ长最小,此时有=1,解可得:k=2;故答案为:2.【知识点】圆方程的综合应用12.【分析】利用向量加减法把所给两个条件中的向量都转化为,对比可得解.【解答】解:由,得=,即;…①由,得,即,∴,即(μ+1),∴,…②由①②可得,得,∴,故答案为:﹣【知识点】平面向量的基本定理及其意义13.【分析】分别求得x<a,x≥a时f(x)的导数,求得单调性、极值,讨论a=0,a<0,a>0,结合函数f(x)存在负的零点,可得a的范围.【解答】解:由f(x)=x3+3x﹣4a的导数为f′(x)=3x2+3>0,可得x<a为增函数,可得f(x)<a3﹣a,且x≥a时,f(x)=x3﹣3x﹣4a的导数为f′(x)=3x2﹣3,即有﹣1<x<1时,f(x)递减;x>1或x<﹣1时,f(x)递增,可得x=1为极小值﹣2+2a,x=﹣1处取得极大值2+2a,a=0时,x<0时,f(x)<0;x≥0时,f(x)在(0,1)递减,(1,+∞)递增,无负的零点;0<a<1时,x<a时,f(x)<f(a)<0,函数f(x)无负的零点;当a≥1时,x<a时,f(x)递增,x≥a,f(x)递增,f(x)也无负的零点;当a<0时,由f(a)≥0即a3﹣a≥0,解得﹣1≤a<0,可得f(x)存在负的零点.故答案为:[﹣1,0).【知识点】分段函数的应用14.【分析】由,可求sinθ,cosθ,然后由sin A sin B sin(C﹣θ)=λsin2C,结合两角差的正弦公式可求sin A sin B,然后进行化简,结合其特点及为定值可求λ.【解答】解:由,可得,sinθ=,cosθ=,∵sin A sin B sin(C﹣θ)=λsin2C,sin A sin B sin C﹣sin A sin B cos C=λsin2C,∴sin A sin B==∵==,==为定值,∴则实数λ=故答案为:【知识点】两角和与差的余弦函数二、解答题(共6小题)15.【分析】(1)根据即可得出,从而得出sin2x=1,根据x∈(0,π)即可得出2x∈(0,2π),从而得出2x=,从而得出x的值;(2)根据tan x=﹣2可得出sin x=﹣2cos x,可求出,从而可求出.【解答】解:(1)∵;∴sin x cos x=,即sin2x=1;∵x∈(0,π);∴;(2)∵tan x==﹣2;∴sin x=﹣2cos x;∵;∴==.【知识点】平面向量共线(平行)的坐标表示16.【分析】(1)由O为PB中点,F为PD中点,得PB∥FO,由此能证明PB∥平面OEF.(2)连结AC,推导出P A∥OE,由P A⊥AB,P A⊥AD,得P A⊥平面ABCD,从而OE⊥平面ABCD,由此能证明平面OEF⊥平面ABCD.【解答】证明:(1)O为PB中点,F为PD中点,∴PB∥FO,而PB⊄平面OEF,FO⊂平面OEF,∴PB∥平面OEF.(2)连结AC,∵ABCD为平行四边形,∴AC与BD交于点O,O为AC中点,又E为PC中点,∴P A∥OE,∵P A⊥AB,P A⊥AD,AB∩AD=A,∴P A⊥平面ABCD,∴OE⊥平面ABCD,又OE⊂平面OEF,∴平面OEF⊥平面ABCD.【知识点】直线与平面平行的判定、平面与平面垂直的判定17.【分析】(1)由题意在△∠AOP中利用正弦定理求得P A、OP,把y表示为θ的函数,再求出θ的取值范围;(2)由(1)构造函数,利用导数f(θ)的单调性,求出f(θ)的最小值以及对应θ的值即可.【解答】解:(1)因为Q为弧AB的中点,由对称性知P A=PB,∠AOP=∠BOP=,又∠APO=π﹣θ,∠OAP=,由正弦定理,得:,又OA=2,所以,P A=,OP=,所以,y=P A+PB+OP=2P A+OP==,又∠APQ>∠AOP,所以,,∠OAQ=∠OQA=(π+)=,所以,θ∈(,);(2)令,θ∈(,),令,得:,所以,f(θ)在上单调递减,在(,)上单调递增;所以,当,即OP=时,f(θ)有唯一的极小值,即是最小值:f(θ)min=2,答:当工作坑P与O的距离为时,地下电缆管线的总长度最小.【知识点】已知三角函数模型的应用问题18.【分析】(1)根据已知条件列有关a、c的方程组,解出a和c的值,进而可得出b的值,从而求出椭圆C的标准方程;(2)设直线AB的方程为x=my﹣2,m≠0,将直线AB的方程与椭圆C的方程联立,求出点B的坐标,进而求出点P的坐标,分别写出直线OP和直线BQ的方程,联立这两条直线方程,求出x0的表达式,利用不等式的性质求出x0的取值范围.【解答】解:(1)依题意,有:,即,又=6,所以,=6,解得:a=2,c=1,b==,所以,椭圆C的方程为:;(2)由(1)知,A(﹣2,0)、设AB:x=my﹣2,m≠0,将直线AB的方程与椭圆C的方程联立,解得,即点B的坐标为,则,所以,直线OP的斜率为,则直线OP的方程为,直线BQ的斜率为k BQ=﹣m,所以,直线BQ的方程为,将直线OP的方程与直线BQ的方程联立,得出.因此,x0的取值范围是(4,8).【知识点】直线与椭圆的位置关系19.【分析】(1)由题意可得f′(x)=f′()对x∈(0,1)∪(1,+∞)恒成立,不妨取0<x<1,求得导数,可得a的范围;(2)设A(t,t2),B(,),(0<t<1),求得导数和切线方程,求得交点的横坐标,结合基本不等式可得所求范围;(3)设A(t,lnt),B(,﹣lnt),0<t<1,求得导数,以及切线方程,求交点,由构造函数法,即可得到交点的坐标均为正数.【解答】解:(1)若函数不存在“优点,可得f′(x)=f′()对x∈(0,1)∪(1,+∞)恒成立,不妨取0<x<1,可得f′(x)===f′(),即3a=x,即有a∈(0,),故存在两条切线平行,且a的范围是(0,);(2)设A(t,t2),B(,),(t≠0),f′(x)=2x,以A,B为切点的切线方程为y=2tx﹣t2,y=x﹣,令2tx﹣t2=x﹣,可得x=(t+)>1或x<﹣1,可得“优点”的横坐标的取值范围为(1,+∞)∪(﹣∞,﹣1);(3)证明:设A(t,lnt),B(,﹣lnt),0<t<1,由f′(x)=,以A,B为切点的切线方程为y=+lnt﹣1;y=tx﹣lnt﹣1,可令tx﹣lnt﹣1=+lnt﹣1,可得x=>0,y=(lnt2﹣),设t2=m∈(0,1),可令h(m)=lnm﹣,h′(m)=﹣=>0,即h(m)递增,h(m)<h(1)=0,即lnt2﹣<0,又<0,则y=(lnt2﹣)>0,函数f(x)=lnx的“优点”的横坐标和纵坐标均为正数,一定落在第一象限.【知识点】利用导数研究曲线上某点切线方程20.【分析】(1)在已知数列递推式中,取n=2,可得4a3﹣5a2﹣4a1=ra1,结合已知2a1+a2=a3即可求得r值;(2)假设数列{a n}是等比数列,公比为q,求得q=2或q=﹣1,再由已知可得2n(q2﹣q)=3q﹣1,不能得到对任意n≥3恒成立,故数列{a n}不可能是等比数列;(3)当r=1时,令n=2,整理得:﹣4a1﹣5a2+4a3=ra1,结合已知可得a2=3a1,a3=5a1,令n=3,得a4=7a1.由(2)可知,4S n=2na n+1﹣a n﹣ra1(n≥2),进一步得到2na n+1+a n﹣1=(2n+3)a n(n≥3),可得2(n﹣1)a n+a n﹣2=(2n+1)a n﹣1(n≥4).得到2n[(a n+1﹣a n)﹣(a n﹣a n﹣1)]=(a n﹣a n﹣1)﹣(a n﹣1﹣a n﹣2)(n≥4).从而得到(a n﹣a n﹣1)﹣(a n﹣1﹣a n﹣2)=0(n≥4).即a n﹣a n﹣1=a n﹣1﹣a n﹣2(n≥4),由此可得数列{a n}是以a1为首项,以2a1为公差的等差数列.【解答】解:(1)令n=2,得:4S3﹣9S2+S1=ra1,即:4(a3+a2+a1)﹣9(a2+a1)+a1=ra1,化简,得:4a3﹣5a2﹣4a1=ra1,∵2a1+a2=a3,a2=3a1,∴4×5a1﹣5×3a1﹣4a1=ra1,解得:r=1;(2)假设数列{a n}是等比数列,公比为q,则,且a1≠0,解得q=2或q=﹣1.由2nS n+1﹣(2n+5)S n+S n﹣1=ra1,可得4S n=2na n+1﹣a n﹣ra1(n≥2).∴4S n﹣1=2(n﹣1)a n﹣a n﹣1﹣ra1,两式相减得:2na n+1+a n﹣1=(2n+3)a n,两边同除以a n﹣1,可得2n(q2﹣q)=3q﹣1,∵q≠1,∴q2﹣q≠0,则上式不可能对任意n≥3恒成立,故数列{a n}不可能是等比数列;证明:(3)当r=1时,令n=2,整理得:﹣4a1﹣5a2+4a3=ra1,又由2a1+a2=a3,可得a2=3a1,a3=5a1,令n=3,可得6S4﹣11S3+S2=a1,解得a4=7a1.由(2)可知,4S n=2na n+1﹣a n﹣ra1(n≥2),∴4S n﹣1=2(n﹣1)a n﹣a n﹣1﹣ra1(n≥3),两式相减得:2na n+1+a n﹣1=(2n+3)a n(n≥3),∴2(n﹣1)a n+a n﹣2=(2n+1)a n﹣1(n≥4).∴2n[(a n+1﹣a n)﹣(a n﹣a n﹣1)]=(a n﹣a n﹣1)﹣(a n﹣1﹣a n﹣2)(n≥4).∵(a4﹣a3)﹣(a3﹣a2)=0,∴(a n﹣a n﹣1)﹣(a n﹣1﹣a n﹣2)=0(n≥4).即a n﹣a n﹣1=a n﹣1﹣a n﹣2(n≥4),又∵a3﹣a2=a2﹣a1=2a1,∴数列{a n}是以a1为首项,以2a1为公差的等差数列.【知识点】等比数列、数列递推式、等差数列。
2019届江苏省泰州市高三第一次模拟考试
数学试卷
(满分160分,考试时间120分钟)
参考公式:柱体的体积V=Sh,锥体的体积V=1 3 Sh
一、填空题:本大题共14小题,每小题5分,共计70分.
1. 函数f(x)=sin 2x的最小正周期为________.
2. 已知集合A={4,a2},B={-1,16},若A∩B≠∅,则实数a=________.
3. 复数z满足z i=4+3i(i是虚数单位),则|z|=________.
4. 函数y=1-x2的定义域是________.
5. 从1,2,3,4,5这五个数中随机取两个数,则这两个数的和为6的概率为________.
6. 一个算法的伪代码如图所示,执行此算法,最后输出的T的值是________.
7. 已知数列{a
n }满足log2a n+1-log2a n=1,则
a
5
+a
3
a
3
+a
1
=________.
8. 若抛物线y2=2px(p>0)的准线与双曲线x2-y2=1的一条准线重合,则p =________.
9. 如图,在直三棱柱ABCA
1B
1
C
1
中,M为棱AA
1
的中点,记三棱锥A
1
MBC的体
积为V
1,四棱锥A
1
BB
1
C
1
C的体积为V
2
,则
V
1
V
2
的值是________.
10. 已知函数f(x)=2x 4+4x 2,若f(a +3)>f(a -1),则实数a 的取值范围为________.
11. 在平面直角坐标系xOy 中,过圆C 1:(x -k)2+(y +k -4)2=1上任一点P 作圆C 2:x 2+y 2=1的一条切线,切点为Q ,则当线段PQ 的长最小时,k =________.
12. 已知P 为平行四边形ABCD 所在平面上任一点,且满足PA →+PB →+2PD →=0,
λPA →+μPB →+PC →=0,则λμ=________.
13. 已知函数f(x)=⎩⎨⎧x 3
-3x +2a ,x ≥a ,
x 3+3x -4a ,x<a ,
若存在x 0<0,使得f(x 0)=0,则
实数a 的取值范围是________.
14. 在△ABC 中,已知sin A sin B sin (C -θ)=λsin 2C ,其中tan θ=
12
⎝
⎛
⎭⎪⎫0<θ<π2,若1tan A +1tan B +2tan C 为定值,则实数λ=________.
二、解答题:本大题共6小题,共计90分.解答时应写出文字说明,证明过程或演算步骤.
15. (本小题满分14分)
已知向量a =(sin x ,1),b =⎝ ⎛⎭⎪⎫
12,cos x ,其中x ∈(0,π).
(1) 若a ∥b ,求x 的值;
(2) 若tan x =-2,求|a +b |的值.。