1.3.3函数的最值与导数 文档
- 格式:doc
- 大小:359.50 KB
- 文档页数:5
1.3.3 最大值与最小值知识梳理1.函数的最值是比较整个定义区间的函数值得出的,函数的极大值、极小值是比较极值点附近的函数值得出的.函数的极值可以有____________,但最大(小)值只有____________;极值只能在区间内取得,最值则可以在端点取得;有极值的不一定有最值,有最值的未必有极值;极值可能成为最值.2.在闭区间[a ,b ]上连续的函数f(x)在[a ,b ]上____________最大值与最小值;在(a ,b)上连续的函数或在[a ,b ]上的不连续函数____________最大值与最小值.3.求f(x)在[a ,b ]上的最大值与最小值的步骤是:(1) ________________________________________________;(2) ________________________________________________.知识导学通过前面的学习,我们知道函数的极值是在定义域内的某个区域内的特征,是一局部概念,极大值不一定比极小值大,极小值也不一定比极大值小;在现实生活和社会实践中,为了发挥最大的经济效益,常常会遇到如何使用料最省、产量最高、效益最大、成本最低等问题.解决这些问题常常需转化为求导函数最大值和最小值问题,函数在什么条件下有最大和最小值,它们和函数极值的关系如何等来处理.求函数f(x)在[a,b ]内的最大值与最小值的步骤:(1)首先确定函数f(x)在[a,b ]内连续,在(a,b)内可导;(2)求函数f(x)在开区间(a,b)内的极值;(3)求函数f(x)在区间端点的值f(a)、f(b);(4)将函数f(x)的各极值与f(a)、f(b)比较,其中最大的一个是最大值,最小的是最小值. 疑难突破本节的难点在于搞清函数的最大、最小值与函数极值的关系.函数的最大值、最小值与函数的极值之间有怎样的关系?求最值的过程体现了数学中的哪些数学思想?剖析:函数的极值是在局部范围内讨论问题,是局部概念,而函数的最值是对整个定义域而言,是一个整体性概念.闭区间上连续的函数一定有最值,开区间内可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值.函数在其定义区间最大值和最小值最多各有一个,而函数的极值则可能有多个,也可能没有.求函数的最值实质上是实现新问题向旧问题、复杂问题向简单问题的转化过程.导数具有丰富多彩的性质和特性,这些特性为我们解决问题提供了“肥沃”的等价转化的“土壤”,只要我们认真梳理知识,夯实基础,善于利用等价转化、数形结合的数学思想方法,定能不断提高解题的能力.典题精讲【例1】求下列函数的最值.(1)f(x)=3x-x 3,3-≤x≤3;(2)f(x)=6-12x+x 3,x ∈[31-,1]. 思路分析:利用求最值的一般步骤,要注意应用适当的计算方法,保证运算的准确性.解:(1)f′(x)=3-3x 2,令f′(x )=0,得x=±1.∴f(1)=2,f(-1)=-2,f(3-)=0,f(3)=-18.∴f(x)max =2,f(x)min =-18.(2)f′(x)=-12+3x 2=0,∴x=±2.当x ∈(-∞,-2)时,f′(x)>0,∴f(x)为增函数;当x ∈(-2,2)时,f′(x)<0,∴f(x)为减函数;当x ∈[31-,1]时,f(x)为减函数. ∴f(x)min =f(1)=-5,f(x)max =f(-31)=27269. 绿色通道:函数f(x)在给定区间上连续可导,必有最大值和最小值.因此,在求闭区间[a,b ]上函数的最值时,只需求出函数f(x)在开区间(a,b)内的极值,然后与端点处的函数值比较即可. 变式训练:求下列函数的最值. (1)f(x)=sin2x-x(-2π≤x≤2π); (2)f(x)=xb x a -+122(0<x <1,a >0,b >0). 解:(1)f′(x)=2cos2x-1,令f′(x)=0,得x=±6π. ∴f(6π)=623π-,f(-6π)=623π+-. 又f(2π)=-2π,f(-2π)=2π, ∴[f(x)]max =2π,[f(x)]min =2π-. (2)f′(x)=2222222222)1()1()1(x x x a x b x b x a ---=-+-. 令f′(x)=0,即b 2x 2-a 2(1-x)2=0,解得x=b a a +. 当0<x <b a a +时,f′(x)<0,当ba a +<x <1时,f′(x)>0. ∴函数f(x)在点x=b a a +处取得极小值,也是最小值为f(ba a +)=(a+b)2,即[f(x)]min =(a+b)2. 【例2】设函数f(x)是定义在[-1,0)∪(0,1]上的偶函数,当x ∈[-1,0)时,f(x)=x 3-ax(a ∈R ).(1)当x ∈(0,1]时,求f(x)的解析式;(2)若a >3,试判断f(x)在(0,1]上的单调性,并证明你的结论;(3)是否存在a ,使得当x ∈(0,1]时,f(x)有最大值1.思路分析:此题具有较强的综合性,应注意知识之间的相互转化和相互联系.解:(1)∵x ∈(0,1]时,-x ∈[-1,0),∴f(-x)=(-x)3-a(-x)=ax-x 3.又f(x)为偶函数,∴f(-x)=f(x),即f(x)=ax-x 3.(2)f′(x)=-3x 2+a.∵x ∈(0,1],∴x 2∈(0,1].∴-3x 2≥-3.∵a >3,∴-3x 2+a >0.故f(x)在(0,1]上为增函数.(3)假设存在a,使得当x ∈(0,1]时,f(x)有最大值1.∴f′(x)=a -3x 2;令f′(x)=0,∴-3x 2+a=0,即a >0时,x=±33a .又∵x ∈(0,1],∴x=33a 且33a <1.∴f′(x)在(0, 33a )上大于0,在(33a ,1)上不小于0. ∴f(x)极大值=f(33a )=19329333==-a a a a a a . ∴a=2233时,f(x)有最大值1. 绿色通道:关于存在性问题,处理的方法可以先假设存在,再寻找所得的结论.变式训练:求f(x)=322)2(x x -在[-1,3]上的最大值及最小值.解:对f(x)求导得f′(x)=3)2(134--x x x . 在定义域内不可导点为x 1=0,x 2=2.令f′(x)=0,得x=1.又f(-1)=39,f(0)=0, f(1)=1,f(2)=0,f(3)=39,∴在x=-1点和x=3点,y 有最大值f(-1)=f(3)=39.∴在x=0点和x=2点,y 有最小值f(0)=f(2)=0.【例3】 已知x 、y 为正实数,且满足关系式x 2-2x+4y 2=0,求x·y 的最大值.思路分析:题中有两个变量x 和y,首先应选择一下主要变量,将x 、y 表示为某一个变量(x 或y 或其他变量)的函数关系,实现问题的转化.同时根据题设条件确定变量的取值范围,再利用导数(或均值不等式等)求函数的最大值.解:方法一:4y 2=2x-x 2,∵y >0,∴y=2221x x -. ∴x·y=21x·22x x -.由⎩⎨⎧≥->,02,02x x x 解得0<x≤2. 设f(x)=xy=2221x x x -(0<x≤2). 当0<x <2时,f′(x)=21[222)1(2x x x x x x --+-]=222)23(x x x x --.令f′(x)=0,得x=23或x=0(舍), ∴f(23)=833.又f(2)=0,∴函数f(x)的最大值为833,即x·y 的最大值为833. 方法二:由x 2-2x+4y 2=0,得(x-1)2+4y 2=1(x >0,y >0).设x-1=cos α,y=21sin α(0<α<π), ∴x·y=21sin α(1+cos α). 设f(α)=21sin α(1+cos α), 则f′(α)=21[-sin 2α+(1+cos α)·cos α] =21(2cos 2α+cos α-1)=(cos α+1)(cos α-21). 令f′(α)=0,得cos α=-1或cos α=21. ∵0<α<π,∴α=3π,此时x=23,y=43. ∴f(3π)=833. ∴[f(3π)]max =833, 即当x=23,y=43时,[x·y ]max =833. 绿色通道:明确解决问题的策略、指向和思考方法需要抓住问题的本质,领悟真谛,巧施转化.在实现转化的过程中,关键是要注意变量的取值范围必须满足题设条件以免解题时陷于困境,功亏一篑.变式训练:已知动点M 在抛物线y 2=2px(p >0)上,问M 在何位置时到定点P(p,p)的距离最短.解:设M(p y 22,y),则d=|MP|2=(py 22-p)2+(y-p)2, d′=2(p y 22-p)·p y +2(y-p)=23py -2y+2y-2p. 由d′=0,得y=p 32.此时M(p p 332,21)为所求.问题探究问题:怎样理解在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值和最小值?导思:主要区分闭区间和开区间上连续函数是否有最值的关系.探究:给定函数的区间必须是闭区间,即f(x)在开区间上虽然连续但不能保证有最大值和最小值.在闭区间上的每一点必须连续,即在闭区间上有间断点亦不能保证f(x)有最大值和最小值.。
1.3.3函数的最大(小)值与导数课后篇巩固提升1.函数y=2x3-3x2-12x+5在区间[0,3]上最大值与最小值分别是()A.5,-15B.5,-4C.-4,-15D.5,-16y'=6x2-6x-12,令y'>0,解得x>2或x<-1.所以函数y=2x3-3x2-12x+5在(0,2)内单调递减,在(2,3)内单调递增.又y(0)=5,y(2)=-15,y(3)=-4,所以该函数在区间[0,3]上最大值与最小值分别是5,-15.故选A.2.函数f(x)=的最大值为()A.0B.-eC.D.不存在(x)=-,令f'(x)=0,得x=1.因为当x<1时f'(x)>0;当x>1时f'(x)<0.所以函数f(x)在x=1处取得极大值,亦即函数的最大值f(1)=.3.函数y=()A.有最大值2,无最小值B.无最大值,有最小值-2C.最大值为2,最小值为-2D.无最值y'=-,令y'=0得x=±1,容易验证当x=-1时,函数取极小值f(-1)=-2,当x=1时函数取极大值f(1)=2,此即为函数的最小值和最大值.4.函数f(x)=x3-x2-x+a在区间[0,2]上的最大值是3,则a等于()A.3B.1C.2D.-1(x)=3x2-2x-1,令f'(x)=0,解得x=-(舍去)或x=1.又f(0)=a,f(1)=a-1,f(2)=a+2,则f(2)最大,即a+2=3,所以a=1.5.设直线x=t与函数f(x)=x2,g(x)=ln x的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1B.C.D.,设|MN|=F(t)=t2-ln t(t>0),令F'(t)=2t-=0,得t=或t=-(舍去).F(t)在内单调递减,在内单调递增,故当t=时,F(t)=t2-ln t(t>0)有极小值,也为最小值.即|MN|达到最小值,故选D.6.函数y=x+(x>0)的最小值为.1+×(-2)×=1---,所以当x>1时,y'>0,当0<x<1时,y'<0,所以函数在(0,1)上单调递减,在(1,+∞)上单调递增,所以函数在x=1处取得最小值,最小值为1+,故答案是.7.函数f(x)=ax4-4ax3+b(a>0),x∈[1,4],f(x)的最大值为3,最小值为-6,则a+b=.(x)=4ax3-12ax2.令f'(x)=0,得x=0(舍去)或x=3.当1<x<3时,f'(x)<0,当3<x<4时,f'(x)>0,故x=3为极小值点.因为f(3)=b-27a,f(1)=b-3a,f(4)=b,所以f(x)的最小值为f(3)=b-27a,最大值为f(4)=b.解得故a+b=.所以--8.若函数f(x)=(a>0)在[1,+∞)内的最大值为,则a的值为.(x)=--,当x>时,f'(x)<0,f(x)单调递减,当-<x<时,f'(x)>0,f(x)单调递增,当x=时,f(x)=<1,不合题意.∴f(x)max=f(1)=,a=-1.-19.已知函数f(x)=x ln x.(1)求f(x)的最小值;(2)若对所有的x∈[1,+∞)都有f(x ≥ax-1,求实数a的取值范围.f(x)的定义域为(0,+∞),f'(x)=1+ln x.令f'(x)>0,解得x>;令f'(x)<0,解得0<x<.从而f(x)在单调递减,在单调递增.所以,当x=时,f(x)取得最小值-.(2)依题意,得f(x ≥ax-1在[1,+∞)上恒成立,即不等式a≤ln x+对于x∈[1,+∞)恒成立.令g(x)=ln x+,则g'(x)=-.当x>1时,因为g'(x)=->0,故g(x)是[1,+∞)上的增函数,所以g(x)的最小值是g(1)=1,所以a的取值范围是(-∞,1].10.已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.f(x)的定义域为(0,+∞),f'(x)=-a.若a≤0 则f'(x)>0,f(x)在(0,+∞)内单调递增;若a>0,则当x∈0,时f'(x)>0,当x∈,+∞时f'(x)<0,所以f(x)在0,内单调递增,在,+∞内单调递减.(2)由(1)知,当a≤0时,f(x)在(0,+∞)内无最大值.当a>0时,f(x)在x=取得最大值,最大值为f=ln +a1-=-ln a+a-1.因此f>2a-2⇔ln a+a-1<0.令g(a)=ln a+a-1.则g(a)在(0,+∞)内是增函数,且g(1)=0,于是,当0<a<1时,g(a)<0,当a>1时,g(a)>0.因此a的取值范围是(0,1).。
《1.3.3 函数的最大(小)值与导数(2)》教学案2教学目标:⒈使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件;⒉使学生掌握用导数求函数的极值及最值的方法和步骤教学重点:利用导数求函数的最大值和最小值的方法.教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系. 教学过程:一.创设情景我们知道,极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质.也就是说,如果0x 是函数()y f x =的极大(小)值点,那么在点0x 附近找不到比()0f x 更大(小)的值.但是,在解决实际问题或研究函数的性质时,我们更关心函数在某个区间上,哪个至最大,哪个值最小.如果0x 是函数的最大(小)值,那么()0f x 不小(大)于函数()y f x =在相应区间上的所有函数值.二.新课讲授观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x .1.结论:一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.说明:⑴如果在某一区间上函数()y f x =的图像是一条连续不断的曲线,则称函数()y f x =在这个区间上连续.(可以不给学生讲) x 3x 2x 1baxOy⑵给定函数的区间必须是闭区间,在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值.如函数xx f 1)(=在),0(+∞内连续,但没有最大值与最小值; ⑶在闭区间上的每一点必须连续,即函数图像没有间断,⑷函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.(可以不给学生讲)2.“最值”与“极值”的区别和联系⑴最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.⑵从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;⑶函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个⑷极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.3.利用导数求函数的最值步骤:由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值三.典例分析例1.(课本例5)求()31443f x x x =-+在[]0,3的最大值与最小值 解: 由例4可知,在[]0,3上,当2x =时,()f x 有极小值,并且极小值为4(2)3f =-,又由于()04f =,()31f =因此,函数()31443f x x x =-+在[]0,3的最大值是4,最小值是43-.y=x 4-2x 2+512108642-4-242xOy上述结论可以从函数()31443f x x x =-+在[]0,3上的图象得到直观验证.四.课堂练习1.下列说法正确的是( )A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值C.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值 2.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x ) ( ) A.等于0B.大于0C.小于0D.以上都有可能3.函数y =234213141x x x ++,在[-1,1]上的最小值为( )A.0B.-2C.-1D.12134.求函数5224+-=x x y 在区间[]2,2-上的最大值与最小值.5.课本 练习 五.回顾总结1.函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点;2.函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件;3.闭区间[]b a ,上的连续函数一定有最值;开区间),(b a 内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值4.利用导数求函数的最值方法.六.布置作业。
1.3.3最大值与最小值1.会求在指定区间上函数的最大值、最小值(其中多项式函数一般不超过三次).(重点) 2.掌握含参数的最值问题的讨论.(难点)3.掌握函数的极值与最值的联系与区别.(易混点)[基础·初探]教材整理函数的最大(小)值与导数阅读教材P32“例1”以上部分,完成下列问题.1.函数的最大值与最小值.(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有f(x)≤f(x0),则称f(x0)为函数f(x)在定义域上的最大值.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有f(x)≥f(x0),则称f(x0)为函数f(x)在定义域上的最小值.函数的最大(小)值是相对函数定义域整体而言的,如果存在最大(小)值,那么函数的最大(小)值惟一.2.利用导数求函数的最值求可导函数f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的极值;(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值.1.判断正误:(1)函数的最大值一定是函数的极大值.( )(2)开区间上的单调连续函数无最值.( )(3)函数f(x)在区间[a,b]上的最大值和最小值一定在两个端点处取得.( )【答案】(1)×(2)√(3)×2.函数f(x)=2x-cos x在(-∞,+∞)上________.(填序号)①无最值;②有极值;③有最大值;④有最小值.【解析】f′(x)=2+sin x>0恒成立,所以f(x)在(-∞,+∞)上单调递增,无极值,也无最值.【答案】①[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_______________________________________________解惑:_______________________________________________疑问2:_______________________________________________解惑:_______________________________________________疑问3:_______________________________________________解惑:_______________________________________________[小组合作型](1)f(x)=x3-12x2-2x+5,x∈[-2,2];(2)f(x)=e-x-e x,x∈[0,1].【精彩点拨】首先利用函数求极值,再比较极值与端点值的大小,确定最值.【自主解答】(1)f′(x)=3x2-x-2=(3x+2)(x-1),令f′(x)=0,得x1=-23,x2=1.当x变化时,f′(x),f(x)变化情况如下表:(2)f ′(x )=⎝ ⎛⎭⎪⎪⎫1ex ′-(e x )′=-1ex -e x=-1+e2x ex .当x ∈[0,1]时,f ′(x )<0恒成立, 即f (x )在[0,1]上是减函数.故当x =1时,f (x )有最小值f (1)=1e -e ;当x =0时,f (x )有最大值f (0)=e -0-e 0=0.求函数最值的四个步骤 (1)求函数的定义域;(2)求f ′(x ),解方程f ′(x )=0; (3)列出关于x ,f (x ),f ′(x )的变化表; (4)求极值、端点值,确定最值.[再练一题]1.(2016·盐城质检)函数y =x +2cos x 在区间⎣⎢⎢⎡⎦⎥⎥⎤0,π2上的最大值是________.【导学号:01580015】【解析】 ∵y ′=1-2sin x ,x ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π2,令y ′=0,得x =π6.由于f (0)=2,f ⎝ ⎛⎭⎪⎪⎫π6=π6+3,f ⎝ ⎛⎭⎪⎪⎫π2=π2,∴函数的最大值为π6+3.【答案】 π6+3已知函数f (x )=ax 3-6ax 2+b ,x∈[-1,2]的最大值为3,最小值为-29,求a ,b 的值.【精彩点拨】 首先求出f ′(x ).然后讨论a 的正负,根据函数f (x )的单调性得出用a ,b 表示的函数的最值,从而列出关于a ,b 的方程组,求a ,b .【自主解答】 由题设知a ≠0,否则f (x )=b 为常函数,与题设矛盾. 求导得f ′(x )=3ax 2-12ax =3ax (x -4), 令f ′(x )=0,得x 1=0,x 2=4(舍去).(1)当a >0,且x 变化时,f ′(x ),f (x )的变化情况如下表:单调递增单调递减f (0)=b =3. 又f (-1)=-7a +3,f (2)=-16a +3<f (-1), ∴f (2)=-16a +3=-29,解得a =2.(2)当a <0时,同理可得,当x =0时,f (x )取得极小值b ,也就是函数在[-1,2]上的最小值,∴f (0)=b =-29.又f (-1)=-7a -29, f (2)=-16a -29>f (-1),∴f (2)=-16a -29=3,解得a =-2. 综上可得,a =2,b =3或a =-2,b =-29.1.本题的解题关键是利用函数的单调性确定某些极值就是函数的最值,同时由于系数a的符号对函数的单调性有直接的影响,且最值也受a的符号的影响,因此需要对a的符号进行分类讨论.2.已知函数的最值求参数问题属于逆向探究题型,解决该类问题的基本方法是待定系数法,列出关于参数的方程(组),从而求出参数的值,但在用参数表示最值时,需要根据参数的情况分类讨论.[再练一题]2.设23<a<1,函数f(x)=x3-32ax2+b在区间[-1,1]上的最大值为1,最小值为-62,求该函数的解析式.【导学号:01580016】【解】f′(x)=3x2-3ax,令f′(x)=0,得x=0或x=a.当x变化时,f′(x),f(x)的变化情况如下表:单调递增单调递减单调递增当x=a时,f(x)取得极小值-a32+b,而f(0)>f(a),又f(1)>f(-1),故只需比较f(0)与f(1),f(-1)与f(a)的大小.因为f(0)-f(1)=32a-1>0,所以f(x)的最大值为f(0)=b,所以b=1.又因为f (-1)-f (a )=12(a +1)2(a -2)<0,所以f (x )的最小值为f (-1)=-1-32a +b=-32a ,所以-32a =-62,所以a =63.故所求函数的解析式是f (x )=x 3-62x 2+1. [探究共研型]如图1-3-6为y =f (x图1-3-6探究1 观察[a ,b ]上函数y =f (x )的图象,试找出它的极大值、极小值. 【提示】 f (x 1),f (x 3)为函数的极大值,f (x 2),f (x 4)为函数的极小值. 探究2结合图象判断,函数y =f (x )在区间[a ,b ]上是否存在最大值,最小值?若存在,分别为多少?【提示】 存在.f (x )最小值=f (a ),f (x )最大值=f (x 3).探究3 函数y =f (x )在[a ,b ]上的最大(小)值一定是其极值吗? 【提示】 不一定.也可能是区间端点的函数值.设函数f (x )=tx 2+2t 2x +t -1(x ∈R ,t >0). (1)求f (x )的最小值h (t );(2)若h (t )<-2t +m 对t ∈(0,2)恒成立,求实数m 的取值范围.【精彩点拨】(1)利用配方法,即可求出二次函数f(x)的最小值h(t);(2)构造函数g(t)=h(t)-(-2t+m),只需使g(t)在(0,2)上的最大值小于零即可求得m的取值范围.【自主解答】(1)∵f(x)=t(x+t)2-t3+t-1(x∈R,t>0),∴当x=-t时,f(x)取最小值f(-t)=-t3+t-1,即h(t)=-t3+t-1.(2)令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,由g′(t)=-3t2+3=0,得t=1或t=-1(不合题意,舍去).当t变化时,g′(t),g(t)的变化情况如下表:单调递增单调递减∴g(t)在(0,2)h(t)<-2t+m在(0,2)内恒成立等价于g(t)<0在(0,2)内恒成立,即等价于1-m<0.∴m的取值范围为(1,+∞).1.涉及到不等式恒成立、不等式能成立的问题时,一般需转化为函数最值来解决.若不等式中含参数,则可考虑分离参数,以求避免分类讨论.2.不等式恒成立、能成立常见的转化策略(1)a>f(x)恒成立⇔a>f(x)最大值,a<f(x)恒成立⇔a<f(x)最小值;(2)f(x)>g(x)+k恒成立⇔k<[f(x)-g(x)]最小值;(3)f(x)>g(x)恒成立⇔f(x)最小值>g(x)最大值;(4)a>f(x)能成立⇔a>f(x)最小值,a<f(x)能成立⇔a<f(x)最大值.[再练一题]3.上例(2)若改为“存在t∈[0,2],使h(t)<-2t+m成立”,则实数m的取值范围如何求解?【解】令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,由g′(t)=-3t2+3=0,得t=1或t=-1(不合题意,舍去).当t变化时,g′(t),g(t)的变化情况如下表:单调 递增单调递减存在t ∈[0,2],使h (t )<-2t +m 成立, 等价于g (t )的最小值g (2)<0. ∴-3-m <0,∴m >-3,所以实数m 的取值范围为(-3,+∞).[构建·体系]1.函数y =x -sin x ,x ∈⎣⎢⎢⎡⎦⎥⎥⎤π2,π的最大值是________.【解析】 ∵y ′=1-cos x ≥0,∴y =x -sin x 在⎣⎢⎢⎡⎦⎥⎥⎤π2,π上是增函数,∴y 最大值=π.【答案】 π2.函数f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是________.【导学号:01580017】【解析】 f ′(x )=3x 2-6x =3x (x -2). 令f ′(x )=0得x 1=0,x 2=2(舍去). 当x ∈[-1,0)时,f ′(x )>0,f (x )递增; 当x ∈(0,1],f ′(x )<0,f (x )递减; ∴x =0时,f (x )取最大值2. 【答案】 23.函数f (x )=12e x(sin x +cos x )在区间⎣⎢⎢⎡⎦⎥⎥⎤0,π2上的值域为________ .【解析】 ∵x ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π2,∴f ′(x )=e x cos x ≥0,∴f (0)≤f (x )≤f ⎝ ⎛⎭⎪⎪⎫π2,即12≤f (x )≤12·e π2.【答案】 ⎣⎢⎢⎡⎦⎥⎥⎤12,12e π24.已知函数f (x )=m ⎝ ⎛⎭⎪⎪⎫x -1x -2ln x (m ∈R ),g (x )=-m x ,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的取值范围是________.【解析】 由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2ln x ,即m 2<ln xx 在[1,e]上有解,令h (x )=ln xx ,则h ′(x )=1-ln xx2,当1≤x ≤e 时,h ′(x )≥0,∴在[1,e]上,h (x )≥h (e)=1e ,∴m 2<1e ,∴m <2e .∴m 的取值范围是⎝ ⎛⎭⎪⎪⎫-∞,2e .【答案】 ⎝⎛⎦⎥⎥⎤-∞,2e5.已知a 为实数,f (x )=(x 2-4)·(x -a ). (1)求导数f ′(x );(2)若f ′(-1)=0,求f (x )在[-2,2]上的最大值和最小值. 【解】 (1)由原式得f (x )=x 3-ax 2-4x +4a , ∴f ′(x )=3x 2-2ax -4. (2)由f ′(-1)=0,得a =12,此时有f (x )=(x 2-4)·⎝ ⎛⎭⎪⎪⎫x -12,f ′(x )=3x 2-x -4.由f ′(x )=0,得x =43或x =-1.又f ⎝ ⎛⎭⎪⎪⎫43=-5027,f (-1)=92,f (-2)=0,f (2)=0,∴f (x )在[-2,2]上的最大值为92,最小值为-5027.我还有这些不足:(1)_______________________________________________ (2)_______________________________________________ 我的课下提升方案:(1)_______________________________________________ (2)_______________________________________________。
1.3.3函数的最大(小)值与导数【学习目标】1.借助函数图像,直观地理解函数的最大值和最小值概念。
2.弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数)(x f 必有最大值和最小值的充分条件。
3.掌握求在闭区间],[b a 上连续的函数)(x f 的最大值和最小值的思想方法和步骤。
【复习回顾】1.极大值、极小值的概念:2.求函数极值的方法:【知识点实例探究】例1.求()31443f x x x =-+在[]0,3的最大值与最小值变式:1 求下列函数的最值:(1)已知]1,1[,126)(3-∈+-=x x x x f ,则函数的最大值为______,最小值为______。
例2.已知函数a x x x f +-=2362)(在[-2,2]上有最小值-37, (1)求实数a 的值;(2)求)(x f 在[-2,2]上的最大值。
练习1.下列说法中正确的是( )A 函数若在定义域内有最值和极值,则其极大值便是最大值,极小值便是最小值B 闭区间上的连续函数一定有最值,也一定有极值C 若函数在其定义域上有最值,则一定有极值;反之,若有极值,则一定有最值D 若函数在定区间上有最值,则最多有一个最大值,一个最小值,但若有极值,则可有多个极值 2.函数a ax x x f --=3)(3在)1,0(内有最小值,则a 的取值范围是( ) A 10<≤a B 10<<a C 11<<-a D 210<<a 3.函数]4,0[,)(∈=-x xe x f x 的最小值是( ) A 0 Be 1 C 44e D 22e4.函数]2,2[,14)(2-∈+=x x xx f 的最大值是__________,最小值是_____________。
5.函数),2[,3+∞∈+=x xx y 的最小值为____________。
6.已知m m x x x f (62)(23+-=为常数),在[-2,2]上有最大值3,求函数在区间[-2,2]上的最小值。
7.(1)求函数]1,1[,263)(23-∈-+-=x x x x x f 的最大值和最小值;8.(2006年天津卷)函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( A )A .1个B .2个C .3个D . 4个9.( 2004浙江理11)设f /(x)是函数f(x)的导函数,y=f /(x)的图象如图所示,则y=f(x)的图象最有可能的是( )函数的零点与导数例 1.3>a 则函数1)(23+-=ax x x f 在(0,2)上恰好有 ( ) A.0个零点 B.1个零点 C.2个零点 D.3个零点 例2. (2005年全国卷Ⅱ)设a 为实数,函数a x x x x f +--=23)( (1) 求)(x f 的极值;(2) 当a 在什么范围内取值时,曲线)(x f y =与x 轴仅有一个交点。
例3.(四川卷22).(本小题满分14分)已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点。
(Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围。
不等式的证明与导数例1.求证下列不等式)1(2)1ln(222x x x x x x +-<+<- ),0(∞+∈x例2.(2009辽宁卷)(本小题满分12分)设2()(1)xf x e ax x =++,且曲线y =f (x )在x =1处的切线与x 轴平行。
(I ) 求a 的值,并讨论f (x )的单调性; (II )证明:当[0,]f(cos )f(sin )22πθθθ∈-<时,函数的零点与导数例 1.3>a 则函数1)(23+-=ax x x f 在(0,2)上恰好有 ( ) A.0个零点 B.1个零点 C.2个零点 D.3个零点分析:ax x x f 23)(2'-=则方程0)('=x f 两个根为32,0ax x ==由3>a 得:0232>>a则可列出下表:由0232>>a 得:()⎪⎭⎫⎝⎛⊆32,02,0a 则)(x f 在(0,2)为减函数 又49)2(01)0(<-=>=a f f 因此)(x f 在(0,2)有且只有一个零点,则选择B 答案。
点评:上述例题解答过程运用了单调区间[]b a ,内连续函数)(x f 若满足0)()(<⋅b f a f 则在()b a ,内)(x f 有且仅有一个零点的重要性质。
性质的实质就是最小二分法的理论基础,然后通过导数的性质来说明)(x f 在(0,2)内单调,从而得到 单调区间(0,2)内)(x f 有且只有一个零点。
例2. (2005年全国卷Ⅱ)设a 为实数,函数a x x x x f +--=23)( (3) 求)(x f 的极值;(4) 当a 在什么范围内取值时,曲线)(x f y =与x 轴仅有一个交点。
分析:第(1)题运用导数性质可求出)(x f 的两个极值点。
第(2)题按题目要求)(x f y =与x 轴仅有一个交点即)(x f y =在()+∞∞-,内仅有一个零点。
分析函数的性质发现当x 逐渐趋近于∞-,y 的值也会逐渐接近∞-;当x 逐渐趋近于∞+,y 的值也会逐渐接近∞+。
然后运用数形结合的数学思想满足与x 轴只有一个交点的要求只有如图两种情况:0)('=x f 当xx所以)(x f 的极大值为a f +=⎪⎭⎫ ⎝⎛-27531,极小值为()11-=a f ;(2)由a x x x x f +--=23)(例3(四川卷22).(本小题满分14分)已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点。
(Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围。
【解】:(Ⅰ)因为()'2101af x x x=+-+ 所以()'361004af =+-= 因此16a = (Ⅱ)由(Ⅰ)知, ()()()216l n 110,1,fx x x x x =++-∈-+∞()()2'2431x x fx x-+=+当()()1,13,x ∈-+∞时,()'0f x >当()1,3x ∈时,()'0f x <所以()f x 的单调增区间是()()1,1,3,-+∞()f x 的单调减区间是()1,3(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln291f f =-⨯>-=()()213211213fef --<-+=-< 所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<因此,b 的取值范围为()32ln221,16ln29--。
不等式的证明与导数例1.求证下列不等式)1(2)1ln(222x x x x x x +-<+<- ),0(∞+∈x 证明: )2()1ln()(2x x x x f --+= 0)0(=f 011111)(2>+-=+-+='x x x x x f ∴ )(x f y =为),0(∞+上↑ ∴ ),0(∞+∈x 0)(>x f 恒成立∴ 2)1ln(2x x x ->+ )1ln()1(2)(2x x x x x g +-+-= 0)0(=g0)1(4211)1(42441)(22222>+=+-+-+-='x x x x x x x x g ∴ )(x g 在),0(∞+上↑ ∴ ),0(∞+∈x 0)1ln()1(22>+-+-x x x x 恒成立例2.(2009辽宁卷)(本小题满分12分)设2()(1)x f x e ax x =++,且曲线y =f (x )在x =1处的切线与x 轴平行。
(III ) 求a 的值,并讨论f (x )的单调性; (IV )证明:当[0,]f(cos )f(sin )22πθθθ∈-<时,解:(Ⅰ)2'()(121)x f x e ax x ax =++++.有条件知,'(1)0f =,故3201a a a ++=⇒=-. ………2分 于是2'()(2)(2)(1)x x f x e x x e x x =--+=-++. 故当(,2)(1,)x ∈-∞-⋃+∞时,'()f x <0;当(2,1)x ∈-时,'()f x >0.从而()f x 在(,2)-∞-,(1,)+∞单调减少,在(2,1)-单调增加. ………6分 (Ⅱ)由(Ⅰ)知()f x 在[0,1]单调增加,故()f x 在[0,1]的最大值为(1)f e =, 最小值为(0)1f =.从而对任意1x ,2x [0,1]∈,有12()()12f x f x e -≤-<. ………10分 而当[0,]2πθ∈时,cos ,sin θθ∈[0,1].从而 (cos )(sin )2f f θθ-< ………12分。