最新人教版七年级数学下册第八章二元一次方程组8.3--8.4检测
- 格式:doc
- 大小:290.50 KB
- 文档页数:5
人教版七年级数学下册第八章二元一次方程组单元测试题含答案一、选择题1 、方程2 x - =0 ,3 x + y =0 , 2 x + xy =1 , 3 x + y -2 x =0 , x 2 - x +1=0 中,二元一次方程的个数是()A. 5 个B. 4 个C. 3 个D. 2 个2 、已知是关于 x 、 y 的二元一次方程, 则m 、n 的解是( ) (A )(B )(C )(D )3 、方程组的解的情况是().A.一个解B.二个解C.无解D.无数个4 、下列各组数值是方程的解的一组是()A.B.C.D.5 、由方程组可得出与的关系是()A.B.C.D.6 、甲、乙二人从同一地点出发,同向而行,甲骑车乙步行,若乙先行千米,那么甲小时追上乙;如果乙先走小时,甲只用小时追上乙,则乙的速度是()A.千米/时B.千米/时C.千米/时D.千米/时7 、已知, 是方程组的解,则的值为().A.B.C.D.8 、如果二元一次方程组的解是二元一次方程的一个解,则()A.B.C.D.9 、已知甲、乙两种商品的进价和为100 元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50 元,若甲商品打六折,乙商品打八折,则可赚30 元,甲、乙两种商品的定价分别为()A. 50 元、150 元B. 50 元、100 元C. 100 元、50 元D. 150 元、50 元10 、在一次野炊活动中,小明所在的班级有x 人,分成y 组,若每组7 人,则余下3 人;若每组8 人,则缺 5 人,求全班人数的正确的方程组是()A. . C. D.二、填空题1 、方程的一个解是那么的值为_____ .2 、已知二元一次方程,用含x 的式子表示y ,则y =_____ ;若y 的值为2 ,则x 的值为_____ .3 、如果,,则_____ .4 、若甲队有人,乙队有人,若从甲队调出人到乙队,则甲队人数是乙队人数的一半,可列方程为_____ .5 、当_____________ 时,下列方程① ,② ,③有公共解.6 、二元一次方程的所有正整数解为_____ .7 、若,那么_____ .8 一个两位数的十位数字与个位数字之和等于5 ,十位数字与个位数字之差为1 ,设十位数字为x ,个位数字为y ,则用方程组表示上述语言为______ .9 方程x (x +3 )=0 的解是______ .10 由方程组,可以得到x + y + z 的值是______ .三、解答题1 、解下列方程组:(1 )(4 分)(2 )(4 分)(3 )(6 分)2 、小明手上有一张元的人民币,当路过商店门口时,他想把这元钱换成元或元的零钱,请他细考虑一下,售货员可有几种兑换方法?(5 分)3 、小英和小强相约一起去某超市购买他们看中的随身听和书包.你能根据他们的对话内容(如图3 ),求出他们看中的随身听和书包单价各是多少元吗?(5 分)4 、“利海”通讯器材商场,计划用元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部元,乙种型号手机每部元,丙种型号手机每部元.(1 )若商场同时购进其中两种不同型号的手机共部,并将元恰好用完.请你帮助商场计算一下如何购买.(2 )若商场同时购进三种不同型号的手机共部,并将元恰好用完,并且要求乙种型号手机的购买数量不少于部且不多于部,请你求出商场每种型号手机的购买数量.(8 分)答案:5.某旅行社组织一批游客外出旅游,原计划租用45 座客车若干辆,但有15 人没有座位;若租用同样数量的60 座客车,则多出一辆车,且其余客车恰好坐满.已知45 座客车租金为每辆220 元,60 座客车租金为每辆300 元,问:(1 )这批游客的人数是多少?原计划租用多少辆45 座客车?(2 )若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?一、选择题1、D;2 、C ;3 、C ;4 、A ;5 、C ;6 、A ;7 、D ;8 、B ;9 、D;10 、A二、填空题1 、;2 、y= ,6 ;3 、16 ;4 、x -10= (y+10) ;5 、;6 、;7 、-;8.9 0 或-310 3三、解答1 、1 .(1 )(2 )(3 )2 、种兑换方法.(提示:此题实际是求二元一次方程的非负整数解.)3 、设他们看中的书包的单价为x 元,随身听的单价为y 元.则根据题意,得解得答他们看中的随身听和书包单价各是360 元和92 元4.(1 )两种购买方法:甲种型号手机购买部,乙种型号手机购买部,或甲种型号手机购买部,丙种型号手机购买部;(2 )若乙种型号手机购买部,则甲种型号手机购买部,丙种型号手机购买部,若乙种型号手机购买部,则甲种型号手机购买部,丙种型号手机购买部;若乙种型号手机购买部,由甲种型号手机购买部,丙种型号手机购买部.5. 解:( 1 )设这批游客的人数是 x 人,原计划租用 45 座客车 y 辆. 根据题意,得, 解这个方程组,得 .答:这批游客的人数 240 人,原计划租 45 座客车 5 辆;( 2 )租 45 座客车: 240÷45≈5.3 (辆),所以需租 6 辆,租金为 220×6=1320 (元),租 60 座客车: 240÷60=4 (辆),所以需租 4 辆,租金为 300×4=1200 (元).答:租用 4 辆 60 座客车更合算.人教版七年级下册第8章二元一次方程组培优训练卷人教版七年级下册第八章二元一次方程组单元检测题培优训练试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.已知x 、y 满足方程组⎩⎨⎧=+=+7282y x y x 则x +y 的值是( ) A. 3 B. 5 C. 7 D. 92.若方程组()⎩⎨⎧=+=-+143461y x y a ax 的解y x ,的值相等,则a 的值为( ) A .﹣4 B .4 C .2 D .13.下列方程组中,与方程组⎩⎨⎧=+-=73243y x y x 的解相同的是( ) A.⎩⎨⎧=+=73211y x x B.⎩⎨⎧=+=7325y x y C.⎩⎨⎧=+--=734643y x y x D.⎩⎨⎧=-=y x y x 43 4﹒如图,是正方体的一种表面展开图,若这个正方体相对的两个面上的代数式的值相等,则a y x ++的值为( )A ﹒5B ﹒6C ﹒7D ﹒85.有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.现有3艘大船与6艘小船,一次可以载游客的人数为( )A .129B .120C .108D .966.已知关于y x ,的方程组⎩⎨⎧-=-=-52253a y x a y x ,若y x ,的值互为相反数,则a 的值为( ) A. 5- B. 5C. 20-D.20 7.关于y x ,的方程组⎩⎨⎧=-=+15x y ay x 有正整数解,则正整数a 为( ) A . 1、2 B .2、5 C .1、5 D .1、2、58.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种9.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购 买甲种奖品x 件,乙种奖品y 件,则方程组正确的是A.⎩⎨⎧=+=+400161230y x y xB.⎩⎨⎧=+=+400121630y x y xC.⎩⎨⎧=+=+400301612y x y x D. ⎩⎨⎧=+=+400301216y x y x 10.已知a 为常数,且方程组⎩⎨⎧=+=+-1153)35(y ax y x a 只有唯一解,则a 的值为( ) A. 65=a B. 65≠a C. 35<a D.a 为任意实数二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.二元一次方程x +3y=7的非负整数解是_________12.已知⎩⎨⎧==13y x 和⎩⎨⎧=-=112y x 都是方程7=+by ax 的解,则___________,==b a 13.若关于y x ,的二元一次方程组⎩⎨⎧=-=+k y x k y x 95的解也是二元一次方程2x +3y =6的解,则k 的值为___________14.已知⎩⎨⎧-=-=+122k y x k y x 如果x 是y 的3倍少1,那么______=k 15.若关于x 、y 的二元一次方程组⎩⎨⎧=+=-232y mx n y x 有无数个解,则____________,==n m16.某公司去年的利润(总收入-总支出)为200万元.今年总收入比去年增加了20%,总支出比去年减少了10%,若今年的利润为780万元,则去年总收入是_________万元三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17(本题6分)解下列方程组:(1)⎩⎨⎧=-=+82523y x y x (2)()()()⎪⎩⎪⎨⎧=--+-=+--3223121432y x y x y x y x18(本题8分)已知关于y x ,的方程组⎩⎨⎧=+=+142y x by ax 与()⎩⎨⎧=-+=-313y a bx y x 的解相同,求b a ,的值.19(本题8分)已知二元一次方程组的解为且m +n=2,求k 的值.20(本题10分)(1)满足方程组⎩⎨⎧=++=+532153y x k y x 的x 、y 值之和为2,求k 的值。
人教版数学七年级下册 第八章 二元一次方程组 8.3 实际问题与二元一次方程组和差倍分问题 专题练习题1. 已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x °,∠2=y °,则x ,y 满足的方程组为( )A .⎩⎨⎧x +y =90x =3y +20B .⎩⎨⎧x +y =90y =3x +20C .⎩⎨⎧x +y =180x =3y +20D .⎩⎨⎧x +y =180y =3x +20 2.一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组( )A .⎩⎨⎧5x +4y =1482x +5y =100B .⎩⎨⎧4x +5y =1482x +5y =100C .⎩⎨⎧5x +4y =1485x +2y =100D .⎩⎨⎧4x +5y =1485x +2y =1003.一篮水果分给一群小孩,若每人分8个,则差3个水果;若每人分7个,则多4个水果,在这个问题中,有小孩____人,水果____个.4.甲种电影票每张20元,乙种电影票每张15元.若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了____张.5.一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,下面所列方程组正确的是( )A .⎩⎨⎧x +y =8xy +18=yxB .⎩⎨⎧x +y =810(x +y )+18=yx C .⎩⎨⎧x +y =810x +y +18=yx D .⎩⎨⎧x +y =8x +10y +18=10x +y6.一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.7.某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使产品配套?设安排x 名工人生产镜片,y 名工人生产镜架,则可列方程组( )A .⎩⎨⎧x +y =602×200x =50yB .⎩⎨⎧x +y =60200x =50yC .⎩⎨⎧x +y =60200x =2×50yD .⎩⎨⎧x +y =5050x =200y8.家具厂生产方桌,按设计1立方米木材可制作50个桌面或300个桌腿,现有10立方米木材,怎样分配木材才能使生产的桌面和桌腿恰好配套,并指出共可生产多少张方桌?(一张方桌按1个桌面4条桌腿配置)9.有大小两种船,1艘大船与4艘小船一次可以载乘客46人,2艘大船与3艘小船一次可以载乘客57人,则1艘大船和1艘小船一次可以载乘客的人数分别是( )A .18人,7人B .17人,8人C .15人,7人D .16人,8人10.某校举行安全知识竞赛,其评分规则如下:答对一题得5分,答错一题得-5分,不作答得0分.已知试题共20道,满分100分,凡优秀(得分80分或以上)者才有资格参加决赛.小明同学在这次竞赛中有2道题未答,但刚好获得决赛资格,则小明答对____道题,答错____道题.11.某芒果种植基地去年结余为500万元,估计今年能结余960万元,并且今年的收入比去年高15%,支出比去年低10%,则去年的收入是____________万元,支出是____________万元.12.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40千克,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各为多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?13.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”求诗句中谈到的鸦的只数,树的棵数.14.一名学生问老师:“您今年多大?”老师风趣地说:“我像你这样大时你才1岁,你到我这么大时,我已经37岁了.”请问老师、学生今年分别多大了?15.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于5元的整数,笔记本的单价可能为多少元?方法技能:1.审题时要弄清题意和题目中的数量关系,找出问题中的所有相等关系.2.设未知数可直接设,也可间接设,力求简洁.3.检验所得的解是否符合题意和实际意义,不符合的解要舍去.4.设未知数及作答时要注意单位名称统一.易错提示:注意配套问题中的数量关系.答案:1. C2. A3. 7 534. 205. D6. 解:设这个两位数十位上的数为x ,个位上的数为y ,则有⎩⎨⎧10x +y =x +y +9,10y +x =10x +y +27,解得⎩⎨⎧x =1,y =4,∴这个两位数为14 7. C8. 解:设分配x 立方米木材生产桌面,y 立方米木材生产桌腿,根据题意得⎩⎨⎧x +y =10,50x ×4=300y ,解得⎩⎨⎧x =6,y =4,则共可生产方桌为50x =300张 9. A10. 17 111. 2040 154012. 解:(1)设采摘黄瓜x 千克,茄子y 千克,根据题意得⎩⎨⎧x +y =40,x +1.2y =42,解得⎩⎨⎧x =30,y =10,则采摘的黄瓜和茄子分别为30千克、10千克(2)30×(1.5-1)+10×(2-1.2)=23(元),则这些采摘的黄瓜和茄子可赚23元13. 解:设有x 只鸦,y 棵树,则有⎩⎨⎧3y =x -5,5(y -1)=x ,解得⎩⎨⎧x =20,y =5,则鸦的只数为20,树的棵数为514. 解:设老师今年x 岁,学生今年y 岁,则有⎩⎨⎧x -y =y -1,37-x =x -y ,解得⎩⎨⎧x =25,y =13,则老师今年25岁,学生今年13岁15. 解:(1)设单价为8元的书买了x 本,单价为12元的书买了y 本,根据题意得⎩⎨⎧x +y =105,8x +12y =1500-418,解得⎩⎨⎧x =44.5,y =60.5,显然书的本数应为整数,不能为小数,不合题意,故一定是搞错了 (2)设笔记本的单价为a 元,根据题意得⎩⎨⎧x +y =105,8x +12y +a =1500-418,可得y =242-a 4,要使y 为整数,则a 首先必须为偶数,又是小于5元的整数,故a 只能为2,4.当a=2时,y=60;当a=4时,y=59.5(不合题意舍去).综上所述,笔记本的单价可能为2元。
人教版数学七年级下册 第八章 二元一次方程组 8.3 实际问题与二元一次方程组和差倍分问题 专题练习题1. 已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x °,∠2=y °,则x ,y 满足的方程组为( )A .⎩⎨⎧x +y =90x =3y +20B .⎩⎨⎧x +y =90y =3x +20C .⎩⎨⎧x +y =180x =3y +20D .⎩⎨⎧x +y =180y =3x +20 2.一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组( )A .⎩⎨⎧5x +4y =1482x +5y =100B .⎩⎨⎧4x +5y =1482x +5y =100C .⎩⎨⎧5x +4y =1485x +2y =100D .⎩⎨⎧4x +5y =1485x +2y =1003.一篮水果分给一群小孩,若每人分8个,则差3个水果;若每人分7个,则多4个水果,在这个问题中,有小孩____人,水果____个.4.甲种电影票每张20元,乙种电影票每张15元.若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了____张.5.一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,下面所列方程组正确的是( )A .⎩⎨⎧x +y =8xy +18=yxB .⎩⎨⎧x +y =810(x +y )+18=yx C .⎩⎨⎧x +y =810x +y +18=yx D .⎩⎨⎧x +y =8x +10y +18=10x +y6.一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.7.某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使产品配套?设安排x 名工人生产镜片,y 名工人生产镜架,则可列方程组( )A .⎩⎨⎧x +y =602×200x =50yB .⎩⎨⎧x +y =60200x =50yC .⎩⎨⎧x +y =60200x =2×50yD .⎩⎨⎧x +y =5050x =200y8.家具厂生产方桌,按设计1立方米木材可制作50个桌面或300个桌腿,现有10立方米木材,怎样分配木材才能使生产的桌面和桌腿恰好配套,并指出共可生产多少张方桌?(一张方桌按1个桌面4条桌腿配置)9.有大小两种船,1艘大船与4艘小船一次可以载乘客46人,2艘大船与3艘小船一次可以载乘客57人,则1艘大船和1艘小船一次可以载乘客的人数分别是( )A .18人,7人B .17人,8人C .15人,7人D .16人,8人10.某校举行安全知识竞赛,其评分规则如下:答对一题得5分,答错一题得-5分,不作答得0分.已知试题共20道,满分100分,凡优秀(得分80分或以上)者才有资格参加决赛.小明同学在这次竞赛中有2道题未答,但刚好获得决赛资格,则小明答对____道题,答错____道题.11.某芒果种植基地去年结余为500万元,估计今年能结余960万元,并且今年的收入比去年高15%,支出比去年低10%,则去年的收入是____________万元,支出是____________万元.12.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40千克,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各为多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?13.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”求诗句中谈到的鸦的只数,树的棵数.14.一名学生问老师:“您今年多大?”老师风趣地说:“我像你这样大时你才1岁,你到我这么大时,我已经37岁了.”请问老师、学生今年分别多大了?15.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于5元的整数,笔记本的单价可能为多少元?方法技能:1.审题时要弄清题意和题目中的数量关系,找出问题中的所有相等关系.2.设未知数可直接设,也可间接设,力求简洁.3.检验所得的解是否符合题意和实际意义,不符合的解要舍去.4.设未知数及作答时要注意单位名称统一.易错提示:注意配套问题中的数量关系.答案:1. C2. A3. 7 534. 205. D6. 解:设这个两位数十位上的数为x ,个位上的数为y ,则有⎩⎨⎧10x +y =x +y +9,10y +x =10x +y +27,解得⎩⎨⎧x =1,y =4,∴这个两位数为14 7. C8. 解:设分配x 立方米木材生产桌面,y 立方米木材生产桌腿,根据题意得⎩⎨⎧x +y =10,50x ×4=300y ,解得⎩⎨⎧x =6,y =4,则共可生产方桌为50x =300张 9. A10. 17 111. 2040 154012. 解:(1)设采摘黄瓜x 千克,茄子y 千克,根据题意得⎩⎨⎧x +y =40,x +1.2y =42,解得⎩⎨⎧x =30,y =10,则采摘的黄瓜和茄子分别为30千克、10千克(2)30×(1.5-1)+10×(2-1.2)=23(元),则这些采摘的黄瓜和茄子可赚23元13. 解:设有x 只鸦,y 棵树,则有⎩⎨⎧3y =x -5,5(y -1)=x ,解得⎩⎨⎧x =20,y =5,则鸦的只数为20,树的棵数为514. 解:设老师今年x 岁,学生今年y 岁,则有⎩⎨⎧x -y =y -1,37-x =x -y ,解得⎩⎨⎧x =25,y =13,则老师今年25岁,学生今年13岁15. 解:(1)设单价为8元的书买了x 本,单价为12元的书买了y 本,根据题意得⎩⎨⎧x +y =105,8x +12y =1500-418,解得⎩⎨⎧x =44.5,y =60.5,显然书的本数应为整数,不能为小数,不合题意,故一定是搞错了 (2)设笔记本的单价为a 元,根据题意得⎩⎨⎧x +y =105,8x +12y +a =1500-418,可得y =242-a 4,要使y 为整数,则a 首先必须为偶数,又是小于5元的整数,故a 只能为2,4.当a=2时,y=60;当a=4时,y=59.5(不合题意舍去).综上所述,笔记本的单价可能为2元。
七年级初一数学 第八章 二元一次方程组测试试题含答案一、选择题1.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为( )A .7385y x y x =+⎧⎨=+⎩B .7385y x y x =+⎧⎨+=⎩C .7385y x y x =-⎧⎨+=⎩D .7385y x y x =-⎧⎨=+⎩2.下列各组数是二元一次方程371x y y x +=⎧⎨-=⎩的解是( ) A .12x y =⎧⎨=⎩ B .01x y =⎧⎨=⎩C .70x y =⎧⎨=⎩D .12x y =⎧⎨=-⎩ 3.若实数x ,y 满足()229310-++++=x y x y ,则2y x 等于( )A .1B .-16C .16D .-14.已知()11n a a n d +-=(n 为自然数),且25a =,514a =,则15a 的值为( ). A .23 B .29 C .44 D .535.下列判断中,正确的是( )A .方程x y =不是二元一次方程B .任何一个二元一次方程都只有一个解C .方程25x y -=有无数个解,任何一对x 、y 都是该方程的解D .21x y =⎧⎨=-⎩既是方程24x y -=的解也是方程231x y +=的解 6.某木工厂有22人,一个工人每天可加工3张桌子或10只椅子,1张桌子与4只椅子配套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x 个工人加工桌子,y 个工人加工椅子,则列出正确的二元一次方程组为( )A .2212100x y x y +=⎧⎨-=⎩B .226100x y x y +=⎧⎨-=⎩C .2224100x y x y +=⎧⎨-=⎩D .2212200x y x y +=⎧⎨-=⎩7.《九章算术》是我国东汉初年编订的一部数学经典著作。
在它的“方程”一章里,一次方程组是由算筹布置而成的。
人教版七年级下册数学第八章二元一次方程组复习题(含答案)一、选择题1.以下方程组中是二元一次方程组的是()A. B. C.D.2.假如一个两位数的十位数字与个位数字之和为6,那么这样的两位数的个数是()A.3B.6C.5D.43.知足方程组的,的值的和等于,则的值为().A. B. C. D.4.用如图①中的长方形和正方形纸板作侧面和底面,做成如图② 的竖式和横式的两种无盖纸盒。
此刻库房里有m 张正方形纸板和n 张长方形纸板,假如做两种纸盒若干个,恰巧使库存的纸板用完,则的值可能是()A. 2013B. 2014C. 2015D. 20165.小明去商场买东西花20 元,他身上只带了面值为给他,那么小明付款方式有().A. 2 种B.种32 元和 5 元的纸币,营业员没有零钱找C. 种4D. 种56.二元一次方程组的解是()A. B. C. D.7.已知a,b知足方程组,则a+b 的值为()A. ﹣4B. 4C. ﹣2D. 28.若对于x, y 的方程组(此中a, b 是常数)的解为,则方程组的解为()A. B. C. D.9.某企业昨年的收益(总产值-总支出)为200 万元.今年总产值比昨年增添了20%,总支出比昨年减少了10%,今年的收益为780 万元.假如昨年的总产值x 万元、总支出y 万元,则以下方程组正确的选项是()A. B.C. D.10.解方程组时,由② ﹣① 得()A. 2y=8B. 4y=8﹣C2y=8.D﹣. 4y=811.甲种物件每个1kg,乙种物件每个 2.5kg,现购置甲种物件x 个,乙种物件 y 个,共 30kg.若两种物件都买,则全部可供购置方案的个数为()A.4B.5C.6D.712.二元一次方程()A. 有且只有一解B. 有无数解C. 无解D. 有且只有两解二、填空题13.在方程 3x+y=2 中,用 y 表示 x,则 x=________14.方程组的解是________.15.已知方程组的解合适x+y=2,则 m 的值为 ________16.若方程组的解知足方程x+y+a=0,则 a 的值为 ________17.已知对于 x, y 的二元一次方程 3x﹣ 4y+mx+2m+8=0,若不论 m 取任何实数,该二元一次方程都有一个固定的解,则这个固定的解为________.18.已知方程组的解 x、 y 之和为 2,则 k= ________.19.已知,,则代数式的值为 ________.20.请写出一个二元一次方程组________,使它的解是.21.已知方程组,则 8x+8y= ________.22.已知 |2x+y+1|+( x+2y﹣7)2=0,则( x+y)2=________.三、解答题23.解以下方程组:(1);(2).24.已知,代数式的值比多1,求m.25.解方程组.(1)(2)26.求方程 5x-3y=-7 的正整数解.27.阅读以下资料并填空:(1)对于二元一次方程组我们能够将,的系数和相应的常数项排成一个数表,求得一次方程组的解,用数可表示为.用数表能够简化表达解一次方程组的过程以下,请补全此中的空白:.进而获得该方程组的解为.(2)模仿()中数表的书写格式写出解方程组的过程.28.植树节到临之际,学校准备购进一批树苗,已知 2 棵甲种树苗和 5 棵乙种树苗共需113元; 3 棵甲种树苗和 2 棵乙种树苗共需87 元.(1)求一棵甲种树苗和一棵乙种树苗的售价各是多少元?(2)学校准备购进这两种树苗共100 棵,而且乙种树苗的数目不多于甲种树苗数目的 2 倍,请设计出最省钱的购置方案,并求出此时的总花费.参照答案一、选择题1.A2.B3.C4.C5.B6.B7.B8.B9.A10.B11.B 12.B二、填空题13.14.15.616.517.18.220.答案不独一,如:21.3222.4三、解答题23.(1)解:,① ﹣②×2得,5t=15,解得t=3;把 t=3 代入②得, 2s﹣ 3=﹣ 5,解得 s=﹣ 1,故此方程组的解为(2)解:原方程组可化为,①2+②得, 15y=11,解得 y=;把 y=代入② 得,+2x=3,解得 x=,故此方程组的解为24.解:依据题意可得:a- 3=0, b+1=0则a=3,b=-1代入两个代数式列出方程可得:解得: m=025.( 1)解:由①×2得: 6x-2y=10③由③ -②得: x=6将 x=6 代入①得:18-y=5解之: y=13∴(2)解:由①+③得:3x+5y=11④由③× 2+②得: 3x+3y=9⑤由④ -⑤得: 2y=2解之: y=1将 y=1 代入⑤得: 3x+3=9解之: x=2将 x=2, y=1 代入①得:4+3+z=6解之: z=-1∴26.解:原方程可化为,即y=4 时, x=1.即为原方程的一组整数解.所以,原方程的全部整数解为,(k 为随意整数 ).再令 x>0, y>0,即有不等式组解得.所以原方程的正整数解为,(k 为非负整数 ).27.(1)(2)解:进而获得方程构成的解为28.(1)解:设一棵甲种树苗的售价为x 元,一棵乙种树苗的售价为y 元,依题意得,解得,∴一棵甲种树苗的售价为19 元,一棵乙种树苗的售价为15 元(2)解:设购置甲种树苗 a 棵,则购置乙种树苗(100-a)棵,总花费为w 元,依题意得w=19a+15( 100-a) =4a+1500,∵4> 0,∴w 跟着 a 的增大而增大,∴当 a 取最小值时, w 有最大值,∵100- a≤2a,∴a≥,a为整数,∴当 a=34 时, w 最小 =4×34+1500=1636(元),此时, 100-34=66,∴最省钱的购置方案为购置甲种树苗34 棵,购置乙种树苗66 棵,总花费为1636 元人教版七年级数学下册第八章二元一次方程组单元综合测试卷一、选择题 (本大题共10 小题,,共 30 分 )1.以下方程组中,是二元一次方程组的是()x4a2b8m216n0D.16x3y6A.5B.4c6C.2n32 y4y3b mx2.二元一次方程2x+ 3y=18()A. 有且只有一解B. 有无数解C. 无解D. 有且只有两解3.方程组x y12x y 5的解是()A x1Bx2Cx1Dx2 y2y1y2y14.假如方程 x+ 2y=- 4, 2x-y= 7, y- kx + 9=0有公共解,则k 的解是 () A.- 3B. 3C. 6D.- 65.已知方程组3x 2 y m 2中未知数x、y 的和等于2,求 m 的值是()2x 3 y3mA .2B . 3C . 4D . 56.由方程组2x +m =1)y - 3= m ,可写出 x 与 y 的关系是 (A . 2x + y = 4B . 2x - y = 4C . 2x + y =- 4D . 2x - y =- 47.方程组2x yx 2,则被掩盖的两个数分别为()的解为x y 3yA.1, 2B.1,3 C.5,1 D.2,4x 3 y,yx ()8.设4z0. 0 则yzA.12B.1 C.12D. 1 .12129.对于对于 x 、y 的方程组2x 3y 11 4m20 的3x 2y21的解也是二元一次方程 x 3 y 7m5m解,则 m 的值是( )A.0B.1C.21D.210.小龙和小刚两人玩 “打弹珠 ”游戏,小龙对小刚说: “把你珠子的一半给我,我就有 10 颗珠子 ”.小刚却说: “只需把你的 1给我,我就有10 颗 ”.假如设小刚的弹珠数为x 颗,小龙3的弹珠数为 y 颗,那么列出的方程组是()x + 2y = 20B.x + 2y = 10x + 2y = 20D.x + 2y = 10 A.3x + y = 10C.3x + y = 303x + y = 303x + y = 10二、填空题 (本大题共 6 小题,每题 4 分,共 24 分)11.已知方程 5x 3y 4 0 ,用含 x 的代数式表示 y 的形式,则 y=__________________ 。
8.2 消元——解二元一次方程组一、单选题1.用代入法解方程组{26345x y x y -=+=-较简单的方法是( ) A.消y B.消x C.消x 和消y 一样 D.无法确定2.若关于,x y 的二元一次方程组5,9,x y k x y k +=⎧⎨-=⎩①②的解也是二元一次方程236x y +=的解,则k 的值为( )A.34-B.34C.43D.43-3.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则a b +的值是( )A .﹣1B .1C .﹣5D .54.方程组3276211x y x y +=⎧⎨-=⎩的解是( )A.15x y =-⎧⎨=⎩B.12x y =⎧⎨=⎩C.31x y =⎧⎨=-⎩D.212x y =⎧⎪⎨=⎪⎩5.用“代入消元法”解方程组2327y x x y =-⎧⎨-=⎩①②时,把①代入②正确的是( )A.3247x x -+=B.3247x x --=C.3227x x -+=D.3227x x --=6.若关于x 的方程243x m -=和2x m +=有相同的解,则m 的值是( ) A .10 B .10- C .8 D .8-7.以1,{1x y ==-为解的二元一次方程组是( )A. 0{1x y x y +=-= B. 0{1x y x y +=-=-C. 0{2x y x y +=-=D. 0{2x y x y +=-=-8.解方程组{332,266,x y x y +=-=①②用加减法消去y ,需要( )A.2⨯-①②B.32⨯+⨯①②C.23⨯⨯①-②D.2⨯+①②9.,a b 满足方程组{28,27,a b a b +=+=则b a -的值为( ) A.1 B.0 C.-1 D.2 二、填空题10.若{6,20,x y x y -=+=则32x y += .11.若关于,x y 的二元一次方程组{4,2x y k x y k-=+=的解也是二元一次方程36x y -=的解,则k = .12.方程34x y -=中,有一组解x 与y 互为相反数,则3x y +=_______. 13.方程组10216x y x y +=⎧⎨+=⎩的解是 .三、解答题14.用加减消元法解下列方程组: (1){2340,5;x y x y +=-=-①②(2){433,3215.x y x y +=-=①②15.对于任意实数,a b ,定义关于“⊗”的一种运算如下:2a b a b ⊗=+.例如:3423410.⊗=⨯+= (1)求25()⊗-的值;(2)若()2,x y ⊗-=且21,y x ⊗=-求x y +的值.参考答案1.答案:A由方程26x y -=,得26y x =-,故消y 更简单。
人教版数学七年级下册第八章二元一次方程组一、单选题1.下列方程中是二元一次方程的是( )A .x +y =aB .3x −y =0C .x +xy =10D .4x =3y2.用代入法解方程组{y =1−x ①x−2y =4②时,把①代入②正确的是( )A .x -2−x =4B .x−2−2x =4C .x -2+2x =4D .x−2+x =43.方程x−y =−1与下面方程中的一个组成的二元一次方程组的解为{x =3y =4,那么这个方程可以是( )A .3x−4y =16B .13x +14y =0C .4(x +y)=7yD .3x +2y =154.已知关于x ,y 的方程组{3x +2y =42x−7y =4m−9的解也满足方程x−y =3,则m 的值为( )A .3B .4C .5D .65.如果(x+y-5)2与│3y-2x+10│互为相反数,那么x 、y 的值为( )A .x=3,y=2B .x=2,y=3C .x=0,y=5D .x=5,y=06.若点P (x,y )满足方程组{2x−y =5x +y =1,则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.甲乙两人练习跑步,若乙先跑10m ,则甲5s 就可以追上乙;若乙先跑2s ,则甲4s 就可以追上乙,若设甲的速度x m/s ,乙的速度y m/s ,则( )A .x =4,y =6B .x =6,y =4C .x =3,y =5D .x =5,y =38.我国古代数学名著《算法统宗》中记载:“今有里长值月议云每里科出银五钱依帐买物以辨酒席多银三两五钱每里科出四钱亦多五钱问合用银并里数若干”.意为:里长们(“里”是指古代的一种基层行政单位)在月度会上商议出银子购买物资办酒席之事.若每里出5钱,则多出35钱;若每里出4钱,则多出5钱.问办酒席需多少银子,里的数量有多少个?若设里的数量有x 个,办酒席需要用y 钱银子,则可列方程组为( )A .{5y =x +354y =x−5B .{5y =x +354y =x +5C .{5x =y +354x =y−5D .{5x =y +354x =y +59.一家宾馆有二人间、三人间、四人间3种客房,一个由20人组成的旅行团准备同时租住这3种客房共7间,如果每个房间都住满,可供选择的方案有( )A .1种B .2种C .3种D .4种10.图1是我国古代传说中的洛书,图2是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》.《易·系辞上》说:“河出图,洛出书,圣人则之”.洛书是一个三阶幻方,就是将已知的9个数填入3×3的方格中,使每一横行、每一竖列以及两条斜对角线上的数字之和都相等.图3是一个不完整的幻方,根据幻方的规则,由已知数求出 x 的值应为( ).A .-4B .-3C .3D .4二、填空题11.将方程4x−3y =12变形为用关于x 的代数式表示y ,则y = 12.请你写出一个解为 {x =1y =−1的二元一次方程组:.13.若关于x ,y 的二元一次方程3x +ay =1有一个解是{x =2y =1,则a = .14.已知m 、n 满足{23m +24n =3124m +23n =16,则m 2−n 2的值是.15.已知方程组{2x +3y =13x +2y =2的解满足x−y =m ,则m 的值为 .16.已知{x−3y +2z =03x−3y−4z =0,则x:y:z =.17.已知方程组{5x +y =3mx +5y =4 与{x−2y =55x +ny =1有相同的解,则m−n = .18.实数m 取何值,方程x−2my +mx−6=0总有一个固定的解,请直接写出这个解 .三、解答题19.解方程组:(1){x +2y =9y−3x =1(2){x +4y =14x−33−y−33=11220.小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时,两人相遇,相遇后小明立即返回甲地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米,请求出两人的速度分别是多少?21.甲乙两人同时解方程组{ax+by=8cx−3y=−2,甲正确解得{x=1y=−1;乙因为抄错c的值,解得{x=2y=−6.求a,b,c的值.22.2024年五一假期期间,太原市某中学开展以“红色经典”为主题的研学活动,组织七年级师生参观红色文化传承实践教育基地.原计划租用45座甲型客车若干辆,但有15人没有座位;若租用同样数量的60座乙型客车,则多出三辆车,且其余客车恰好坐满.(1)参加此次研学活动的师生人数是多少?原计划租用多少辆甲型客车?(2)若同时租用甲、乙两种型号的客车,要使每位师生都有座位且无空位,有哪几种租车方案?23.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑.白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.24.阅读下述材料,再按要求解答.如果一个关于x、y的一次方程可化为形如:ax+by+1=0(a,b都是不为0的常数)的形式,并且满足a+b=1,那么我们就把这个一次方程叫做具有“1性质”的方程.(1)若关于x,y的方程ax+76y+1=0是具有“1性质”的方程,则a的值为______.(2)若关于x,y的方程m−n2x−(m+n)y=1是具有“1性质”的方程,且{x=1y=2是该方程的一个解,试求m,n的值.参考答案1.D2.C3.C4.C5.D6.D7.B8.D9.B10.A11.4x−12312.{x+y=0x−y=2(答案不唯一)13.-514.−1515.116.9:5:317.1218.{x=6y=319.(1){x=1y=4;(2){x=3y=11420.小明速度为5.5千米/时.小亮速度为4.5千米/时21.{a=10b=2c=−522.(1)参加此次研学活动的师生人数是600,原计划租用13辆甲型客车(2)有三种租车方案,分别是租用甲型客车4辆,乙型客车7辆;租用甲型客车8辆,乙型客车4辆;租用甲型客车12辆,乙型客车1辆23.(1)学校购进黑文化衫160件,白文化衫40件;(2)该校这次义卖活动共获得3800元利润.24.(1)−16 (2){m=−4n=2。
实际问题与二元一次方程组同步练习一.选择题(共12小题)1.明代大数学家程大位著《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问都多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管3个或笔套5个,怎样安排笔管和笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,则可列方程为()A.B.C.D.2.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长()尺.A.25B.20C.15D.103.《孙子算经》是唐初作为“算学“教科书的著名的《算经十书)之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼“问题是其中之一,原题如下:今有雉(鸡)兔同笼,上有三十五头,下有九十四足.问雉、兔各几何?()A.雉23只,兔12只B.雉12只,兔23只C.雉13只,兔22只D.雉22只,兔13只4.郑奶奶提着篮子去农贸市场买鸡蛋,摊主按郑奶奶的要求,用电子秤称了5千克鸡蛋,郑奶奶怀疑重量不对,把鸡蛋放入自带的质量为0.6千克的篮子中(篮子质量准确),要求放在电子秤上再称一遍,称得为5.75千克,老板客气地说:“除去篮子后为5.15千克,老顾客啦,多0.15千克就算了”,郑奶奶高兴地付了钱,满意地回家了.以下说法正确的是()A.郑奶奶赚了,鸡蛋的实际质量为5.15千克B.郑奶奶亏了,鸡蛋的实际质量为4千克C.郑奶奶亏了,鸡蛋的实际质量为4.85千克D.郑奶奶不亏也不赚,鸡蛋的实际质量为5千克5.班主任老师给获得文明小组的同学们发放水果,若每人5个,多8个,若每人7个,差4个,问有多少名同学?多少个水果?()A.6名,38个B.4名,28个C.5名,30个D.7名,40个6.将两块完全相同的长方体木块先按图1的方式放置,再按图2的方式放置,测得的数据如图(单位:cm)所示.则桌子的高度h=()A.30cm B.35cm C.40cm D.45cm7.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件10元,乙种体育用品每件20元,共用去70元,请你设计一下,共有()种购买方案.A.2B.3C.4D.58.一群人去袁山公园坐小船游湖,若租用6座的小船若干条,则有4人没座位,若租用4座小船则刚好坐满,但要多租4条,若同时租两种或只租一种,使每条小船坐满且每人都有座位,则共有租船方案()A.2种B.3种C.4种D.5种9.《九章算术》是中国古代数学专著在数学上有其独到的成就,不仅最早提到了分数问题,首先记录了“盈不足”等问题如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱又会缺16文钱,问买鸡的人数、鸡的价格各是多少?通过计算可得买鸡的人数是()A.6B.7C.8D.910.古代“绳索量竿”问题:“一条竿子一条索.索比竿子长一托,折回索却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索.用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.则绳索和竿长分别为()A.30尺和15尺B.25尺和20尺C.20尺和15尺D.15尺和10尺11.团体购买某公园门票,票价如表,某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为()A.20B.35C.30D.4012.“六一”儿童节快到了,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种儿童玩具赠送给某幼儿园,则可供小芳妈妈选择的购买方案有()A.4种B.5种C.6种D.7种二.填空题(共5小题)13.小华同学生日的月数减去日数为9,月数的两倍和日数相加为27,则小强同学生日的月数和日数的和为.14.用16元钱买了80分、120分的两种邮票共17枚,则买了80分的邮票枚.15.一个两位数,十位数字比个位数字大3,若将十位数字和个位数交换位置,所得的新两位数比原两位数的多15,则这个两位数是.16.古代有个数学问题,意思是“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”你的答案是每头牛两.17.某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户居民5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少40%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,则该地区空闲时段民用电的单价与高峰时段的用电单价的比值为.三.解答题(共6小题)18.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?意思是:今有美酒一斗,价格是50钱;普通酒一斗,价格是10钱.现在买两种酒2斗共付30钱,问买美酒、普通酒各多少?19.为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.20.一个两位自然数,其个位数字大于十位数字.现将其个位数字与十位数字调换位置,得到一个新数,且原数与新数的平均数为33.(1)求原数的最小值;(2)若原数的平方与新数的差为534,求原数与新数之积.21.中秋节临近,某商场决定开展“金秋十月,回馈顾客”的让利活动,对部分品牌月饼进行打折销售,其中甲品牌月饼打八折,乙品牌月饼打七五折.已知打折前,买6盒甲品牌月饼和3盒乙品牌月饼需660元;打折后买50盒甲品牌月饼和40盒乙品牌月饼需5200元.(1)打折前甲、乙两种品牌月饼每盒分别为多少元?(2)幸福敬老院需购买甲品牌月饼100盒,乙品牌月饼50盒,问打折后购买这批月饼比不打折节省了多少钱?22.某商场从厂家批发电视机进行零售,批发价格与零售价格如下表:若商场购进甲、乙两种型号的电视机共50台,用去9万元.(1)求商场购进甲、乙型号的电视机各多少台?(2)迎“国庆”商场决定进行优惠促销:以零售价的七五折销售乙种型号电视机,两种电视机销售完毕,商场共获利8.5%,求甲种型号电视机打几折销售?23.某公司有A、B两种型号的商品需运出,这两种商品的体积和质量分被如表所示:(1)已知一批商品有A、B两种型号,体积一共是20m3,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;①按吨收费:每吨货物运输到目的地收费200元.要将(1)中的商品一次或分批运输到目的地,该公司应如何选择运送,付费方式使运费最少,并求出该方式下的运费是多少元?参考答案1-5:BBABA 6-10:CBCDC11-12:CA13、1514、1115、6316、17、18、买美酒0.25斗,普通酒1.75斗19、设平路有x千米,坡路有y千米,由题意可知所以20、:(1)设原两位数的个位数字为x,十位数字为y,(x>y),则原两位数是(10y+x),新两位数为(10x+y),根据题意得,(10y+x)+(10x+y)=33×2,①x+y=6,①x、y均为正整数,x>y,①x=5,y=1或x=4,y=2,①原数的最小值15;(2)由(1)知,原数与新数可能为15与51,或24与42,①242-42=534,①24×42=1008.21、:(1)设打折前甲品牌月饼每盒x元,乙品牌月饼每盒y元,依题意,得得答:打折前甲品牌月饼每盒70元,乙品牌月饼每盒80元.(2)70×100+80×50-70×0.8×100-80×0.75×50=2400(元).答:打折后购买这批月饼比不打折节省了2400元钱.22、:(1)设商场购进甲型号电视机x台,乙型号电视机y台,则得答:商场购进甲型号电视机35台,乙型号电视机15台;(2)设甲种型号电视机打a折销售,依题意得:15×(3640×0.75-2500)+35×(2025×0.1a-1500)=(15×1500+35×2500)×8.5%解得a=8答:甲种型号电视机打8折销售.23、:(1)设A、B两种型号商品各有x件和y件,由题意得,所以答:A、B两种型号商品各有5件、8件;(2)①按车收费:10.5÷3.5=3(辆),但车辆的容积为:6×3=18<20,所以3辆车不够,需要4辆车,此时运费为:4×600=2400元;①按吨收费:200×10.5=2100元,①先用3辆车运送18m3,剩余1件B型产品,付费3×600=1800(元).再运送1件B型产品,付费200×1=200(元).共需付1800+200=2000(元).①2400>2100>2000,①先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为2000元。
人教版七年级数学下册第八章二元一次方程组单元检测卷(含答案)一、选择题( 每小题3分,共30分 )1若方程mx-2y=3x+4是关于x,y的二元一次方程,则m的取值范围是( )A.m≠0B.m≠3C.m≠-3D.m≠22.下列方程组中,二元一次方程组的个数是()(1)(2)(3)(4)(5)3.下列方程组中,是二元一次方程组的是( )A.B.C.D.-4.若购买甲商品3件,乙商品2件,丙商品1件,共需140元;购买甲商品1件,乙商品2件,丙商品3件,共需100元;那么购买甲商品1件,乙商品1件,丙商品1件,共需()元.A. 50B. 60C. 70D. 80的解是( )5.方程组--A.B.C.D.6.根据等式的性质,下列各式的变形中,一定正确的是()A. 若a=b,则a+c=b-cB. 若a=b+2,则3a=3b+6C. 若6a=2b,则a=3bD. 若ac=bc,则a=bx与y之间的关系是( )7.由方程组-可得出A.x+y=1B.x+y=-1C.x+y=7D.x+y=-78.二元一次方程组的解是()A. B. C. D.9.如图,10块相同的长方形墙砖拼成一个大长方形,设长方形墙砖的长和宽分别为x厘米和y 厘米,则依题意所列方程组正确的是( )A.B.C.-D.10.已知关于x,y的二元一次方程组的解为,则a-2b的值是()A. -2B. 2C. 3D. -3二、填空题(本大题共6小题,共24分)11.若方程x4m-1+5y-3n-5=4是二元一次方程,则m=______,n=______.12.已知( x-y+1 )2+=0,则x+y的值为.13.三元一次方程组的解是______ .14.如果a3x b y与-a2y b x+1是同类项,则x= ,y= .15.已知5b-2a-2=7a-4b,则a,b的大小关系是______ .16.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组 .三、解答题( 共66分 )17.( 8分 )解下列方程组:( 1 )-①②( 2 )-①②-③18.解方程组:.19.( 7分 )若方程组的解也是方程3x+ky=10的一个解,求k的值.20.解方程组::::.21.( 9分 )在解方程组时,由于粗心,小军看错了方程组中的n,得解为小红看错了方程组中的m,得解为( 1 )则m,n的值分别是多少?( 2 )正确的解应该是怎样的?22.某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?23.( 8分 )4月9日上午8时,2017徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.参考答案【答案】1. B2. B3. C4. B5. D6. B7. C8. D9. C 10. B11. ;-212.13.14. 2;315. a<b16.17.解:( 1 )①+②×3,得10x=50,解得x=5.把x=5代入②,得2×5+y=13,解得y=3.所以原方程组的解为( 2 )①+②,得3x+4z=-4,④④+③×2,得x=-2,把x=-2代入①,得y=1,把x=-2代入③,得z=,所以原方程组的解为解:①②,①×2+②得:9x=18,解得:x=2,把x=2代入②得:y=1,则方程组的解为人教版七年级下册第8章二元一次方程组综合素质检测卷(解析版)人教版七年级下册第八章二元一次方程组单元检测题综合素质检测卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
第八章二元一次方程和二元一次方程组(知识点归纳+达标检测)8.1二元一次方程组【知识点】理解掌握以下概念1、一元一次方程:只含有____未知数,且未知数的次数都是____的方程。
ax=b(a ≠0)2、方程的解:能使方程等号两边相等的_______的值。
3、二元一次方程:方程中含有______未知数,并且_____________的次数都是____。
一般式:ax+by=c(a ≠0,b ≠0)4、二元一次方程组:把具有__________的______二元一次方程用_______合在一起,就组成了一个二元一次方程组。
5、二元一次方程的解:一般地,使二元一次方程两边的值相等的______未知数的值,叫做二元一次方程的解。
二元一次方程有______个解。
6、二元一次方程组的解:一般地,二元一次方程组的两个方程的________,叫做二元一次方程组的解。
(能使方程组中两个方程等号两边都相等两个未知数的值。
)二元一次方程组有________个解。
【达标检测】1、二元一次方程的一般式:ax+by=c(a ≠0,b ≠0)用含x 的式子表示y,y= ;用含y的式子表示x,x=2、方程3x +2y =6,有______个未知数,且未知数都是___次,因此这个方程是_____元_____次方程。
3、若x ²m-1+5y3n-2m=7是二元一次方程,则m=______,n=_______。
4、请你写出一个二元一次方程和方程组:二元一次方程: 二元一次方程组:{ 5、下列各对数值中是二元一次方程x +2y=2的解是( ) A B C D 6、根据下列语句,列出二元一次方程:①甲数的一半与乙数的的和为11②甲数和乙数的2倍的差为177、方程x +2y=7在自然数范围内的解( ) A 有无数个 B 有一个 C 有两个D 有四个8、若mx +y=1是关于x,y 的二元一次方程,那么m 的值应是( ) A.m ≠O B. m=0 C. m 是正有理数 D. m 是负有理数9、李平和张力从学校同时出发到郊区某公园游玩,两人从出发到回来所用的时间相同,但是,李平游玩的时间是张力骑车时间的4倍,而张力游玩的时间是李平骑车时间的5倍,请问他俩人中谁骑车的速度快?10、已知(y-3)2=0,求x+y 的值。
七年级数学(下册)第八章二元一次方程组
(8.3~8.4)
时间45分钟 满分100分
一、选择题(每题3分,共24分)
1. 某校春季运动会比赛中,八(1)班、八(5)班的竞技实力相当,关于比
赛结果,甲同学说:(1)班与(5)班得分为6:5;乙同学说:(1)班得分比(5)
班得分的2倍少40分,若设(1)班得x 分、(5)班得y 分,根据题意所列的方程
组应为( )
A .{,
56402y x y x =-= B .{,56402y x y x =+= C .{,65402y x y x =+= D .{
,65402y x y x =-= 2. 学校文艺部组织部分文艺积极分子看演出,共够得8张甲票,4张乙票,
总计用112远,已知每张甲票比每张乙票贵2元,则甲票、乙票的票价分别是( )
A .甲票10元∕张,乙票8元∕张
B .甲票8元∕张,乙票10元∕张
C .甲票12元∕张,乙票10元∕张
D .甲票10元∕张,乙票12元∕张
3. 足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分,如果一
个队打了14场,负了5场,共得19分,那么这个队胜了( )
A .3场
B .4场
C .5场
D .6场
4. 如图,将正方形ABCD 的一角折叠,折痕为AE ,
∠BAD 比∠BAE 大480。
设∠BAE 和∠BAD 的度数
分别为x 、y ,那么x 、y 所适合的一个方程组是( ) A .
{
,4890=-=+x y x y B .{,482=-=x y x y C .{,48902=-=+x y x y D .{,48902=-=+y x x y 5. 一船顺水航行45km 需要3h ,逆水航行65km 需要5h ,若设船在静水中的速度为x k m /h ,水流速度为y km /h ,则x 、y 的值为( ) A .{,
132==x y B .{,141==x y C .{,151==x y D .{
,142==x y 6. 解方程组⎪⎩
⎪⎨⎧=-+=-+=+-157,1142,323z y x z y x z y x ,若要使运算简便,消元的方法应选取( )
A.先消去x B.先消去y C.先消去z D.以上说法都不对
7. 22名工人按定额共完成1400件产品,三级工每人定额200件,二级工每人定额50件,若22名工人中只有二、三级工,则()
A.三级工有3人,二级工有19人B.三级工有2人,二级工有20人C.三级工有5人,二级工有17人D.三级工有4人,二级工有18人
8. 某班12名学生参加竞赛,均分为60分,其中成绩及格的这部分学生的均分70分,成绩不及格的这部分学生的均分为40分,则不及格的有()A.3人B.4人C.5人D.6人
二、填空题(每题4分,共24分)
9. 一个两位数,个位上的数比十位上的数的2倍多1,若将十位数字与个位数字调换位置,则比原两位数的2倍还多2,则原两位数是_________。
10. 一艘轮船顺流航行时,每小时行32km,逆流航行时,每小时行28km,则轮船在静水中的速度是每小时行_________km。
11.小明去郊游,早上9h下车,先走平路,然后登山,到山顶有沿原路返回到下车处,此时正好是下午2h,若他走平路时没小时走4km,爬山时每小时走3km,下山时每小时走6km,则小明从上午到下午一共走了________km。
12. 甲、乙两同学同时从山脚开始爬山,到达山顶后立即下山,在山脚和山顶之间不断往返运动,已知山坡长为360m,甲、乙上山的速度比是6:4,并且甲、乙下山的速度都是各自上山速度的1.5倍,当甲第三次到达山顶时,则此时乙所在的位置是________。
13. 用3.50元买了10分、20分、50分三种邮票共18枚,其中10分邮票的总价与20分邮票的总价相同,则50分邮票共买了________枚。
14. 市三中七年级学生开展义务植树活动,参加者是未参加者人数的3倍,若该年级人数减少6人,未参加人数增加6人,则参加者是未参加者人数的2倍,则该校七年级学生共有________人。
三、解答题(第15~18题每题10分,第19题12分,共52分)
15. 某商场正在热销2008年奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?
共计145元
共计280元
16. “种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产小麦和玉米共18t,实际生产了20t,其中小麦超产12%,玉米超产10%,则该专业户去年实际生产小麦、玉米各多少吨?
17. 政府根据社会需要,对自来水价格举行了听证会,决定从今年4月份起对自来水价格进行调整,调整后生活用水价格的部分信息如下表:
已知5月份小晶家和小磊家分别交水费19元、31元,且小磊家的用水量是小晶家的用水量的1.5倍,请你通过上述信息,求出表中的x。
18. 某长甲车间人数比乙车间人数的
54还少30人,如果从乙车间调10人到甲车间,那么甲车间的人数是乙车间的
4
3,求两个车间原来各有多少人?
19. 某商场以每件a 元购进一种服装,如果以没见b 元卖出,平均每天卖出15件,30天共获利润22500元。
为了尽快回收资金,商场决定将每件降价20%卖出,结果平均每天比降价前多卖出10件,这样30天任然利润22500元。
试求a 、b 的值。
(每件服装的利润=每件服装的卖出价-每件服装的进价)。
参考答案:
1. D
2. A
3. C
4. C
5. B
6. B
7. B
8. B
9. 25 10. 30 11. 20 12. 离坡脚240m (下山)
13. 3 14.96
15.一盒“福娃”玩具和一枚徽章的价格分别是125元和10元
16. 设去年计划生产小麦x t 、玉米y t ,则去年小麦超产12%x t ,玉米超产10%y t ,
根据题意,得⎩⎨⎧-=+=+1820%10%12,18y x y x 解得⎩
⎨⎧==8,10y x 答:该专业户去年实际生产小麦10t 、玉米8t 。
17. 设小晶家5月份用水量为y m 3,则小磊家5月份用水量为1.5y m 3
可列方程组⎩⎨⎧=-+⨯=-+⨯.31)55.1(25,19)5(25y x y x 解得⎩⎨⎧==,
3,24x xy 即⎩⎨⎧==.8,3y x
答:表中的x 的值为3。
18. 设甲车间有x 人,乙车间有y 人,根据题意,得 ,)10(43)10(,3054⎪⎪⎩
⎪⎪⎨⎧-=+-=y x y x 解得⎩⎨⎧==.250,170y x
答:甲车间有170人,乙车间有250人。
19. 50=a 100=b。