回转体的正等轴测图画法
- 格式:doc
- 大小:231.00 KB
- 文档页数:6
凤凰高中通用技术教学参考书配套教学软件_文字资源
轴测投影图的画法
一、绘制轴测图的基本要求
1.轴向伸缩系数应采用简单的数值,如正等轴测时取p∶q∶r=1∶1∶1,斜二测时取p∶q∶r=1∶
0.5∶1。
2.轴测图中的三根轴测轴应配置成便于作图的特殊位置(图6.3所示)。
3.使用粗实线绘制物体的可见轮廓。
必要时,可用虚线画出物体的不可见轮廓。
二、正等轴测图的画法
1.平面立体的正等轴测图
坐标定点法:沿坐标轴测量,按坐标画出各顶点的轴测图,再作出整个物体的轴测投影,这种作轴测图的方法简称为坐标法。
切割法对切割式的组合体,可先画出完整的基本形体,然后用切割的方法画出不完整的部分,这种绘制轴测图的方法称为切割法。
组合法:对叠加式组合形体,先按各组成部分的形状和相对位置逐个画出它们的轴测图,再综合起来,完成整体轴测图,这种方法称为组合法
2.回转体的正等轴测图
(1)圆的正等轴测图画法(四心近似画法)
(2)圆角的正等轴测图画法
绘图步骤:绘出矩形平板的正等轴测图;根据圆角半径,求出切点;过切点做所在边的垂线,两垂线的交点
即为所求圆弧的圆心;分别以两交点为圆心,在对应的两
切点之间画圆弧;按平板的高度,向下复制两圆弧;最后经整理就可得图6.7所示的圆角。
第5章轴测图工程上常用的图样是按照正投影法绘制的多面投影图,它能够完整而准确地表达出形体各个方向的形状和大小,而且作图方便。
但在图5-1a所示的三面正投影图中,每个投影图只能反映形体长、宽、高三个向度中的两个,立体感不强,故缺乏投影知识的人不易看懂,因为看图时需运用正投影原理,对照几个投影,才能想象出形体的形状结构。
当形体复杂时,其正投影就更难看懂。
为了帮助看图,工程上常采用轴测投影图〔简称轴测图〕,如图5-1b所示,来表达空间形体。
a)b)图5-1 多面正投影图与轴测投影图轴测图是一种富有立体感的投影图,因此也被称为立体图。
它能在一个投影面上同时反映出空间形体三个方向上的形状结构,可以直观形象地表达客观存在或设想的三维物体,接近于人们的视觉习惯,一般人都能看懂。
但由于它属于单面投影图,有时对形体的表达不够全面,而且其度量性差,作图较为复杂,因而它在应用上有一定的局限性,常作为工程设计和工业生产中的辅助图样,当然,由于其自身的特点,在某些行业中应用轴测图的时机逐渐增多。
5.1轴测投影的根本知识5.1.1轴测投影图的形成轴测投影属于平行投影的一种,它是用平行投影法沿某一特定方向〔一般沿不平行于任一坐标面的方向〕,将空间形体连同其上的参考直角坐标系一起投射在选定的一个投影面上而形成的投影,如图5-2所示。
这个选定的投影面〔P〕称为轴测投影面,S表示投射方向,用这种方法在轴测投影面上得到的图称为轴测投影图,简称轴测图。
轴测投影图图5-2 轴测投影图的形成5.1.2轴测投影的根本概念1.轴测轴如图5-2所示,表示空间物体长、宽、高三个方向的直角坐标轴OX、OY、OZ,在轴测投影面上的投影依然记为OX、OY、OZ,称为轴测轴。
2.轴间角如图5-2所示,相邻两轴测轴之间的夹角∠XOZ、∠ZOY、∠YOX称为轴间角。
三个轴间角之和为360°。
3.轴向伸缩系数由平行投影法的特性我们知道,一条直线与投影面倾斜,该直线的投影必然缩短。
CAD教程第16章-轴测图的基本知识轴测图的基本知识一、轴测图的形成及投影特性用平行投影法将物体连同确定物体空间位置的直角坐标系一起投射到单一投影面,所得的投影图称为轴测图。
由于轴测图是用平行投影法得到的,因此具有以下投影特性:1、空间相互平行的直线,它们的轴测投影互相平行。
2、立体上凡是与坐标轴平行的直线,在其轴测图中也必与轴测轴互相平行。
3、立体上两平行线段或同一直线上的两线段长度之比,在轴测图上保持不变。
二、轴向伸缩系数和轴间角投影面称为轴测投影面。
确定空间物体的坐标轴OX、OY、OZ在P面上的投影O1X1、O1Y1、O1Z1称为轴测投影轴,简称轴测轴。
轴测轴之间的夹角∠X1O1Y1、∠Y1O1Z1、∠Z1O1X1称为轴间角。
由于形体上三个坐标轴对轴测投影面的倾斜角度不同,所以在轴测图上各条轴线长度的变化程度也不一样,因此把轴测轴上的线段与空间坐标轴上对应线段的长度比,称为轴向伸缩系数。
三、轴测图的分类轴测图分为正轴测图和斜轴测图两大类。
当投影方向垂直于轴测投影面时,称为正轴测图;当投影方向倾于轴测投影面时,称为斜轴测图。
由些可见:正轴测图是由正投影法得来的,而斜轴测图则是用斜投影法得来的。
正轴测图按三个轴向伸缩系数是否相等而分为三种:1、正等测图简称正等测:三个轴向伸缩系数都相等;2、正二测图简称正二测:只有两个轴向伸缩系数相等;3、正三测图简称正三测:三个轴向伸缩系数各不相等。
同样,斜轴测图也相应地分为三种:1、斜等测图简称斜等测:三个轴向伸缩系数都相等;2、斜二测图简称斜二测:只有两个轴向伸缩系数相等;3、斜三测图简称斜三测:三个轴向伸缩系数各不相等。
工程上用得较多的是正等测和斜二测。
本章只介绍这两种轴测图的画法。
作物体的轴测图时,应先选择画哪一种轴测图,从而确定各轴向伸缩系数和轴间角。
轴测轴可根据已确定的轴间角,按表达清晰和作图方便来安排,而Z轴常画成铅垂位置。
在轴测图中,应用粗实线画出物体的可见轮廓。
正等轴测图的画法作者:石坤来源:《科教导刊》2012年第30期摘要轴测图反映物体各表面的实形,但作图较复杂,学生的学习难度较大,笔者针对正等轴测图的画法发表一些自己的意见。
关键词正等轴测图坐标系平面立体回转体椭圆画法中图分类号:TB23-4 文献标识码:A在机械制图中,我们都是用正投影图来反映形体的形状和大小的,这种图样度量性好、作图简便;缺点是直观性差,必须具备一定的读图能力才能看懂。
轴测图是一种单面投影图,在一个投影面上能同时反映出物体三个坐标面的形状,并接近于人们的视觉习惯,形象、逼真、富有立体感。
但是轴测图一般不能反映出物体各表面的实形,因而度量性差,同时作图较复杂。
因此,在工程上常把轴测图作为辅助图样,来说明机器的结构、安装、使用等情况。
在设计中,用轴测图帮助构思、想象物体的形状,以弥补正投影图的不足。
作为一名机械制图的老师,笔者发现轴测图是学生最感兴趣同时也是最难接受的内容,下面就正等轴测图的画法发表一些个人的意见和看法。
轴测图分为正等轴测图(以下简称正等测)和斜二等轴测图,简单的说,用正投影法得到的轴测图就是正等测。
正等测有两个特点:(1)轴间角都为120度,且一般将OZ轴画成垂直的。
(2)轴向伸缩系数相等均为0.82,因为轴测图只是为读者方便构思形状,尺寸要求不严格,为了作图方便,常将该系数简化为1。
这两个特点是作图时必须掌握的最基本的原则。
下面我们就以平放的长方体为例来画它的正等测。
步骤如下:(1)画坐标系。
固定坐标原点O,过O向上垂直方向画带箭头的线段OZ,然后再过O,分别画同样的线段OX、OY均与OZ成120度夹角,且使X、Y、Z按逆时针排列,如图1。
(2)找出长方体平放时长、宽、高三个方向的尺寸,以O为起点,在OZ上截取长方体的高度尺寸OA,在OX上截取长方体的长度尺寸OB,在OY上截取长方体的宽度尺寸OC,如图2。
(3)做平行线。
过点B做Y轴的平行线,过点C做X轴的平行线,两线交于点D。