甘肃省张掖市甘州区甘州中学2019-2020学年八年级下学期第二次阶段测试数学试题
- 格式:docx
- 大小:138.37 KB
- 文档页数:6
甘肃省张掖市甘州区张掖市甘州区南关学校2024届八年级数学第二学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)1.在平面直角坐标系中,直线y=kx+b的位置如图所示,则不等式kx+b<0的解集为()A.x>﹣2 B.x<﹣2 C.x>1 D.x<12.下列式子中,a不可以...取1和2的是()A.5a B.21a-C.3a-+D.2 a -3.赵老师是一名健步走运动的爱好者为备战2019中国地马拉松系列赛·广元站10千米群众健身赛,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图在每天健步走的步数这组数据中,众数和中位数分别是()A.2.2,2.3 B.2.4,2.3 C.2.4,2.35 D.2.3,2.34.将若干个小菱形按如图所示的规律排列:第一个图形有5个菱形,第二个图形有9个菱形第三个图形有13个菱形,…,则第9个图形有()个菱形.A .33B .36C .37D .415.某服装制造厂要在开学前赶制3000套校服,为了尽快完成任务,厂领导合理调配加强第一线人力,使每天完成的校服比原计划多20%,结果提前4天完成任务,问:原计划每天能完成多少套校服?设原来每天完成校服x 套,则可列出方程( )A .300030004(120%)x x +=+B .30003000420%x x -=+C .300030004(120%)x x =++D .300030004(120%)x x-=+ 6.下列函数:①0.1y x =-;②21y x =--;③2x y =;④22y x =;⑤24y x =.其中,是一次函数的有( ) A .1个 B .2个 C .3个D .4个 7.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成( )A .10组B .9组C .8组D .7组8.下列图象能表示一次函数()y k x 1=-的是( )A .B .C .D .9.下列数中不是有理数的是( )A .﹣3.14B .0C .227D .π10.如图,折叠长方形ABCD 的一边AD ,使点D 落在BC 边的点F 处,折痕为AE ,且6AB =,10BC =.则EF 的长为( )A .3B .103C .4D .8311.如图,ABC ∆中,DE BC ∥,EF AB ∥,要判定四边形DBFE 是菱形,还需要添加的条件是( )A .BE 平分ABC ∠B .AD BD =C .BE AC ⊥D .AB AC =12.如果关于x 的方程()32019a x -=有解,那么实数a 的取值范围是( )A .3a <B .3a =C .3a >D .3a ≠二、填空题(每题4分,共24分)13.已知等边三角形的边长是2,则这个三角形的面积是_____.(保留准确值)14.将正比例函数y=3x 的图象向下平移11个单位长度后,所得函数图象的解析式为______.15.以正方形ABCD 一边AB 为边作等边三角形ABE ,则∠CED =_____.16.如图,在平面直角坐标系中有两点A (6,0),B (0,3),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 时,△BOC 与△AOB 相似.17.若y=3x -+3x -+2,则x+y=_____.18.如图,P 是等边三角形ABC 内一点,将线段CP 绕点C 顺时针旋转60°得到线段CP ',连接'AP .若3PA =,4PC =,5PB =,则四边形APCP '的面积为___________.三、解答题(共78分)19.(8分)先化简,再求值:222441112a a a a a a -+++⋅---,其中,a=2+1. 20.(8分)如图,▱ABCD 中,DE AC ⊥,BF AC ⊥,垂足分别是E ,.F 求证:DE BF =.21.(8分)如图,甲乙两船从港口A 同时出发,甲船以16海里/时的速度向南偏东 50°航行,乙船向北偏东 40°航行,3小时后,甲船到达B 岛,乙船到达C 岛,若C ,B 两岛相距60海里,问乙船的航速是多少?22.(10分)如图,方格纸中每个小正方形的边长均为1,我们把每个小正方形的顶点叫做格点. 如:线段AB 的两个端点都在格点上.(1)在图1中画一个以AB 为边的平行四边形ABCD ,点C 、D 在格点上,且平行四边形ABCD 的面积为15;(2)在图2中画一个以AB 为边的菱形ABEF (不是正方形),点E 、F 在格点上,则菱形ABEF 的对角线AE =________,BF =________;(3)在图3中画一个以AB 为边的矩形ABMN (不是正方形),点M 、N 在格点上,则矩形ABMN 的长宽比AN AB=______.23.(10分)如图,已知矩形ABCD ,AD=4,CD=10,P 是AB 上一动点,M 、N 、E 分别是PD 、PC 、CD 的中点.(1)求证:四边形PMEN 是平行四边形;(2) 当AP 为何值时,四边形PMEN 是菱形?并给出证明。
甘肃省张掖市八年级下学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共23分)1. (2分) (2019八下·端州月考) 下列根式中,是二次根式的是()A . πB .C .D .2. (5分) (2020八上·河南月考) 下列四组数中,是勾股数的是()A . 0.3,0.4,0.5B . 32 , 42 , 52C . 3,4,5D . ,,3. (2分) (2016八下·饶平期末) 计算的结果是()A . 1B . ﹣1C . ±1D . ﹣24. (2分)当有意义时,a的取值范围是()A . a≥2B . a>2C . a≠2D . a≠-25. (2分) (2017七下·河东期中) 若x轴上的点P到y轴的距离为3,则点P的坐标为()A . (0,3)B . (0,3)或(0,﹣3)C . (3,0)D . (3,0)或(﹣3,0)6. (2分) (2017八下·沂源开学考) 把式子m 中根号外的m移到根号内,得()A . ﹣B .C . ﹣D . ﹣7. (2分)如果=1-2a,则()A . a<B . a≤C . a>D . a≥8. (2分)若关于x的方程x2−2x−1=0有两个不相等的实数根,则实数k的取值范围是()A . k≥0B . k>0C . k≥-1D . k>-19. (2分) (2020八上·江干期末) 将一根长度为16cm自然伸直的弹性皮筋AB两端固定在水平的桌面上,然后把中点C竖直向上拉升6cm至D点(如图),则该弹性皮筋被拉长了()A . 2 cmB . 4 cmC . 6 cmD . 8 cm10. (2分) (2017八上·宁波期中) 如图,等腰Rt△ABC中,∠ABC=90°,O是△ABC内一点,OA=6,OB=4,OC=10,O′为△ABC外一点,且△CBO≌△ABO′,则四边形AO′BO的面积为()A . 10B . 16C . 40D . 80二、填空题 (共7题;共7分)11. (1分) (2019八下·新洲期中) 计算: ________.12. (1分)已知,则代数式的值等于________.13. (1分)(2020·澧县模拟) 分式有意义时,x的取值范围是________.14. (1分) (2020八下·广州期中) 已知直角三角形的两边a , b满足,则△ABC 的面积为________.15. (1分)(2016·铜仁) 函数的自变量x取值范围是________.16. (1分) (2019八上·苍溪期中) 已知三角形的三边长分别为2,a-1,4,则化简|a-3|-|a-7|的结果为________.17. (1分) (2019八上·夏津月考) 如图,在△ABC中∠ABC和∠ACB平分线交于点O ,过点O作OD⊥BC于点D,△ABC的周长为18,OD=4,则△ABC的面积是________.三、解答题 (共8题;共54分)18. (5分)(2018·灌南模拟)(1)计算 (-2)2+( -π)0+|1—|;(2)解方程组:19. (10分) (2019八上·福田期中) 计算与化简:(1)(2)20. (5分) (2017七下·如皋期中) 计算:(1);(2)21. (5分) (2019七上·德清期末) 已知lxl=3,y2=4,且xy<0,求x-y的值.22. (5分) (2020八上·丹江口期末) 先化简,再求值:,其中 .23. (2分) (2019八上·垣曲期中) 已知a,b为实数,且满足(1)求a,b的值:(2)若a,b为△ABC的两边,第三边c为,求△ABC的面积.24. (15分) (2019八下·渭南期末) 如图所示,从一个大矩形中挖去面积为和的两个小正方形.(1)求大矩形的周长;(2)若余下部分(阴影部分)的面积与一个边长为的正方形的面积相等,求的值.25. (7分)(2016·黄石) 观察下列等式:第1个等式:a1= = ﹣1,第2个等式:a2= = ﹣,第3个等式:a3= =2﹣,第4个等式:a4= = ﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:an=________;(2)a1+a2+a3+…+an=________.参考答案一、单选题 (共10题;共23分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共7题;共7分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:三、解答题 (共8题;共54分)答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:。
甘肃省张掖市2020年八年级下学期数学期中考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017八下·潮阳期中) 下列式子总,属于最简二次根式的是()A .B .C .D .2. (2分) (2017八下·广州期中) 下列各组数中,能构成直角三角形的是()A . 4,5,6B . 6,8,11C . 1,1,D . 5,12,233. (2分)如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为()A . 4B . 5C . 6D . 不能确定4. (2分) (2019八下·宜兴期中) 关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是()A . 对角线互相平分B . 对角线互相垂直C . 对角线相等D . 对角线平分一组对角5. (2分)计算(2a2b3)4的结果是()A . 8a6b7B . 8a8b12C . 16a8b12D . 16a6b76. (2分)已知一个四边形的对角线互相垂直,那么顺次连接这个四边形的四边中点所得的四边形是()A . 矩形B . 菱形C . 等腰梯形D . 正方形7. (2分)(2017·杭州模拟) 下列各式变形中,正确的是()A . 2x2•3x3=6x6B . =aC . x2﹣4=(x+4)(x﹣4)D . (a﹣b)2=(b﹣a)28. (2分)(2018·夷陵模拟) 如图在梯形ABCD中,AD∥BC,AD⊥CD,BC=CD=2AD,E是CD上一点,∠ABE=45°,则tan∠AEB的值等于()A . 3B . 2C .D .9. (2分)如图,四边形ABCD中,∠A=90°,AB=, AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A . 3B . 4C . 4.5D . 510. (2分)如图,Rt△ABC中,∠CAB=90°,在斜边CB上取点M,N(不包含C、B两点),且tanB=tanC=tan∠MAN=1,设MN=x,BM=n,CN=m,则以下结论能成立的是()A . m=nB . x=m+nC . x>m+nD . x2=m2+n2二、填空题 (共6题;共6分)11. (1分) (2020八下·姜堰期末) 如果二次根式有意义,那么的取值范围是________.12. (1分) (2017八上·中原期中) 若Rt△ABC斜边长为10cm,面积为11cm2 ,则Rt△ABC的周长为________.13. (1分) (2018八下·肇源期末) 如果一个直角三角形的两边分别是6,8,那么斜边上的中线是________.14. (1分)相邻两边长分别是2+与2﹣的平行四边形的周长是________15. (1分) (2017八下·滦县期末) 如图,矩形ABCD的面积为20cm2 ,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为________.16. (1分)二次函数的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为________ .三、解答题 (共9题;共80分)17. (5分) (2019八下·东台月考) 计算:(1)(2)18. (10分) (2020九下·江阴期中) 按要求作图,不要求写做法,但要保留作图痕迹.(1)如图1,四边形ABCD是平行四边形,E为BC上任意一点,请只用直尺(不带刻度)在边AD上找点F,使DF=BE.(2)如图2,点E是菱形ABCD的对角线BD上一点,请只用直尺(不带刻度)作菱形AECF.19. (5分)如图,四边形ABCD为平行四边形,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E点.(1)求证:DF=FE;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE的长.20. (10分)(2018·牡丹江模拟) 如图:抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C,OB=OC,连接BC,抛物线的顶点为D.连结B、D两点.(1)求抛物线的解析式.(2)求∠CBD的正弦值.21. (10分) (2016九上·无锡开学考) 如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为________时,四边形AMDN是矩形;②当AM的值为________时,四边形AMDN是菱形.22. (10分) (2020八下·南康月考) 已知,如图,在中,,,.动点从点出发,沿向点运动,动点从点出发,沿向点运动,如果动点以1 ,以2 的速度同时出发,设运动时间为,解答下列问题:(1)当 ________ 时,;(2)连接.①当时,求线段的长;②在运动过程中,的形状不断发生变化,它能否构成直角三角形?如果能则求出此时的值,如果不能,请说明理由.23. (5分)已知T= .(1)化简T;(2)若正方形ABCD的边长为a,且它的面积为9,求T的值.24. (10分) (2019八上·成都期中) 阅读下列材料,然后回答问题:在进行类似于二次根式的运算时,通常有如下两种方法将其进一步化简:方法一:方法二:(1)请用两种不同的方法化简: ;(2)化简: .25. (15分) (2019八上·信阳期末) 如图,△ABC中,∠ABC=45 ,CD⊥AB于D,BE平分∠ABC,且BE⊥AC 于E,与CD相交于点F,H是BC边的中点,连结DH,与BE相交于点G.(1)求证:BF=AC;(2)求证:CE= BF.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共80分)17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、23-1、23-2、24-1、24-2、25-1、25-2、。
甘肃省张掖市甘州区2024届数学八年级第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分) 1.函数的自变量取值范围是( )A .x ≠0B .x >﹣3C .x ≥﹣3且x ≠0D .x >﹣3且x ≠02.下列说法:(1)8的立方根是2±.(2) 196的平方根是14±.(3)负数没有立方根. (4)正数有两个平方根,它们互为相反数.其中错误的有( ) A .4个B .3个C .2个D .1个3.2(2)-化简的结果是() A .-2B .2C .2±D .44.下列运算正确的是( ) A .236m m m ⋅=B .352()a a =C .44(2)16x x =D .2m 3÷m 3= 2m5.已知关于x 的方程mx 2+2x ﹣1=0有实数根,则m 的取值范围是( ) A .m ≥﹣1B .m ≤1C .m ≥﹣1且m ≠0D .m ≤1且m ≠06.已知不等式mx+n >2的解集是x <0,则下列图中有可能是函数y=mx+n 的图象的是( )A .B .C .D .7.下列说法正确的是( ) A .某个对象出现的次数称为频率 B .要了解某品牌运动鞋使用寿命可用普查 C .没有水分种子发芽是随机事件D .折线统计图用于表示数据变化的特征和趋势8.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE AC ,AE BD 则四边形AODE 一定是( )A .正方形B .矩形C .菱形D .不能确定9.如图,平行四边形ABCD 的周长是32cm ,△ABC 的周长是26cm ,E 、F 分别是边AB 、BC 的中点,则EF 的长为( )A .8cmB .6cmC .5cmD .4cm10.如图,点A ,B ,C 三点在x 轴的正半轴上,且OA AB BC ==,过点A ,B ,C 分别作x 轴的垂线交反比例函数(0)ky k x=>的图象于点D ,E ,F ,连结OD ,AE ,BF ,则::OAD ABE BCF S S S △△△为( )A .12∶7∶4B .3∶2∶1C .6∶3∶2D .12∶5∶411.计算:结果在( ) A .2.5与3之间B .3与3.5之间C .3.5与4之间D .4与4.5之间12.如图,ABCD 的周长为18,对角线AC 、BD 相交于点O ,点E 是CD 的中点,5BD =,则DOE ∆的周长为( )A .7B .8C .9D .10二、填空题(每题4分,共24分)13.一个平行四边形的一条边长为3,两条对角线的长分别为4和25______.14.已知一元二次方程:2x 2+5x+1=0的两个根分别是x 1、x 2 , 则221212x x x x =________.15.如图,点A 在双曲线(0)ky x x=<上,B 为y 轴上的一点,过点A 作AC x ⊥轴于点C ,连接BC 、AB ,若ABC ∆的面积是3,则k =__.16.直线y =kx +b 经过点A (-2,0)和y 轴的正半轴上一点B .如果△ABO (O 为坐标原点)的面积为2,则b 的值是________.17.直角三角形ABC 中,∠C =90︒, AC=BC =2,那么AB =_______. 18.一次函数2y kx =+不经过第三象限,则k 的取值范围是______ 三、解答题(共78分)19.(8分)(发现)如图①,在△ABC 中,点D ,E 分别是AB ,AC 的中点,可以得到:DE ∥BC ,且DE =BC .(不需要证明)(探究)如图②,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,判断四边形EFGH 的形状,并加以证明.(应用)在(探究)的条件下,四边形ABCD 中,满足什么条件时,四边形EFGH 是菱形?你添加的条件是: .(只添加一个条件)20.(8分)随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成): 数据段 频数 频率 30~40 10 0.05 40~503650~60 0.3960~7070~80 20 0.10总计200 1注:30~40为时速大于等于30千米而小于40千米,其他类同(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?21.(8分)一分钟投篮测试规定,得6分以上为合格,得9分以上为优秀,甲、乙两组同学的一次测试成绩如下:成绩(分) 4 5 6 7 8 9甲组(人) 1 2 5 2 1 4乙组(人) 1 1 4 5 2 2(1)请你根据上述统计数据,把下面的图和表补充完整;一分钟投篮成绩统计分析表:统计量平均分方差中位数合格率优秀率甲组 2.56 6 80.0% 26.7%乙组 6.8 1.76 86.7% 13.3%(2)下面是小明和小聪的一段对话,请你根据(1)中的表,写出两条支持小聪的观点的理由.22.(10分)如图1,在正方形ABCD中,E、F分别是BC、AB上一点,且AF=BE,AE与DF交于点G.(1)求证:AE=DF.(2)如图2,在DG上取一点M,使AG=MG,连接CM,取CM的中点P.写出线段PD与DG之间的数量关系,并说明理由.(3)如图3,连接CG.若CG=BC,则AF:FB的值为.23.(10分)某商贩出售一批进价为l元的钥匙扣,在销售过程中发现钥匙扣的日销售单价x(元)与日销售量y(个)之间有如下关系:(1)根据表中数据在平面直角坐标系中,描出实数对(x,y)对应的点;(2)猜想并确定y与x的关系式,并在直角坐标系中画出x>0时的图像;(3)设销售钥匙扣的利润为T元,试求出T与x之间的函数关系式:若商贩在钥匙扣售价不超过8元的前提下要获得最大利润,试求销售价x 和最大利润T .24.(10分)如图,▱ABCD 中,AB=2cm ,AC=5cm ,S ▱ABCD =8cm 2,E 点从B 点出发,以1cm 每秒的速度,在AB 延长线上向右运动,同时,点F 从D 点出发,以同样的速度在CD 延长线上向左运动,运动时间为t 秒. (1)在运动过程中,四边形AECF 的形状是____; (2)t =____时,四边形AECF 是矩形; (3)求当t 等于多少时,四边形AECF 是菱形.25.(12分)请用合适的方法解下列一元二次方程: (1)240x -=; (2)2230x x +-=.26.如图,一艘轮船位于灯塔P 南偏西60°方向的A 处,它向东航行20海里到达灯塔P 南偏西45°方向上的B 处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P 的最短距离.(结果保留根号)参考答案一、选择题(每题4分,共48分) 1、B 【解题分析】 由题意得:x +1>0, 解得:x >-1. 故选B . 2、B【解题分析】(1)(3)根据立方根的定义即可判定; (2)根据算术平方根和平方根的定义即可判定; (4)根据平方根的定义即可判定. 【题目详解】(1)8的立方根是2,原来的说法错误;(2,16的平方根是±4,原来的说法错误; (3)负数有立方根,原来的说法错误;(4)正数有两个平方根,它们互为相反数是正确的. 错误的有3个. 故选B . 【题目点拨】此题考查了相反数,立方根和算术平方根、平方根的性质,要掌握一些特殊数字的特殊性质,如1,-1和1. 相反数的定义:只有符号相反的两个数叫互为相反数;立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,1的立方根是1. 算术平方根是非负数. 3、B 【解题分析】先将括号内的数化简,再开根号,根据开方的结果为正数可得出答案. 【题目详解】=2,故选:B . 【题目点拨】本题考查了二次根式的化简,解此类题目要注意算术平方根为非负数. 4、C 【解题分析】A.2356m m m m ⋅=≠ ,错误;B.2365()a a a =≠ ,错误;C.()44216x x = ,正确;D.33222m m m ÷=≠ ,错误.故选C. 5、A 【解题分析】分为两种情况,方程为一元一次方程和方程为一元二次方程,分别求出即可解答【题目详解】解:当m=0时,方程为2x﹣1=0,此方程的解是x=0.5,当m≠0时,当△=22﹣4m×(﹣1)≥0时,方程有实数根,解得:m≥﹣1,所以当m≥﹣1时,方程有实数根,故选A.【题目点拨】此题考查了一元一次方程和为一元二次方程的解,解题关键在于分情况求方程的解6、B【解题分析】根据各选项图象找出mx+n>2时x的取值范围,即可判断.【题目详解】A、不等式mx+n>2的解集是x>0,故选项错误;B、不等式mx+n>2的解集是x<0,故选项正确;C、不等式mx+n>2的解集不是x<0,故选项错误;D、不等式mx+n>2的解集不是x<0,故选项错误.故选:B.【题目点拨】此题考查的是利于一次函数图象判断不等式的解集,掌握一次函数的图象和不等式的解集之间的关系是解决此题的关键.7、D【解题分析】根据频次、频数的定义区别,抽样调查、普查的用法区别,不可能事件、随机事件的区分,折线统计图的性质可判断.【题目详解】解:某个对象出现的次数称为频数,A错误;要了解某品牌运动鞋使用寿命可用抽样调查,B错误;没有水分种子发芽是不可能事件,C错误;折线统计图用于表示数据变化的特征和趋势,D正确;故选:D.【题目点拨】本题考查频次、频数的定义区别,抽样调查、普查的用法区别,不可能事件、随机事件的区分,折线统计图的性质等知识点,准确掌握相似说法的定义区别是本题的关键.8、B【解题分析】根据题意可判断出四边形AODE是平行四边形,再由菱形的性质可得出AC⊥BD,即∠AOD=90°,继而可判断出四边形AODE是矩形;【题目详解】证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=∠AOD=90°,∴四边形AODE是矩形.故选B.【题目点拨】本题考查了菱形的性质、矩形的判定与性质、平行四边形的判定;熟练掌握矩形的判定与性质、菱形的性质是解决问题的关键.9、C【解题分析】根据平行四边形的性质得出AB+BC=16cm,进而得出AC的长度,利用三角形中位线解答即可.【题目详解】解:∵平行四边形ABCD的周长是32cm,∴AB+BC=16cm,∵△ABC的周长是26cm,∴AC=26-16=10cm,∵E、F分别是边AB、BC的中点,∴EF=0.5AC=5cm,故选:C.【题目点拨】此题考查平行四边形的性质,关键是根据平行四边形的性质得出AB+BC=16cm,进而得出AC的长度.10、C【解题分析】设OA AB BC a ===,再分别表示出D,E,F 的坐标,再求出,OAD ABE BCF S S S △△△,用含k 的式子表示即可求解. 【题目详解】解:设OA AB BC a ===, ∴,k D a a ⎛⎫ ⎪⎝⎭,2,2k E a a ⎛⎫ ⎪⎝⎭,3,3k F a a ⎛⎫ ⎪⎝⎭.∴111222AOD k S OA AD a k a =⋅=⋅=△, 1112224ABE k S AB BE a k a =⋅=⋅⋅=△, 1112236BCFk S BC CF a k a =⋅⋅=⋅⋅=△. ∴::6:3:2AOD ABE BCF S S S =△△△. 故选C . 【题目点拨】本题考查了反比例函数的图象与性质.解题关键在于OA AB BC ==,即::1:2:3OA OB OC =,因此可以得到D ,E ,F 坐标的关系.11、B 【解题分析】原式化简后,估算即可得到结果. 【题目详解】 解:原式=∵64<65<72.25,,∴8<<8.5∴3<<3.5故选:B . 【题目点拨】此题考查了估算无理数的大小以及二次根式的混合运算,熟练掌握运算法则是解本题的关键. 12、A 【解题分析】利用平行四边形的性质,三角形中位线定理即可解决问题 【题目详解】 解:平行四边形ABCD 的周长为18,9BC CD ∴+=,OD OB =,12DE EC CD ==,∴1=2OE BC19()22OE DE BC CD ∴+=+=,5BD =,1522OD BD ∴==, DOE∴∆的周长为95722+=, 故选A . 【题目点拨】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.二、填空题(每题4分,共24分) 13、45 【解题分析】如图所示: 3,4,25,AB AC BD ===∵四边形ABCD 是平行四边形112,5,22OA AC OB BD ∴==== ∵22225)3+=,90.AOB ∴∠=即两条对角线互相垂直, ∴这个四边形是菱形, ∴14254 5.2S =⨯⨯= 故答案为4 5.14、54-【解题分析】依据一元二次方程根与系数的关系:x 1+x 2=-b a ,x 1·x 2=ca,即可求出. 【题目详解】因为2x 2+5x+1=0,所有a=2、b=5、c=1,所以x 1+x 2=-52,x 1·x 2=12,有因为221212x x x x =x 1x 2(x 1+x 2),所以221212x x x x =-52×12=54- 【题目点拨】本题考查一元二次方程根与系数之间的关系,熟练掌握相关知识是解的关键. 15、-6 【解题分析】连结OA ,如图,利用三角形面积公式得到S △OAC =S △CAB =3,再根据反比例函数的比例系数k 的几何意义得到1||32k =,然后去绝对值即可得到满足条件的k 的值. 【题目详解】解:连结OA ,如图,AC x ⊥轴,//AC OB ∴, 3OAC CAB S S ∆∆∴==,而1||2OAC S k ∆=, ∴1||32k =,0k <, 6k ∴=-.故答案为:6-. 【题目点拨】本题考查了反比例函数的比例系数k的几何意义:在反比例函数kyx=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.16、1【解题分析】1||||22ABOS OA OB==△.而|OA|=1,故|OB|=1,又点B在y轴正半轴上,所以b=1.17、22【解题分析】根据勾股定理直接计算即可.【题目详解】直角三角形ABC中,∠C=90︒, AC=BC=2,则22222222AB AC BC=+=+=.【题目点拨】本题是对勾股定理的考查,熟练掌握勾股定理及二次根式运算是解决本题的关键.18、0k<【解题分析】根据图象在坐标平面内的位置关系确定k的取值范围,从而求解.【题目详解】解:∵一次函数y=kx+2的图象不经过第三象限,∴一次函数y=kx+2的图象经过第一、二、四象限,∴k<1.故答案为:k<1.【题目点拨】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限;k<1时,直线必经过二、四象限.b>1时,直线与y轴正半轴相交;b=1时,直线过原点;b<1时,直线与y轴负半轴相交.三、解答题(共78分)19、(1)见解析;(2)AC=BD.【解题分析】探究:连结AC,由四个中点可得EF∥AC且EF=AC、GH∥AC且GH=AC,据此可得EF∥GH,且EF=GH,从而得证;应用:添加AC=BD,连接BD,由EF=AC、EH=BD,且AC=BD知EF=EH,根据四边形EFGH是平行四边形即可得证;【题目详解】探究:平行四边形,证明:连结AC,∵E、F分别是AB、BC的中点,∴EF∥AC,且EF=AC.∵G、H分别是CD、AD的中点,∴GH∥AC,且GH=AC.∴EF∥GH,且EF=GH.∴四边形EFGH是平行四边形.应用:AC=BD;连接BD,∵EF=AC、EH=BD,且AC=BD,∴EF=EH,又∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.故答案为:AC=BD.【题目点拨】本题主要考查四边形的综合问题,解题的关键是掌握中位线定理,平行四边形、菱形的判定方法.20、(1)见解析;(2)见解析;(3)76(辆).【解题分析】(1)根据频数÷总数=频率进行计算即可:36÷200=0.18,200×0.39=78,200﹣10﹣36﹣78﹣20=56,56÷200=0.1.(2)结合(1)中的数据补全图形即可.(3)根据频数分布直方图可看出汽车时速不低于60千米的车的数量.【题目详解】解:(1)填表如下:数据段频数频率30~40 10 0.0540~50 36 0.1850~60 78 0.3960~70 56 0.170~80 20 0.10总计200 1(2)如图所示:(3)违章车辆数:56+20=76(辆).答:违章车辆有76辆.21、 (1)见解析;(2)乙组成绩好于甲组,理由见解析【解题分析】(1)根据测试成绩表求出乙组成绩为1分和9分的人数,补全统计图,再根据平均数的计算方法和中位数的定义求出平均数和中位数,即可补全分析表;(2)根据平均分、方差、中位数、合格率的意义即可写出支持小聪的观点的理由.【题目详解】(1)根据测试成绩表即可补全统计图(如图):补全分析表:甲组平均分(4×1+5×2+6×5+1×2+8×1+9×4)÷15=6.8,乙组中位数是第8个数,是1.统计量平均分方差中位数合格率优秀率甲组 6.8 2.56 6 80.0% 26.1%乙组 6.8 1.16 1 86.1% 13.3%(2)甲乙两组平均数一样,乙组的方差低于甲组,说明乙组成绩比甲组稳定,又乙组合格率比甲组高,所以乙组成绩好于甲组.【题目点拨】此题考查频数(率)分布直方图,方差,中位数,加权平均数,解题关键在于掌握中位数和方差的运算公式.22、(1) 见解析;(2) DG2DP,理由见解析;(3) 1∶1.【解题分析】(1)用SAS证△ABE≌△DAF即可;(2)DG2DP,连接GP并延长至点Q,使PQ=PG,连接CQ,DQ,先用SAS证△PMG≌△PCQ,得CQ=MG =AG,进一步证明∠DAG=∠DCQ,再用SAS证明△DAG≌△DCQ,得∠ADF=∠CDQ,于是有∠FDQ=90°,进而可得△DPG为等腰直角三角形,由此即得结论;(3)延长AE、DC交于点H,由条件CG=BC可证CD=CG=CH,进一步用SAS证△ABE≌△HCE,得BE=CE,因为AF=BE,所以AF:BF=BE:CE=1:1.【题目详解】解:(1)证明:正方形ABCD中,AB=AD,∠ABE=∠DAF=90°,BE=AF,∴△ABE≌△DAF(SAS)∴AE=DF;(2)DG2,理由如下:如图,连接GP并延长至点Q,使PQ=PG,连接CQ,DQ,∵PM=PC,∠MPG=∠CPQ,∴△PMG≌△PCQ(SAS),∴CQ=MG=AG,∠PGM=∠PQC,∴CQ∥DF,∴∠DCQ=∠FDC=∠AFG,∵∠AFG+∠BAE=90°,∠DAG+∠BAE=90°,∴∠AFG=∠DAG.∴∠DAG=∠DCQ.又∵DA=DC,∴△DAG≌△DCQ(SAS).∴∠ADF=∠CDQ.∵∠ADC=90°,∴∠FDQ=90°.∴△GDQ为等腰直角三角形∵P为GQ的中点∴△DPG为等腰直角三角形.∴DG2DP.(3)1∶1.证明:延长AE、DC交于点H,∵CG=BC,BC=CD,∴CG=CD,∴∠1=∠2.∵∠1+∠H=90°,∠2+∠3=90°,∴∠3=∠H.∴CG=CH.∴CD=CG=CH.∵AB=CD,∴AB=CH.∵∠BAE=∠H,∠AEB=∠HEC,∴△ABE≌△HCE(SAS).∴BE=CE.∵AF=BE,∴AF:BF=BE:CE=1:1.【题目点拨】本题主要考查了正方形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质,其中第(1)小题是基础,第(2)(3)两小题探求结论的关键是添辅助线构造全等三角形,从解题过程看,熟练掌握正方形的性质和全等三角形的判定与性质是解题的关键.23、(1)见解析;(2)24yx=,见解析;(3)()241T xx=-,8x=,max21T=(元).【解题分析】(1)根据已知各点坐标进而在坐标系中描出即可;(2)利用各点坐标乘积不变进而得出函数解析式,再画图象;(3)利用利润=销量×(每件利润),进而得出答案.【题目详解】解:(1)如图:(2)因为各点坐标xy 乘积不变,猜想y 与x 为ky x=形式的反比例函数, 由题提供数据可知固定k 值为24, 所以函数表达式为:24y x=, 连线如图:(3)利润 = 销量 ×(每件利润), 利润为T ,销量为y ,由(2)知24y x=, 每件售价为1,则每件利润为x-1,所以()2424124T x x x=⋅-=-, 当x 最大时,24x最小,而此时T 最大,根据题意,钥匙扣售价不超过8元, 所以8x =时,max 21T =(元). 【题目点拨】此题主要考查了反比例函数的应用,正确利用反比例函数增减性得出函数最值是解题关键.24、(1)四边形AECF是平行四边形;理由见解析;(2)t=1;(3)t=13 6【解题分析】(1)由平行四边形的性质得出AB=CD=2cm,AB∥CD,由已知条件得出CF=AE,即可得出四边形AECF是平行四边形;(2)若四边形AECF是矩形,则∠AFC=90°,得出AF⊥CD,由平行四边形的面积得出AF=4cm,在Rt△ACF中,由勾股定理得出方程,解方程即可;(3)当AE=CE时,四边形AECF是菱形.过C作CG⊥BE于G,则CG=4cm,由勾股定理求出AG,得出GE,由勾股定理得出方程,解方程即可.【题目详解】解:(1)四边形AECF是平行四边形;理由如下:∵四边形ABCD是平行四边形,∴AB=CD=2cm,AB∥CD,∴CF∥AE,∵DF=BE,∴CF=AE,∴四边形AECF是平行四边形;故答案为:平行四边形;(2)t=1时,四边形AECF是矩形;理由如下:若四边形AECF是矩形,∴∠AFC=90°,∴AF⊥CD,∵S▱ABCD=CD•AF=8cm2,∴AF=4cm,在Rt△ACF中,AF2+CF2=AC2,即42+(t+2)2=52,解得:t=1,或t=-5(舍去),∴t=1;故答案为:1;(3)依题意得:AE平行且等于CF,∴四边形AECF是平行四边形,故AE=CE时,四边形AECF是菱形.又∵BE=tcm,∴AE=CE=t+2(cm ),过C 作CG ⊥BE 于G ,如图所示:则CG=4cm 2222=54AC CG --(cm ), ∴GE=t+2-3=t-1(cm ),在△CGE 中,由勾股定理得:CG 2+GE 2=CE 2=AE 2,即42+(t-1)2=(t+2)2,解得:t=136, 即t=136s 时,四边形AECF 是菱形. 【题目点拨】本题考查了平行四边形的性质与判定、菱形的判定、矩形的判定、勾股定理等知识;熟练掌握平行四边形的性质,由勾股定理得出方程是解决问题的关键.25、(1)12x =,22x =-;(2)11x =,23x =-.【解题分析】(1)根据直接开平方法即可求解;(2)根据因式分解法即可求解.【题目详解】解:(1)240x -=24x =,x=±2∴12x =,22x =-.(2)2230x x +-=(3)(1)0x x +-=,∴x+3=0或x-1=0∴11x=,23x=-.【题目点拨】此题主要考查解一元二次方程,解题的关键是熟知因式分解法的应用.26、(103+10)海里【解题分析】利用题意得到AC⊥PC,∠APC=60°,∠BPC=45°,AB=20海里,如图,设BC=x海里,则AC=AB+BC=(20+x)海里.解△PBC,得出PC=BC=x海里,解Rt△APC,得出AC=PC•tan60°=3x,根据AC不变列出方程3x=20+x,解方程即可.【题目详解】如图,AC⊥PC,∠APC=60°,∠BPC=45°,AB=20海里,设BC=x海里,则AC=AB+BC=(20+x)海里.在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴PC=BC=x海里,在Rt△APC中,∵tan∠APC=AC PC,∴AC=PC•tan60°=3x,∴3x=20+x,解得x=103+10,则PC=(103+10)海里.答:轮船航行途中与灯塔P的最短距离是(103+10)海里.【题目点拨】本题考查了解直角三角形的应用-方向角:在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.。
2020-2021学年甘肃省张掖市临泽县八年级(下)第二阶段质检数学试卷1.剪纸是潍坊特有的民间艺术,在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是()A. B. C. D.2.把多项式−4a3+4a2−16a分解因式得()A. −a(4a2−4a+16)B. a(−4a2+4a−16)C. −4(a3−a2+4a)D. −4a(a2−a+4)3.下列各式15(1−x),4xπ−3,x2−y22,1x+x,5x2x,其中分式共有()个.A. 2B. 3C. 4D. 54.关于x的方程xx−3=2+kx−3无解,则k的值为()A. ±3B. 3C. −3D. 无法确定5.如果a>b,那么下列各式中正确的是()A. a−3<b−3B. a3<b3C. −2a<−2bD. −a>−b6.使不等式4x+3<x+6成立的最大整数解是()A. −1B. 0C. 1D. 以上都不对7.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′//AB,则∠CAC′为()A. 30°B. 35°C. 40°D. 50°8.若解关于x的方程xx−5=3+m5−x有增根,则m的值为()A. −5B. 5C. −2D. 任意实数9.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A. 15B. 30C. 45D. 6010.如图,经过点B(−2,0)的直线y=kx+b与直线y=4x+2相交于点A(−1,−2),4x+2<kx+b<0的解集为()A. x<−2B. −2<x<−1C. x<−1D. x>−111.若直角三角形的一个锐角为50°,则另一个锐角的度数是______度.12.分解因式:ab2−2ab+a=______.13.若不等式(m−2)x>2的解集是x<2m−2,则m的取值范围是______ .14.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于______.15.不等式组{2x+13>x24x≤3x+2的解集是______ .16.化简x2+xx2−2x+1÷(2x−1−1x)的结果是______ .17.如图所示,已知△ABC的周长是20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是______ .18.如图,在直角坐标系中,直线y=−√3x+5√3分别与x轴、y轴交于点M、N,点A、B分别在y轴、x轴上,且∠B=60°,AB=2,将△ABO绕原点O顺时针转动一周,当AB与直线MN平行时点A的坐标为______ .19.(1)解不等式组,并将它的解集在数轴表示出来.{3x−2<2x①2(x−1)+3≥3x②;(2)解分式方程:x+1x−1−4x2−1=1.20.在实数范围内分解因式:(1)am2−6ma+9a;(2)9a4−4b4.21.化简:(1)x+3x2−9+1x−3;(2)(3xx−2−xx+2)⋅x2−4x.22.先化简,再求值:(1)x2−xx2−2x+1÷(1+2x−1),其中x=2.(2)(a+2a2−2a +84−a2)÷a2−4a,其中a满足方程a2+4a+1=0.23.某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元.如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时?24.如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A2B2C2.(2)求点C1在旋转过程中所经过的路径长.25.如图,在平面直角坐标系中,直线L1:y=−12x+6分别与x轴、y轴交于点B、C,且与直线L2:y=12x交于点A.(1)分别求出点A、B、C的坐标;(2)直接写出关于x的不等式−12x+6>12x的解集;(3)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式.答案和解析1.【答案】C【解析】解:A、此图形沿一条直线对折后不能够完全重合,旋转180°不能与原图形重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误;B、此图形沿一条直线对折后能够完全重合,旋转180°不能与原图形重合,∴此图形是轴对称图形,不是中心对称图形,故此选项错误.C、此图形沿一条直线对折后能够完全重合,旋转180°能与原图形重合,∴此图形是轴对称图形,是中心对称图形,故此选项正确;D、此图形沿一条直线对折后不能够完全重合,旋转180°能与原图形重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:C.根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键.2.【答案】D【解析】【分析】本题主要考查提公因式法分解因式,准确找出公因式是解题的关键,要注意符号的处理.根据公因式的定义,确定出公因式是−4a,然后提取公因式整理即可选取答案.【解答】解:−4a3+4a2−16a=−4a(a2−a+4).故选D.3.【答案】A【解析】解:1x +x,5x2x中的分母含有字母是分式.故选A.根据分式的定义对上式逐个进行判断,得出正确答案.本题主要考查分式的定义,π不是字母,4xπ−3不是分式.4.【答案】B【解析】【分析】本题考查了分式方程的解,注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,利用这一结论可知:分式方程无解,则有增根,求出增根,增根就是使分式方程分母为0的值,先将分式方程去分母转化为整式方程,由分式方程无解,得到x−3=0,即x=3,代入整式方程计算即可求出k的值.【解答】解:去分母得:x=2x−6+k,由分式方程无解,得到x−3=0,即x=3,把x=3代入整式方程得:3=2×3−6+k,k=3,故选B.5.【答案】C【解析】解:A、如果a>b,根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,a−3<b−3不成立;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,a3<b3不成立;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,所以−2a<−2b成立;D、−a<−b.故选:C.根据不等式的基本性质判断.不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.6.【答案】B【解析】解:∵4x−x<6−3,∴3x<3,∴x<1,则不等式的最大整数解为0,故选:B.移项、合并同类项、系数化为1得出不等式的解集,继而得出答案.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.【答案】A【解析】解:∵CC′//AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠CAC′=180°−2∠C′CA=30°.故选:A.旋转中心为点A,B与B′,C与C′分别是对应点,根据旋转的性质可知,旋转角∠BAB′=∠CAC′,AC=AC′,再利用平行线的性质得∠C′CA=∠CAB,把问题转化到等腰△ACC′中,根据内角和定理求∠CAC′.本题考查了旋转的基本性质,对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角为旋转角.同时考查了平行线的性质.8.【答案】A【解析】【分析】本题考查方程的增根,掌握方程增根的概念是解答本题的关键.增根是化为整式方程后产生的不适合分式方程的根,所以应先确定增根的可能值,让最简公分母(x−5)=0,得到x=5,然后代入化为整式方程的方程求出m的值.【解答】解:方程两边都乘(x−5),得x=3(x−5)−m,∵原方程有增根,∴最简公分母x−5=0,解得x=5,把x=5代入x=3(x−5)−m,得m=−5,故m的值是−5.故选A.9.【答案】B【解析】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=12AB⋅DE=12×15×4=30.故选:B.【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.10.【答案】B【解析】解:∵经过点B(−2,0)的直线y=kx+b与直线y=4x+2相交于点A(−1,−2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(−1,−2),直线y=kx+b与x轴的交点坐标为B(−2,0),又∵当x<−1时,4x+2<kx+b,当x>−2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为−2<x<−1.故选:B.由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(−1,−2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b 落在x轴下方的部分对应的x的取值即为所求.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.11.【答案】40【解析】【分析】本题利用直角三角形两锐角互余的性质,属于基础题.根据直角三角形两锐角互余解答.【解答】解:∵一个锐角为50°,∴另一个锐角的度数=90°−50°=40°.故答案为:40.12.【答案】a(b−1)2【解析】【分析】本题考查提公因式法分解因式和利用完全平方公式分解因式,难点在于提取公因式后利用完全平方公式进行二次因式分解.先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:ab2−2ab+a,=a(b2−2b+1),=a(b−1)2.13.【答案】m<2【解析】解:根据题意得m−2<0,∴m<2.故答案为m<2.因为系数化为1时不等号改变了方向,所以系数为负数,得到不等式求解.此题考查不等式的性质3:不等式两边都乘以(或除以)同一个负数时,不等号的方向发生改变.14.【答案】6cm【解析】【分析】根据线段垂直平分线的性质得到AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE= 3cm,根据含30度角的直角三角形性质求出即可.本题考查了垂直平分线性质,角平分线性质,等腰三角形性质,含30度角的直角三角形性质的应用,关键是求出∠A=30°和得出DE的长.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=3cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=6cm,故答案为6cm.15.【答案】−2<x≤2【解析】解:{2x+13>x2①4x≤3x+2②,解不等式①得:x>−2,解不等式②得:x≤2.则不等式组的解集是:−2<x≤2.故答案是:−2<x≤2.首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.16.【答案】x2x−1【解析】解:原式=x(x+1)(x−1)2÷2x−(x−1)x(x−1)=x(x+1)(x−1)2⋅x(x−1)x+1=x2x−1,故答案为:x2x−1.先算减法,再分子分母分解因式,同时把除法变成乘法,最后求出即可.本题考查了分式的混合运算,能熟记分式的运算法则是解此题的关键,注意运算顺序.17.【答案】30【解析】解:如图,连接OA,∵OB、OC分别平分∠ABC和∠ACB,∴点O到AB、AC、BC的距离都相等,∵△ABC的周长是20,OD⊥BC于D,且OD=3,∴S△ABC=12×20×3=30.故答案为:30.根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等,从而可得到△ABC的面积等于周长的一半乘以OD,然后列式进行计算即可求解.本题考查的是角平分线的性质,熟知角平分线上的点到角的两边的距离相等的性质及判断出三角形的面积与周长的关系是解题的关键.18.【答案】(−32,√32)或(32,−√32)【解析】解:当x=0时,y=−√3x+5√3=5√3,则N(0,5√3),当y=0时,−√3x+5√3=0,解得x=5,则M(5,0),在Rt△OMN中,∵tan∠NMO=5√35=√3,∴∠NMO=60°,在Rt△ABO中,∵∠B=60°,AB=2,∴∠OAB=30°,∴OB=1,OA=√3,∵AB与直线MN平行,∴直线AB与x轴的夹角为60°,如图1,直线AB交x轴于点C,作AH⊥x轴于H,则∠OCB= 60°,∵∠OCB=∠COA+∠A,∴∠COA=60°−30°=30°,在Rt△OAH中,AH=12OA=√32,OH=√3AH=32,∴A点坐标为(32,−√32);如图2,直线AB交x轴于点C,作AH⊥x轴于H,则∠OCB=60°,∵∠OCB=∠COA+∠A,∴∠COA=60°−30°=30°,在Rt△OAH中,AH=12OA=√32,OH=√3AH=32,∴A点坐标为(−32,√32);综上所述,A点坐标为(−32,√32)或(32,−√32).故答案为(−32,√32)或(32,−√32).先确定∠NMO=60°,再计算出OA=√3,然后利用AB与直线MN平行画出图形,直线AB 交x轴于点C,作AH⊥x轴于H,则∠OCB=60°,再利用含30度的直角三角形三边的关系求AH、OH,从而确定A点坐标.本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.解决本题的关键是正确画出旋转后的图形.19.【答案】解:(1)由①得:x<2,由②得:x≤1,∴不等式组的解集为x≤1;(2)去分母得:(x+1)2−4=x2−1,解得:x=1,检验:把x=1代入得:(x+1)(x−1)=0,∴x=1是增根,分式方程无解.【解析】(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分,表示在数轴上即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,在数轴上表示不等式的解集,以及解一元一次不等式组,熟练掌握各自的解法是解本题的关键.20.【答案】解:(1)原式=a(m2−6m+9)=a(m−3)2;(2)原式=(3a2+2b2)(3a2−2b2)=(3a2+2b2)[(√3a)2−(√2b)2]=(3a2+2b2)(√3a+√2b)(√3a−√2b).【解析】(1)先提取公因式,再套用完全平方公式;(2)利用平方差公式.本题主要考查了整式的因式分解,掌握完全平方公式、平方差公式是解决本题的关键.21.【答案】解:(1)原式=x+3(x+3)(x−3)+1x−3=1x−3+1x−3=2x−3;(2)原式=3xx−2⋅(x+2)(x−2)x−xx+2⋅(x+2)(x−2)x=3(x+2)−(x−2)=3x+6−x+2=2x+8.【解析】(1)先约分再加减比较简便;(2)先利用乘法的分配律,再算乘法,最后加减.本题考查了分式的混合运算,掌握分式的运算法则是解决本题的关键.22.【答案】解:(1)原式=x(x−1)(x−1)2÷x−1+2x−1=xx−1⋅x−1 x+1=xx+1,当x=2时,原式=23;(1)原式=[(a+2)2a(a+2)(a−2)−8aa(a+2)(a−2)]÷(a+2)(a−2)a=(a+2)2−8aa(a+2)(a−2)⋅a(a+2)(a−2)=(a−2)2a(a+2)(a−2)⋅a(a+2)(a−2)=1(a+2)2,=1a2+4a+4,∵a满足方程a2+4a+1=0,∴a2+4a=−1,则原式=13.【解析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程的解得到a的值,代入计算即可求出值.此题考查了分式的化简求值,以及一元二次方程的解,熟练掌握运算法则是解本题的关键.23.【答案】解:设甲厂每天处理垃圾x小时,×495≤7370,由题意得,550x+700−55x45550x+(700−55x)×11≤7370,50x+700−55x≤670,解得:x≥6,答:甲厂每天至少应处理垃圾6小时.【解析】设甲厂每天处理垃圾x小时,等量关系式为:甲厂处理生活垃圾的费用+乙厂处理生活垃圾的费用≤7370,把相关数值代入求解即可.本题考查一元一次不等式的应用,注意本题的不等关系为:处理生活垃圾的费用不超过7370元,得到乙厂每天处理垃圾的时间是解决本题的突破点.24.【答案】解:(1)①如图,△A1B1C1为所作;②如图,△A2B2C2为所作;=2π.(2)点C1在旋转过程中所经过的路径长=90⋅π⋅4180【解析】(1)①利用点平移的坐标规律,分别写出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A2、B2、C2即可;(2)根据弧长公式计算.本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.25.【答案】解:(1)直线L 1:y =−12x +6,当x =0时,y =6,当y =0时,x =12,则B(12,0),C(0,6),解方程组:{y =−12x +6y =12x 得:{x =6y =3, 则A(6,3),故A (6,3),B(12,0),C(0,6).(2)关于x 的不等式−12x +6>12x 的解集为:x <6;(3)设D(x,12x),∵△COD 的面积为12,∴12×6×x =12,解得:x =4,∴D(4,2),设直线CD 的函数表达式是y =kx +b ,把C(0,6),D(4,2)代入得:{6=b 2=4k +b, 解得:{k =−1b =6. ∴直线CD 的函数表达式为:y =−x +6.【解析】(1)两直线有公共点即可求得点A ,与x 、y 轴交点即为直线1与坐标轴的交点;(2)找到直线L 1:y =−12x +6在直线L 2:y =12x 上面的部分即为所求;(3)由题意三角形COD 的面积为12,并利用列出式子,求得点D 的横坐标,代入直线1求得点D 的纵坐标,现在有两点C ,D 即能求得直线CD .本题考查了一次函数与一元一次不等式,两直线相交即为求两直线方程组,解即为交点,直线与坐标轴的交点容易求得.同时考查了待定系数法求一次函数.。
张掖市八年级下学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2019·河池模拟) ﹣的倒数是()A . 7B . ﹣7C . ﹣D .2. (2分) (2019七上·琼中期末) 盈利2000元记作+2000元,那么亏损1500元记作()A . +500元B . ﹣500元C . +1500元D . ﹣1500元3. (2分) (2019八下·鄂伦春期末) 化简的结果是()A . 9B . -3C .D . 34. (2分) (2019八下·灌云月考) 反比例函数y= 的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为()A . 1B . ﹣1C . 2D . ﹣25. (2分) (2019八下·灌云月考) 绿化队原来用浸灌方式浇绿地,x天用水m吨,现在改用喷灌方式,可使这些水多用4天,那么现在比原来每天节约用水的吨数为()A .B .C .D .6. (2分) (2019八下·灌云月考) 用换元法解方程:=3时,若设,并将原方程化为关于y的整式方程,那么这个整式方程是()A . y2﹣3y+2=0B . y2﹣3y﹣2=0C . y2+3y+2=0D . y2+3y﹣2=07. (2分) (2017九下·泉港期中) 关于反比例函数y= 的图象,下列说法正确的是()A . 图象经过点(1,1)B . 两个分支分布在第二、四象限C . 两个分支关于x轴成轴对称D . 当x<0时,y随x的增大而减小8. (2分) (2019八下·灌云月考) 如图,若反比例函数的图象与直线y=3x+m相交于点A,B,结合图象求不等式的解集()A . 0<x<1B . ﹣1<x<0C . x<﹣1或0<x<1D . ﹣1<x<0或x>1二、填空题 (共8题;共12分)9. (1分)(2018·潮南模拟) 函数y=中自变量x的取值范围是________10. (1分)的相反数________;的倒数是________。
八年级数学(建议完成时间:120分钟 满分:120分)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1. 下列是二元一次方程的是( )A. B. C. D. 2. 下列实数中,是无理数的是( )A B. C. 3.14 D. 3. 如表是长沙市一中现代舞蹈社团20名成员的年龄分布统计表,数据不小心被撕掉一块,仍能够分析得出关于这20名成员年龄的统计量是( )年龄/岁15161718频数/名56A. 平均数 B. 方差 C. 中位数 D. 众数4. 已知二元一次方程组的解是,则*表示的方程可能是( )A B. C. D.5. 《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出元,多元;每人出元,少元,问有多少人?该物品价几何?设有人,物品价值元,则所列方程组正确的是( )A. B. C. D. 6. 小明调查了班里40名同学一周的体育锻炼情况,结果如图所示.该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )..3xy =21x y +=23x y +=215x -=12-1*x y +=⎧⎨⎩1x y a =-⎧⎨=⎩23x y -=-4x y +=234x y +=-3x y -=-8374x y 8374y xy x +=⎧⎨-=⎩8374x yx y+=⎧⎨-=⎩8374y x y x -=⎧⎨+=⎩8374x y x y-=⎧⎨+=⎩A. 16小时15小时B. 8小时、9小时C. 10小时、小时D. 8小时、小时7. 如图是由截面为同一种长方形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高,两块横放的墙砖比两块竖放的墙砖低,则每块墙砖的截面面积是( )A. B. C. D. 8. 已知一次函数(、为常数,)的图象经过点,,则下列说法不正确的是( )A. 图象不经过第三象限B. 随着的增大而减小C. 图象与轴交于D. 图象与轴交于二、填空题(共5小题,每小题3分,计15分)9. 若是关于,的二元一次方程的一个解,则的值为________.10. 七个同学定点投篮(每人投10个),投进的个数分别为6,10,5,2,4,8,4,这组数据的极差是______.11. 若一个数的平方根为,另一个数的立方根是,则这两个数的和是_______.12. 若一次函数和(为常数且)的图象相交于点,则关于,的方程组的解为________.13. 如果某个二元一次方程组的解中两个未知数的值互为相反数,我们称这个方程组为“和谐方程组”.若8.58.510cm 40cm 2600cm 21200cm 2525cm 2300cm y kx b =+k b 0k ≠()1,6-()1,2y x x ()2,0-y ()0,421x y =⎧⎨=-⎩x y 3x ay +=a 3±2-2y x =4y ax =+a 0a ≠(),2A m x y 24y x y ax =⎧⎨=+⎩关于x ,y 的方程组是“和谐方程组”,则a 的值为________.三、解答题(共13小题,计81分.解答应写出过程)14..15. 解方程组:16. 一组数据从小到大顺序排列后为:1,4,6,x ,其中位数和平均数相等,求x的值.17. 小明有一张长方形的纸片,纸片的长、宽分别为和.他想利用这张纸片裁出一张面积为的完整圆形纸片,他能够裁出想要的圆形纸片吗?请说明理由.(本题中取3.14)18. 某学校社团在进行项目化学习时,根据古代的沙漏模型(如图)制作了一套“沙漏计时装置”,该装置由沙漏和精密电子秤组成,精密电子秤上放置盛沙容器.沙子缓慢匀速地从沙漏孔漏到精密电子称上的容器内,可以通过读取精密电子秤的读数计算时间(假设沙子足够).实验小组通过观察,发现精密电子秤的读数y ()与漏沙时间t ()满足一次函数关系,下表中列出了t 与y 的几组对应值:漏沙时间t ()02468精密电子秤读数y()6(1)请你根据表格求出精密电子秤读数与漏沙时间之间的函数表达式:(2)若本次实验开始记录的时间是上午,那么当精密电子秤的读数为时,其所对应的时间是几点?19. 如图是一个滑梯示意图,若将滑梯水平放置,则刚好与一样长,已知滑梯的高度,,,求滑梯的水平距离的长.343x y a x y a +=+⎧⎨-=⎩523538x y x y +=⎧⎨-=⎩①②21cm 14cm 2157cm πSTEAM g h h g 18304254730:72g AC AB 3m CE =1m =BE CE AE ⊥AE20. 在平面直角坐标系中,给出如下定义:点M 到x 轴、y 轴的距离的较大值称为点M 的“长距”,点N 到x 轴、y 轴的距离相等时,称点N 为“完美点”.(1)若点是“完美点”求m 的值;(2)若点的“长距”为5,且点Q 在第三象限内,点D 的坐标为,试说明点D 是“完美点”.21. 如图,在中,为边上的一点,连接并延长,过点作交的延长线于点,若,,,.试说明为直角.22. 某图书馆管理员统计了人文类和历史类这两类图书最近5天的借阅情况,其中人文类图书近5天的借阅本数依次为35本、41本、35本、41本、38本,历史类图书近5天借阅本数的方差为2,请计算并说明,这两类图书中,哪一类图书近5天的借阅情况较稳定?23. 一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高和脚长之间近似存在一次函数关系,部分数据如下表:脚长...232425262728...身高 (156163170177184191)…(1)根据表中数据,求这个函数的表达式(不要求写出x 的取值范围);(2)若一个人脚长为,求这个人的身高.24. 如图,在四边形中,,,,,,求四边形的()21,1P m --()31,4Q n +-()5,12n --ABC V E AB CE A AD DC ⊥CE D 7AD =20AB =15BC =24DC =B ∠()cm y ()cm x ()cm x ()cm y 25.8cm ABCD 20AB =15AD =7CD =24BC =90A ∠=︒的面积.25. 4月23日是“世界读书日”,某中学对该校学生四月份课外阅读情况进行了随机问卷调查,共发放100份调查问卷,并全部收回,根据调查问卷,将课外阅读情况整理后,制成表格如下:月阅读课外书籍(本)12345被调查的学生数(人)205015510请你根据以上信息,解答下列问题:(1)求被调查的学生月平均阅读课外书籍数为多少本?(2)被调查的学生月阅读课外书籍数的中位数是多少本?(3)若该中学共有学生2000人,请估计四月份该校学生阅读课外书籍数为5本的有多少人?26. 在一次葡萄酒展会上,为方便送达相应客户,某葡萄酒商人决定租用40辆无人车运送A ,B ,C 三种葡萄酒共310箱,按计划,40辆无人车都要装运,每辆无人车只能装运同一种葡萄酒,且必须装满,根据如表提供的信息,解答下列问题:葡萄酒种类A B C 每辆无人车装载量(箱)689(1)如果装运C 种葡萄酒需16辆无人车,那么装运A ,B 两种葡萄酒各需多少辆无人车?(2)如果装运每种葡萄酒至少需要11辆无人车,那么无人车装运方案有哪几种?27. 如图,已知直线 与轴交于点,将直线沿轴向上平移7个单位得到直线分别交轴、轴于点,且点的坐标为,点为线段上一点,连接.的ABCD 1:l y x t =-+x A 1l y 22,l l x y B C 、C ()0,6P BC OP(1)求点和点的坐标;(2)是否存在点,使得将的面积分为的两部分?若存在,求出两点所在直线的函数表达式;若不存在,请说明理由.A B P OP OBC △1:2A P 、八年级数学 简要答案(建议完成时间:120分钟 满分:120分)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)【1题答案】【答案】C【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】C【8题答案】【答案】C二、填空题(共5小题,每小题3分,计15分)【9题答案】【答案】【10题答案】【答案】8【11题答案】【答案】1【12题答案】【答案】【13题答案】1-12x y =⎧⎨=⎩【答案】三、解答题(共13小题,计81分.解答应写出过程)【14题答案】【答案】【15题答案】【答案】【16题答案】【答案】x =9【17题答案】【答案】他不能够裁出来面积为的完整圆形纸片.理由略【18题答案】【答案】(1)(2)【19题答案】【答案】【20题答案】【答案】(1)或(2),理由略【21题答案】【答案】略【22题答案】【答案】历史类图书近5天的借阅情况较稳定【23题答案】【答案】(1)(2)【24题答案】【答案】【25题答案】是1-211x y =⎧⎨=-⎩2157cm 66y t =+18:304m1m =0m =75y x =-175.6cm234【答案】(1)本(2)2本 (3)估计四月份该校学生阅读课外书籍数为5本的有200人【26题答案】【答案】(1)装运A 种葡萄酒需13辆无人车,装运B 种葡萄酒需11辆无人车;(2)无人车的装运方案共有3种,方案1:用11辆无人车装运A 种葡萄酒,17辆无人车装运B 种葡萄酒,12辆无人车装运C 种葡萄酒;方案2:用12辆无人车装运A 种葡萄酒,14辆无人车装运B 种葡萄酒,14辆无人车装运C 种葡萄酒;方案3:用13辆无人车装运A 种葡萄酒,11辆无人车装运B 种葡萄酒,16辆无人车装运C 种葡萄酒.【27题答案】【答案】(1)(2)存在,或2.35()()1,0,6,0A B -4433y x =+2255y x =+。
2019-2020年八年级下学期第二次阶段性测试数学试题 (I)注意事项:1.本卷考试时间为100分钟,满分120分;2.卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.) 1.下列图形中,既是中心对称图形又是轴对称图形的是( )2.下列二次根式中属于最简二次根式的是( ) A .24B .36C .a bD .a +43.下面调查中,适合采用普查的是( )A .调查市场上某种白酒中塑化剂的含量B .调查鞋厂生产的鞋底能承受的弯折次数C .了解某火车的一节车厢内感染禽流感病毒的人数D .了解某城市居民收看江苏卫视的时间4.下列事件中,必然事件是( )A .抛掷1个均匀的骰子,出现6点向上B .实数的绝对值是正数C .两直线被第三条直线所截,同位角相等D .367人中至少有2人的生日相同 5.对于函数y =1x,下列说法错误的是 ( )A .它的图像分布在第一、三象限B .它的图像与直线y =-x 无交点C .当x <0时,y 的值随x 的增大而减小D .当x >0时,y 的值随x 的增大而增大 6.顺次连接四边形各边中点所得四边形是菱形,那么原四边形是( )A .对角线相等的四边形B .对角线互相垂直的四边形C .菱形D .矩形7.把分式 2x -y2x +y中的x 、y 都扩大到原来的4倍,则分式的值 ( )A .扩大到原来的8倍B .扩大到原来的4倍C .缩小到原来的14 D .不变8.若分式方程+1=有增根,则a的值是( ) A .4 B .0或4C .0D .0或﹣49.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x 个/分钟,则列方程正确的是( ) A .x x 1806120=+ B .x x 1806120=- C .6180120+=x x D .6180120-=x x10.如下图,点A 、B 在反比例函数(0,0)ky k x x=>>的图像上, 过点A 、B 作x 轴的垂线,垂足分别为,M N ,延长线段AB 交x 轴于点C , 若,2BNC OM MN NC S ∆===,则k 的值为( ) A . 4 B . 6 C . 8 D . 12二、填空题(本大题共有8小题,每小题3分,共24分.请把结果直接填在题中的横线上.)11.若分式211x x -+的值为0,则实数x 的值为_______.12.若5-x 在实数范围内有意义,则x 的取值范围是 .13.一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有个数。
2020年八年级数学下册期中模拟试卷二一、选择题(本题共10小题,每题3分,共30分)1.下列命题中正确的是( )A.有两条边相等的两个等腰三角形全等B两腰对应相等的两个等腰三角形全等 C.两角对应相等的两个等腰三角形全等D一边对应相等的两个等边三角形全等2.已知△ABC的三边长分别是6cm.8cm.10cm,则△ABC的面积是()A.24cm2B.30cm2C.40cm2D.48cm23.一个等腰三角形的顶角是40°,则它的底角是()A.40° B.50° C.60° D.70°4.下列几种图案中,既是中心对称图形又是轴对称图形的有()A.1个B.2个C.3个D.4个5.已知:在△ABC中,AB≠AC,求证:∠B≠∠C.若用反证法来证明这个结论,可以假设( )A.∠A=∠B B.AB=BC C.∠B=∠C D.∠A=∠C6.以下各组数为三角形的三条边长,其中能作成直角三角形的是( )A.2,3,4 B.4,5,6 C.1,,D.2,,47.不等式的解集是() A.B.C.D.8.下列不等式一定成立的是()A.5a>4aB.x+2<x+3C.-a>-2aD.9.不等式-3x+6>0的正整数解有()A.1个B.2个C.3个D.无数多个10.一架25 m长的梯子斜立在一竖直的墙上,这时梯足距离墙底端7 m,如果梯子的顶端沿墙下滑4 m,那么梯足将滑( )A.9 m B.15 m C.5 m D.8 m二、填空题(本题共11小题,每题3分,共33分)1.等腰三角形的一个角为50°,则顶角是度.2.如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为.3.如图已,在△ABC中,∠C=90°,D为BC上的一点,且DA=DB,DC=AC.则∠B=度.ED CBA(第3题图) (第4题图) (第2题图)4.如图,∠ACB=90°,CD⊥AB于点D,∠A=30,BD=1.5cm则AB=cm.5.在△ABC中,AB=AC,∠BAC=120°,延长BC到D,使CD=AC,则∠CDA =度.6.已知三角形的两边为3和4,则第三边a的取值范围是________.7.等边△ABC的周长为12cm,则它的面积为cm2.8.用不等式表示:x与5的差不大于x的2倍:;9.如图,ED为△ABC的AC边的垂直平分线,且AB=5,△BCE的周长为8,则BC= .10.已知如图AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF =.(第9题图) (第10题图)三、解答题(本大题共4小题,共37分)1.解下列不等式(组),并把它们的解集在数轴上表示出来:(16分)(1) 5x-6≤2(x+3) (2)(3)⎩⎨⎧+<-+-≤+)1(3157)2(23x x x x2.如下图,CD ⊥AD ,CB ⊥AB ,AB =AD ,求证:CD=CB .(6分)3.如图,已知AD 是△ABC 的角平分线,DE∥AB 交AC 于点E , 那么△ADE 是等腰三角形吗?请说明理由。
2020年甘肃省张掖市八年级第二学期期末教学质量检测数学试题一、选择题(每题只有一个答案正确)1.下列命题中,错误的是( ).A .矩形的对角线互相平分且相等B .对角线互相垂直的四边形是菱形C .正方形的对角线互相垂直平分D .等腰三角形底边上的中点到两腰的距离相等 2.如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为( )A .40°B .36°C .30°D .25°3.下列图形是中心对称图形,但不是轴对称图形的是( )A .B .C .D .4.下列由左边到右边的变形,属于因式分解的是( )A .()()2111x x x +-=-B .22121x x x x -+=-+()C .()22242x y x y -=- D .()22211x x x ++=+ 5.下列等式从左到右的变形,属于因式分解的是( )A .2221(1)x x x +-=-B .22()()a b a b a b +-=-C .2244(2)x x x ++=+D .1(1)1ax a a x -+=-+6.下列说法正确的是( )A .了解某型导弹杀伤力的情况应使用全面调查B .一组数据3、6、6、7、9的众数是6C .从2000名学生中选200名学生进行抽样调查,样本容量为2000D .甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S 2甲=0.3,S 2乙=0.4,A .x =B .x =1C .x 1=或 x 2=1D .x 1=且 x 2=18.下列长度的四根木棒,能与长度分别为2cm 和5cm 的木棒构成三角形的是( )A .3B .4C .7D .109.某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数是( ) 一周内累计的读书时间(小时) 5 8 10 14 人数(个)1 4 32 A .8 B .7 C .9D .10 10.关于一个四边形是不是正方形,有如下条件①对角线互相垂直且相等的平行四边形;②对角线互相垂直的矩形;③对角线相等的菱形;④对角线互相垂直平分且相等的四边形;以上条件,能判定正方形的是( )A .①②③B .②③④C .①③④D .①②③④ 二、填空题11.计算:(1+2)2×(1﹣2)2=_____.12.函数y=12-+1x x +中自变量x 的取值范围是______. 13.如图,ABCD 中,E 是BA 延长线上一点,AB AE =,连接CE 交AD 于点F ,若CF 平分BCD ∠,5AB =,则BC =________.14.若ABC ∆的三边长分别是6、8、10,则最长边上的中线长为______.15.如图,在四边形ABCD 中,AD ∥BC,且AD>BC,BC=6 cm,动点P,Q 分别从A,C 同时出发,P 以1 cm/s 的速度由A 向D 运动,Q 以2cm/s 的速度由C 向B 运动(Q 运动到B 时两点同时停止运动),则________后四边形ABQP 为平行四边形.16.方程x 4﹣16=0的根是_____.17.使分式41m -的值为整数的所有整数m 的和是________. 三、解答题 18.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x=0,可以通过因式分解把它转化为x(x 2+x-2)=0,解方程x=0和x 2+x-2=0,可得方程x 3+x 2-2x=0的解.(1)问题:方程x 3+x 2-2x=0的解是x 1=0,x 2= ,x 3= ;(2)拓展:用“转化”思想求方程23x x +=的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.19.(6分)如图,已知G 、H 是△ABC 的边AC 的三等分点,GE ∥BH ,交AB 于点E ,HF ∥BG 交BC 于点F ,延长EG 、FH 交于点D ,连接AD 、DC ,设AC 和BD 交于点O ,求证:四边形ABCD 是平行四边形.20.(6分)如图,在矩形ABCD 中,AB 2cm =,BC 4cm.=点P 从点D 出发向点A 运动,运动到点A 即停止;同时,点Q 从点B 出发向点C 运动,运动到点C 即停止,点P 、Q 的速度都是1cm/s ,连接PQ 、AQ 、CP.设点P 、Q 运动的时间为ts .()1当t 为何值时,四边形ABQP 是矩形;()2当t 为何值时,四边形AQCP 是菱形.21.(6分)如图,已知一次函数y=﹣12x+b 的图象过点A (0,3),点p 是该直线上的一个动点,过点P 分别作PM 垂直x 轴于点M ,PN 垂直y 轴于点N ,在四边形PMON 上分别截取:PC=13MP ,MB=13OM ,OE=13ON ,ND=13NP . (1)b= ;(2)求证:四边形BCDE 是平行四边形;(3)在直线y=﹣12x+b 上是否存在这样的点P ,使四边形BCDE 为正方形?若存在,请求出所有符合的点P 的坐标;若不存在,请说明理由.22.(8分)如图,BD 是平行四边形ABCD 的对角线,//AE CF ,分别交BD 于点,E F .求证:AE CF =.23.(8分)如图,正比例函数2y x =的图象与反比例函数(0)k y k x=≠的图象交于A ,B 两点,其中点B 的横坐标为1-.(1)求k 的值.(2)若点P 是x 轴上一点,且6ABP S ∆=,求点P 的坐标.24.(10分)(1)如图①所示,将ABC 绕顶点A 按逆时针方向旋转()090a a <<︒角,得到ADE ,90BAC DAE ∠=∠=︒,ED 分别与AC 、BC 交于点F 、G ,BC 与AD 相交于点H .求证:AH AF =; (2)如图②所示,ABC 和ADE 是全等的等腰直角三角形,90BAC D ∠=∠=︒,BC 与AD 、AE 分别交于点F 、G ,请说明BF ,FG ,GC 之间的数量关系.25.(10分)如图所示,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且FD BE =,连接CE ,CF .(1)求证:BCE DCF ∠=∠;(2)若点G 在AD 上,且45ECG ∠=︒,连接GE ,求证:GE BE DG =+.参考答案一、选择题(每题只有一个答案正确)1.B【解析】根据矩形,正方形的性质判断A,C,根据菱形的判定方法判断B,根据等腰三角形的性质判断D.【详解】解:A、矩形的对角线互相平分且相等,故正确;B、对角线互相垂直平分的四边形是菱形,故B错误;C、正方形的对角线互相垂直平分,正确;D、等腰三角形底边上的中点到两腰的距离相等,正确,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是能够了解矩形,正方形的性质,等腰三角形的性质,菱形的判定,掌握相关知识点是关键.2.B【解析】【分析】根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【详解】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,设∠B=α,则∠BDA=∠BAD=2α,又∵∠B+∠BAD+∠BDA=180°,∴α+2α+2α=180°,∴α=36°,即∠B=36°,故选:B.【点睛】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理和方程思想的应用.3.C【解析】【分析】根据中心对称图形与轴对称图形的定义即可判断.A.角是轴对称图形,不是中心对称图形,故错误;B不一定是轴对称图形,不是中心对称图形,故错误;C是中心对称图形,不是轴对称图形,故正确;D是轴对称图形,不是中心对称图形,故错误;故选C.【点睛】此题主要考查中心对称图形与轴对称图形的识别,解题的关键是熟知中心对称图形与轴对称图形的性质. 4.D【解析】【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解:A、右边不是积的形式,故本选项错误;B、右边不是积的形式,故本选项错误;C、x2-4y2=(x+2y)(x-2y),故本项错误;D、是因式分解,故本选项正确.故选:D.【点睛】此题考查因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.5.C【解析】【分析】根据因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解分别进行判断,即可得出答案.【详解】解:A、x2+2x-1≠(x-1)2,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、符合因式分解的定义,故本选项正确;D、右边不是整式积的形式,不是因式分解,故本选项错误.故选:C.本题考查多项式的因式分解,解题的关键是正确理解因式分解的意义.6.B【解析】【分析】直接利用方差的意义以及全面调查与抽样调查、众数的定义分别分析得出答案.【详解】解:A、了解某型导弹杀伤力的情况应使用抽样调查,故此选项错误;B、一组数据3、6、6、7、9的众数是6,正确;C、从2000名学生中选200名学生进行抽样调查,样本容量为200,故此选项错误;D、甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2甲=0.3,S2乙=0.4,则甲的成绩更稳定,故此选项错误;故选B.【点睛】此题主要考查了方差的意义以及全面调查与抽样调查、众数的定义,正确把握相关定义是解题关键.7.D【解析】【分析】先移项,再用因式分解法解一元二次方程即可.【详解】解:移项,得2x(x-1)-3(x-1)=0,于是(x-1) (2x-3)=0,∴x-1=0或2x-3=0,∴,.故选D.【点睛】本题考查了一元二次方程的解法,对本题而言,用分解因式法解一元二次方程要比其它方法简单,但要注意的是,两边切不可同时除以(x-1),得2x=3,从而造成方程丢根.8.B【解析】5-2=3,5+2=7,只有4在这两个数之间,故能构成三角形的只有B选项的木棒,故选B.点睛:本题主要考查三角形三边的关系,能正确地应用“两边之和大于第三边,两边之差小于第三边”是9.C【解析】试题分析:根据中位数的概念求解.∵共有10名同学,∴第5名和第6名同学的读书时间的平均数为中位数,则中位数为:=1.故选C .考点:中位数.10.D【解析】【分析】利用正方形的判定方法逐一分析判断得出答案即可.【详解】解:①对角线互相垂直且相等的平行四边形是正方形,故正确;②对角线互相垂直的矩形是正方形,故正确;③对角线相等的菱形是正方形,故正确;④对角线互相垂直平分且相等的四边形是正方形,故正确;故选:D .【点睛】本题主要考查正方形的判定方法,掌握正方形的判定方法是解题的关键.二、填空题11.1【解析】【分析】根据积的乘方法则及平方差公式计算即可.【详解】 原式=121-2⎡⎤⨯⎣⎦()() 2. = 21-2(). =1.故答案为1.【点睛】本题考查积的乘方及平方差公式,熟练掌握并灵活运用是解题关键.12.x ⩽2且x ≠−1.根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】由题意得,2−x⩾0且x+1≠0,解得x⩽2且x≠−1.故答案为:x⩽2且x≠−1.【点睛】此题考查函数自变量的取值范围,解题关键在于掌握各性质定义.13.1【解析】【分析】平行四边形的对边平行,AD∥BC,AB=AE,所以BC=2AF,根据CF平分∠BCD,可证明AE=AF,从而可求出结果.【详解】解:∵CF平分∠BCD,∴∠BCE=∠DCF,∵AD∥BC,∴∠BCE=∠DFC,∴∠BCE=∠EFA,∵BE∥CD,∴∠E=∠DCF,∴∠E=∠BCE,∵AD∥BC,∴∠BCE=∠EFA,∴∠E=∠EFA,∴AE=AF=AB=5,∵AB=AE,AF∥BC,∴△AEF∽△BEC,∴12 AE AFBE BC==,∴BC=2AF=1.故答案为:1.【点睛】本题考查平行四边形的性质和相似三角形的判定和性质,平行四边形的对边平行,以等腰三角形的判定和性质.14.1【解析】【分析】根据勾股定理的逆定理得到这个三角形是直角三角形,根据直角三角形斜边上中线的性质计算即可.【详解】解:2268100+=,100102=,2226810∴+=,∴这个三角形是直角三角形,斜边长为10,∴最长边上的中线长为1,故答案为:1.【点睛】本题考查的是直角三角形的性质、勾股定理的逆定理的应用,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.15.2s【解析】【分析】设运动时间为t 秒,则AP=t ,QC=2t ,根据四边形ABQP 是平行四边形,得AP=BQ ,则得方程t=6-2t 即可求解.【详解】如图,设t 秒后,四边形APQB 为平行四边形,则AP=t ,QC=2t ,BQ=6-2t ,∵AD ∥BC ,∴AP ∥BQ ,当AP=BQ 时,四边形ABQP 是平行四边形,∴t=6-2t ,当t=2时,AP=BQ=2<BC <AD ,符合.综上所述,2秒后四边形ABQP 是平行四边形.故答案为2s .【点睛】此题主要考查的是平行四边形的判定,熟练掌握平行四边形的判定方法是关键.16.±1【解析】【分析】根据平方根的定义,很容易求解,或者把方程左边因式分解,通过降次的方法也可以求解.【详解】∵x 4﹣16=0,∴(x 1+4)(x+1)(x ﹣1)=0,∴x =±1,∴方程x 4﹣16=0的根是x=±1,故答案为±1.【点睛】该题为高次方程,因此解决该题的关键,是需要把方程左边因式分解,从而达到降次的目的,把高次方程转化为低次方程,从而求解.17.1【解析】【分析】 由于分式41m -的值为整数,m 也是整数,则可知m-1是4的因数,据此来求解. 【详解】 解:∵分式41m -的值为整数, ∴1m -是4的因数,∴11m -=±,12m -=±,14m -=±,又∵m 为整数,10m -≠,∴m=5,3,2,0,-1,-3,则它们的和为:5+3+2+0+(-1)+(-3)=1,故答案为:1.本题考查了分式的值,要注意分母不能为0,且m 为整数.三、解答题18. (1)-2,1;(2)x=3;(3)4m.【解析】【分析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP 的长为xm ,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【详解】解:(1)3220x x x +-=,()220x x x +-=, ()()210x x x +-=所以0x =或20x +=或10x -=10x ∴=,22x =-,31x =;故答案为2-,1;(2)x =,方程的两边平方,得223x x +=即2230x x --=()()310x x -+=30x ∴-=或10x +=13x ∴=,21x =-,当1x =-11==≠-,所以1-不是原方程的解.x =的解是3x =;(3)因为四边形ABCD 是矩形,所以90A D ∠=∠=︒,3AB CD m ==设AP xm =,则()8PD x m =-因为10BP CP +=,BP =CP∴ 10=∴ 10=两边平方,得()22891009x x -+=-+整理,得49x =+两边平方并整理,得28160x x -+=即()240x -=所以4x =.经检验,4x =是方程的解.答:AP 的长为4m .【点睛】考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.19.证明见解析.【解析】分析:根据题意得出EG 、FH 分别是△ABH 和△CBG 的中位线,从而得出ED∥BH,FD∥BG,即四边形BHDG 是平行四边形,从而得出OB=OD ,OG=OH ,结合AG=CH 得出OA=OC ,从而根据对角线互相平分的四边形是平行四边形得出答案.详解:证明:∵G、H 是AC 的三等分点且GE∥BH,HF∥BG,∴AG=GH =HC ,EG 、FH 分别是△ABH 和△CBG 的中位线, ∴ED∥BH,FD∥BG,∴四边形BHDG 是平行四边形, ∴OB=OD ,OG =OH ,OA =OG +AG =OH +CH =OC ,∴四边形ABCD 是平行四边形.点睛:本题主要考查的是平行四边形的性质与判定,属于中等难度的题型.根据中位线的性质得出四边形BHDG 是平行四边形是解决这个问题的关键.20.()1当t 2s =时,四边形ABQP 为矩形;()2 当t 1.5s =时,四边形AQCP 为菱形.【解析】【分析】 ()1当四边形ABQP 是矩形时,BQ AP =,据此求得t 的值;()2当四边形AQCP 是菱形时,AQ AC =,列方程求得运动的时间t ;【详解】()1由已知可得,BQ DP t==,AP CQ4t==-在矩形ABCD中,B90∠=,AD//BC,当BQ AP=时,四边形ABQP为矩形,t4t∴=-,得t2=故当t2s=时,四边形ABQP为矩形.()2由()1可知,四边形AQCP为平行四边形∴当AQ CQ=时,四边形AQCP为菱形4t=-时,四边形AQCP为菱形,解得t 1.5=,故当t 1.5s=时,四边形AQCP为菱形.【点睛】本题考查了菱形、矩形的判定与性质.解决此题注意结合方程的思想解题.21.(1)1;(2)证明见解析;(1)在直线y=﹣12x+b上存在这样的点P,使四边形BCDE为正方形,P点坐标是(2,2)或(﹣6,6).【解析】分析:(1)根据待定系数法,可得b的值;(2)根据矩形的判定与性质,可得PM与ON,PN与OM的关系,根据PC=13MP,MB=13OM,OE=13ON,NO=13NP,可得PC与OE,CM与NE,BM与ND,OB与PD的关系,根据全等三角形的判定与性质,可得BE与CD,BC与DE的关系,根据平行四边形的判定,可得答案;(1)根据正方形的判定与性质,可得BE与BC的关系,∠CBM与∠EBO的关系,根据全等三角形的判定与性质,可得OE与BM的关系,可得P点坐标间的关系,可得答案.本题解析:(1)一次函数y=﹣12x+b的图象过点A(0,1),1=﹣12×0+b,解得b=1.故答案为:1;(2)证明:过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,∴∠M=∠N=∠O=90°,∴四边形PMON是矩形,∴PM=ON,OM=PN,∠M=∠O=∠N=∠P=90°.∵PC=13MP ,MB=13OM ,OE=13ON ,NO=13NP , ∴PC=OE,CM=NE ,ND=BM ,PD=OB ,在△OBE 和△PDC 中,OB PD O CPD OE PC =⎧⎪∠=∠⎨⎪=⎩,∴△OBE≌△PDC(SAS ),BE=DC .在△MBC 和△NDE 中,MB ND M N MC NE =⎧⎪∠=∠⎨⎪=⎩,∴△MBC≌△NDE(SAS ),DE=BC .∵BE=DC,DE=BC ,∴四边形BCDE 是平行四边形;(1)设P 点坐标(x ,y ),当△OBE≌△MCB 时,四边形BCDE 为正方形,OE=BM ,当点P 在第一象限时,即13y=13x ,x=y . P 点在直线上, 132y x y x⎧=+⎪⎨⎪=⎩, 解得22x y =⎧⎨=⎩, 当点P 在第二象限时,﹣x=y132y x y x⎧=+⎪⎨⎪=-⎩, 解得66x y =-⎧⎨=⎩在直线y=﹣12x+b 上存在这样的点P ,使四边形BCDE 为正方形,P 点坐标是(2,2)或(﹣6,6).点睛:本题考查了一次函数的综合题,利用了全等三角形的判定与性质,平行四边形的判定与性质,正方形的性质,注意数形结合.22.详见解析【解析】【分析】根据平行四边形的性质,证明ADE CBF ≅全等即可证明结论.【详解】 证明:四边形ABCD 是平行四边形,AD CB ∴=,//AD CB .ADE CBF ∴∠=∠.//AE CF .AED CFB ∴∠=∠.ADE CBF ∴≅.AE CF ∴=.【点睛】本题主要考查平行四边形的性质定理,关键在于寻找全等的三角形.23.(1)k=2;(2)P 点的坐标为(3,0)或(3,0)-.【解析】【分析】(1)把1x =-代入正比例函数2y x =的图象求得纵坐标,然后把B 的坐标代入反比例函数(0)k y k x=≠,即可求出k 的值;(2)因为A 、B 关于O 点对称,所以OA OB =,即可求得132AOP ABP S S ∆∆==,然后根据三角形面积公式列出关于m 的方程,解方程即可求得.【详解】解:(1)正比例函数2y x =的图象经过点B ,点B 的横坐标为1-.2(1)2y ∴=⨯-=-,∴点(1,2)B --, ∵反比例函数(0)k y k x=≠的图象经过点(1,2)B --, 1(2)2k ∴=-⨯-=;(2)OA OB =,132AOP ABP S S ∆∆∴==,设(,0)P m ,则1||232m ⨯=, ||3m ∴=,即3m =±,P ∴点的坐标为(3,0)或(3,0)-.【点睛】本题考查的是反比例函数的图象与一次函数图象的交点问题,三角形的面积等知识点,利用数形结合是解答此题的关键.24.(1)见解析;(1)FG 1=BF 1+GC 1.理由见解析【解析】【分析】(1)利用ASA 证明△EAF ≌△BAH ,再利用全等三角形的性质证明即可;(1)结论:FG 1=BF 1+GC 1.把△ABF 旋转至△ACP ,得△ABF ≌△ACP ,再利用三角形全等的知识证明∠ACP+∠ACB=90°,根据勾股定理进而可以证明BF 、FG 、GC 之间的关系.【详解】(1)证明:如图①中,∵AB=AC=AD=AE ,∠CAB=∠EAD=90°,∴∠EAF=∠BAH ,∠E=∠B=45°,∴△EAF ≌△BAH (ASA ),∴AH=AF ;(1)解:结论:GF 1=BF 1+GC 1.理由如下:如图②中,把△ABF 旋转至△ACP ,得△ABF ≌△ACP ,∵∠1=∠4,AF=AP ,CP=BF ,∠ACP=∠B ,∵∠DAE=45°∴∠1+∠3=45°,∴∠4+∠3=45°,∴∠1=∠4+∠3=45°,∵AG=AG ,AF=AP ,∴△AFG ≌△AGP (SAS ),∴FG=GP ,∵∠ACP+∠ACB=90°,∴∠PCG=90°,在Rt △PGC 中,∵GP 1=CG 1+CP 1,又∵BF=PC ,GP=FG ,∴FG 1=BF 1+GC 1.【点睛】本题考查旋转变换,等腰直角三角形的性质,全等三角形的判定和性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.25.(1)详见解析;(2)详见解析.【解析】【分析】(1)由正方形的性质得到BC CD =,90B ADC ︒∠=∠=,求得B CDF ∠=∠,根据全等三角形的判定和性质定理即可得到结论;(2)根据全等三角形的性质得到GE GF =,根据线段的和差即可得到结论.【详解】证明(1)在正方形ABCD 中,∵BC CD =,90B FDC ∠=∠=︒又∵BE FD =∴BCE DCF ∆≅∆∴BCE DCF ∠=∠(2)∵45ECG ∠=︒∴45DCG BCE ∠+∠=︒又∵BCE DCF ∠=∠∴45FCG DCG DCF ∠=∠+∠=︒在GCE ∆和△GCF ∆中∵CG CG = FCG GCE ∠=∠又由(1)知CF CE =∴GCE GCF ∆≅∆∴GE GF FD DG ==+=又∵BE FD=+∴GE BE DG【点睛】本题考查了正方形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.。
甘肃省张掖市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为( )A .5.3×103B .5.3×104C .5.3×107D .5.3×1082.如图,若△ABC 内接于半径为R 的⊙O ,且∠A =60°,连接OB 、OC ,则边BC 的长为( )A .2RB .32RC .22RD .3R3.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是( )A .y=(x ﹣2)2+1B .y=(x+2)2+1C .y=(x ﹣2)2﹣3D .y=(x+2)2﹣34.如图,经过测量,C 地在A 地北偏东46°方向上,同时C 地在B 地北偏西63°方向上,则∠C 的度数为( )A .99°B .109°C .119°D .129°5.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉( )A .6.5千克B .7.5千克C .8.5千克D .9.5千克6.要使式子2a +有意义,a 的取值范围是( ) A .0a ≠ B .且0a ≠ C .2a >-. 或0a ≠ D .2a ≥- 且0a ≠7.设x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两根,则x 12+x 22=( )A .6B .8C .10D .128.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.1(1)282x x-=B.1(1)282x x+=C.(1)28x x-=D.(1)28x x+=9.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0 B.3 C.﹣3 D.﹣710.实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是()A.﹣a<a<a2B.a<﹣a<a2C.﹣a<a2<a D.a<a2<﹣a11.如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧»AC的长是()A.12πB.13πC.23πD.43π12.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为()A.48°B.40°C.30°D.24°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知一次函数y=ax+b,且2a+b=1,则该一次函数图象必经过点_____.14.已知⊙O1、⊙O2的半径分别为2和5,圆心距为d,若⊙O1与⊙O2相交,那么d的取值范围是_________.15.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.16.若从-3,-1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组21x y bax y-=⎧⎨+=⎩有整数解,且点(a,b)落在双曲线3yx=-上的概率是_________.17.关于x的一元二次方程x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12﹣x1x2+x22的值是_____.18.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有_____个.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程21=122xx x---20.(6分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m³)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m³)与时间(天)的关系如图中线段l2所示(不考虑其他因素).(1)求原有蓄水量y1(万m³)与时间(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y万(万m³)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m³为严重干旱,直接写出发生严重干旱时x的范围.21.(6分)如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.(1)求证:△ADC∽△ACB;(2)CE与AD有怎样的位置关系?试说明理由;(3)若AD=4,AB=6,求ACAF的值.22.(8分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?23.(8分)先化简(31a+-a+1)÷2441a aa-++,并从0,-1,2中选一个合适的数作为a的值代入求值.24.(10分)问题提出(1).如图1,在四边形ABCD 中,AB=BC,AD=CD=3, ∠BAD=∠BCD=90°,∠ADC=60°,则四边形 ABCD 的面积为 _;问题探究(2).如图 2,在四边形 ABCD 中,∠BAD=∠BCD=90°,∠ABC=135°,AB=2 2,BC=3,在 AD 、CD 上分别找一点 E 、F , 使得△BEF 的周长最小,作出图像即可.25.(10分)如图,一次函数5y kx =+(k 为常数,且0k ≠)的图像与反比例函数8y x=-的图像交于()2,A b -,B 两点.求一次函数的表达式;若将直线AB 向下平移(0)m m >个单位长度后与反比例函数的图像有且只有一个公共点,求m 的值.26.(12分)已知:如图,在梯形ABCD 中,AB ∥CD ,∠D =90°,AD =CD =2,点E 在边AD 上(不与点A 、D 重合),∠CEB =45°,EB 与对角线AC 相交于点F ,设DE =x .(1)用含x 的代数式表示线段CF 的长;(2)如果把△CAE 的周长记作C △CAE ,△BAF 的周长记作C △BAF ,设CAE BAF C C ∆∆=y ,求y 关于x 的函数关系式,并写出它的定义域;(3)当∠ABE 的正切值是35时,求AB 的长.27.(12分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A :自带白开水;B :瓶装矿泉水;C :碳酸饮料;D :非碳酸饮料.根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:请你补全条形统计图;在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:5300万=53000000=7⨯.5.310故选C.【点睛】在把一个绝对值较大的数用科学记数法表示为10na⨯的形式时,我们要注意两点:①a必须满足:≤<;②n比原来的数的整数位数少1(也可以通过小数点移位来确定n).a1102.D【解析】【分析】延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=3R.【详解】解:延长BO交⊙O于D,连接CD,则∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=3R,故选D.【点睛】此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.3.C【解析】试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项考点:二次函数的顶点式、对称轴点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为4.B【解析】【分析】方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF的度数,∠ACF与∠BCF的和即为∠C的度数.【详解】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选B.【点睛】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.5.C【解析】【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可.【详解】设每个小箱子装洗衣粉x千克,由题意得:4x+2=36,解得:x=8.5,即每个小箱子装洗衣粉8.5千克,故选C.【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键. 6.D【解析】【分析】根据二次根式和分式有意义的条件计算即可.【详解】a2有意义,∴a+2≥0且a≠0,解得a≥-2且a≠0.故本题答案为:D.二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0.7.C【解析】试题分析:根据根与系数的关系得到x1+x2=2,x1•x2=﹣3,再变形x12+x22得到(x1+x2)2﹣2x1•x2,然后利用代入计算即可.解:∵一元二次方程x2﹣2x﹣3=0的两根是x1、x2,∴x1+x2=2,x1•x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1•x2=22﹣2×(﹣3)=1.故选C.8.A【解析】【分析】根据应用题的题目条件建立方程即可.【详解】解:由题可得:1(1)47 2x x-=⨯即:1(1)28 2x x-=故答案是:A.【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.9.B【解析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.【详解】∵一次函数y=﹣2x+3中k=﹣2<0,∴y随x的增大而减小,∴在0≤x≤5范围内,x=0时,函数值最大﹣2×0+3=3,故选B.【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y 随x的增大而减小.10.D【解析】根据实数a在数轴上的位置,判断a,﹣a,a2在数轴上的相对位置,根据数轴上右边的数大于左边的数进行判断.【详解】由数轴上的位置可得,a<0,-a>0, 0<a2<a,所以,a<a2<﹣a.故选D【点睛】本题考核知识点:考查了有理数的大小比较,解答本题的关键是根据数轴判断出a,﹣a,a2的位置. 11.C【解析】【分析】由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.【详解】∵AB是⊙O的切线,∴∠OAB=90°,∵半径OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧ACˆ的长是:602180π⨯=23π,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算. 12.D【解析】解:∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E.∵∠1=∠C+∠E,∴∠C=12∠1=12×48°=24°.故选D.点睛:本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(2,1)【解析】∵一次函数y=ax+b,∴当x=2,y=2a+b,又2a+b=1,∴当x=2,y=1,即该图象一定经过点(2,1).故答案为(2,1).14.3<d<7【解析】【分析】若两圆的半径分别为R和r,且R≥r,圆心距为d:相交,则R-r<d<R+r,从而得到圆心距O1O2的取值范围.【详解】∵⊙O1和⊙O2的半径分别为2和5,且两圆的位置关系为相交,∴圆心距O1O2的取值范围为5-2<d<2+5,即3<d<7.故答案为:3<d<7.【点睛】本题考查的知识点是圆与圆的位置关系,解题的关键是熟练的掌握圆与圆的位置关系.15.(a+1)1.【解析】【分析】原式提取公因式,计算即可得到结果.【详解】原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],=…,=(a+1)1.故答案是:(a+1)1.【点睛】考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.16.3 20【解析】分析:根据题意可以写出所有的可能性,然后将所有的可能性代入方程组21x y bax y-=⎧⎨+=⎩和双曲线3yx=-,找出符号要求的可能性,从而可以解答本题.详解:从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,则(a,b)的所有可能性是:(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、(﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、(0,﹣3)、(0,﹣1)、(0,1)、(0,3)、(1,﹣3)、(1,﹣1)、(1,0)、(1,3)、(3,﹣3)、(3,﹣1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x,y的二元一次方程组21x y bax y-=⎧⎨+=⎩有整数解,且点(a,b)落在双曲线3yx=-上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使关于x,y的二元一次方程组21x y bax y-=⎧⎨+=⎩有整数解,且点(a,b)落在双曲线3yx=-上的概率是:320.故答案为320.点睛:本题考查了列表法与树状图法,解题的关键是明确题意,写出所有的可能性.17.1【解析】【分析】根据根与系数的关系结合x1+x2=x1•x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值.【详解】∵x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,∴x1+x2=2k,x1•x2=k2﹣k,∵x12+x22=1,∴(x1+x2)2-2x1x2=1,(2k)2﹣2(k2﹣k)=1,2k2+2k﹣1=0,k2+k﹣2=0,k=﹣2或1,∵△=(﹣2k)2﹣1×1×(k2﹣k)≥0,k≥0,∴k=1,∴x1•x2=k2﹣k=0,∴x12﹣x1x2+x22=1﹣0=1,故答案为:1.【点睛】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式△≥0”是解题的关键.18.1.【解析】【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=1,故白球的个数为1个.故答案为:1.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.x=-1.【解析】【分析】【详解】解:方程两边同乘x-2,得2x=x-2+1解这个方程,得x= -1检验:x= -1时,x-2≠0∴原方程的解是x= -1首先去掉分母,观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解20.(1)y1=-20x+1200,800;(2)15≤x≤40.【解析】【分析】(1)根据图中的已知点用待定系数法求出一次函数解析式(2)设y 2=kx+b ,把(20,0)和(60,1000)代入求出解析式,在已知范围内求出解即可.【详解】解:(1)设y 1=kx+b ,把(0,1200)和(60,0)代入得1200600b k b =⎧⎨+=⎩解得201200k b =-⎧⎨=⎩,所以y 1=-20x+1200,当x=20时,y 1=-20×20+1200=800, (2)设y 2=kx+b ,把(20,0)和(60,1000)代入得200601000k b k b +=⎧⎨+=⎩则25500k b =⎧⎨=-⎩,所以y 2=25x-500,当0≤x≤20时,y=-20x+1200,当20<x≤60时,y=y 1+y 2=-20x+1200+25x-500=5x+700,由题意2012009005700900x x -+≤⎧⎨+≤⎩解得该不等式组的解集为15≤x≤40所以发生严重干旱时x 的范围为15≤x≤40.【点睛】此题重点考察学生对一次函数和一元一次不等式的实际应用能力,掌握一次函数和一元一次不等式的解法是解题的关键.21.(1)证明见解析;(2)CE ∥AD ,理由见解析;(3)74. 【解析】【分析】(1)根据角平分线的定义得到∠DAC=∠CAB ,根据相似三角形的判定定理证明;(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE ,根据等腰三角形的性质、平行线的判定定理证明;(3)根据相似三角形的性质列出比例式,计算即可.【详解】解:(1)∵AC 平分∠DAB ,∴∠DAC=∠CAB ,又∵AC 2=AB•AD ,∴AD :AC=AC :AB ,∴△ADC ∽△ACB ;(2)CE ∥AD ,理由:∵△ADC ∽△ACB ,∴∠ACB=∠ADC=90°,又∵E 为AB 的中点,∴∠EAC=∠ECA ,∵∠DAC=∠CAE ,∴∠DAC=∠ECA ,∴CE ∥AD ;(3)∵AD=4,AB=6,CE=12AB=AE=3, ∵CE ∥AD ,∴∠FCE=∠DAC ,∠CEF=∠ADF ,∴△CEF ∽△ADF , ∴CF AF =CE AD =34, ∴AC AF =74. 22. (1) 40%;(2) 2616.【解析】【分析】(1)设A 市投资“改水工程”的年平均增长率是x .根据:2008年,A 市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可.【详解】解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.解之,得0.4x =或 2.4x =-(不合题意,舍去).所以,A 市投资“改水工程”年平均增长率为40%.(2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元.23.1.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a a a a -++⨯+-=2(2)(2)11(2)a a a a a -+-+⨯+-=22a a +--; 当a=0时,原式=1.考点:分式的化简求值.24.(1)33,(2)见解析【解析】【分析】(1)易证△ABD≌△CBD,再利用含30°的直角三角形求出AB、BD的长,即可求出面积.(2)作点B关于AD的对称点B’,点B关于CD的对应点B’’,连接B’B’’,与AD、CD交于EF,△AEF即为所求.【详解】(1)∵AB=BC,AD=CD=3, ∠BAD=∠BCD=90°,∴△ABD≌△CBD(HL)∴∠ADB=∠CDB=12∠ADC=30°,∴AB=3∴S△ABD=1·2AB AD=33∴四边形ABCD的面积为2S△ABD=33(2)作点B关于AD的对称点B’,点B关于CD的对应点B’’,连接B’B’’,与AD、CD交于EF,△BEF 的周长为BE+EF+BF=B’E+EF+B’’F=B’B’’为最短.故此时△BEF的周长最小.【点睛】此题主要考查含30°的直角三角形与对称性的应用,解题的关键是根据题意作出相应的图形进行求解.25.(1)152y x=+;(2)1或9.【解析】试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k 、b 的值,即可得一次函数的解析式;(2)直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m ,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m 的值.试题解析:(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得2582b k b =-+⎧⎪⎨-=⎪-⎩, 解得412b k =⎧⎪⎨=⎪⎩, 所以一次函数的表达式为y =12x +5. (2)将直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m.由8152y x y x m ⎧=-⎪⎪⎨⎪=+-⎪⎩得, 12x 2+(5-m)x +8=0.Δ=(5-m)2-4×12×8=0, 解得m =1或9.点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.26.(1)CF=)244x +;(2)y=2x +(0<x <2);(3)AB=2.5. 【解析】【详解】试题分析:(1)根据等腰直角三角形的性质,求得∠DAC=∠ACD=45°,进而根据两角对应相等的两三角形相似,可得△CEF ∽△CAE ,然后根据相似三角形的性质和勾股定理可求解;(2)根据相似三角形的判定与性质,由三角形的周长比可求解;(3)由(2)中的相似三角形的对应边成比例,可求出AB 的关系,然后可由∠ABE 的正切值求解. 试题解析:(1)∵AD=CD .∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB ,∵∠ECA=∠ECA ,∴△CEF ∽△CAE ,∴CE CF CA CE =, 在Rt △CDE 中,根据勾股定理得,CE=24x + ,∵CA=22,∴224224x x +=+,∴CF=22(4)x +; (2)∵∠CFE=∠BFA ,∠CEB=∠CAB ,∴∠ECA=180°﹣∠CEB ﹣∠CFE=180°﹣∠CAB ﹣∠BFA ,∵∠ABF=180°﹣∠CAB ﹣∠AFB ,∴∠ECA=∠ABF ,∵∠CAE=∠ABF=45°,∴△CEA ∽△BFA ,∴22222(4)224CAE BFA C AE y C AF x x ====++-V V (0<x <2), (3)由(2)知,△CEA ∽△BFA ,∴AE AF AC AB=, ∴2222(4)22x AB -+=, ∴AB=x+2,∵∠ABE 的正切值是35, ∴tan ∠ABE=2325AE x AB x -==+, ∴x=12, ∴AB=x+2=52. 27.(1)详见解析;(2)72°;(3)【解析】【分析】(1)由B 类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C 类型人数,即可补全条形图;(2)用360°乘以C类别人数所占比例即可得;(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.【详解】解:(1)∵抽查的总人数为:(人)∴类人数为:(人)补全条形统计图如下:(2)“碳酸饮料”所在的扇形的圆心角度数为:(3)设男生为、,女生为、、,画树状图得:∴恰好抽到一男一女的情况共有12 种,分别是∴(恰好抽到一男一女).【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。
甘肃省张掖市2019-2020学年八年级第二学期期末质量跟踪监视数学试题一、选择题(每题只有一个答案正确)1.如图,若将图1正方形剪成四块,恰能拼成图2的矩形,设a1=,则b的值为()A.512+B.512-C.51+D.51-2.均匀地向一个容器注水,最后将容器注满.在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是()A.B.C.D.3.如图,ABC是等腰直角三角形,BC是斜边,将ABP绕点A逆时针旋转后,能与ACP'重合,如果3AP=,那么PP'的长等于()A.32B.23C.42D.334.如图,在矩形ABCD中,点E是AD中点,且AE2=,BE的垂直平分线MN恰好过点C,则矩形的一边AB的长度为( )A.2 B8C12D.45.无论k为何值时,直线y=k(x+3)+4都恒过平面内一个定点,这个定点的坐标为()A .(3,4)B .(3,﹣4)C .(﹣3,﹣4)D .(﹣3,4)6.如图,点1A ,的坐标为()1,0-,2A 在y 轴的正半轴,且1230A A O ∠=︒写过2A 作2312A A A A ⊥,垂足为2A ,交x 轴于点3A ,过3A 作3423A A A A ⊥,垂足为3A ,交y 轴于点4A ,过4A 作4534A A A A ⊥,垂足为4A ,交x 轴于点5A ,,按如此规律进行下去,则点2020A 的纵坐标为( )A .0B .()20193-C .()20193D .()20203-7.已知一元二次方程2x 2﹣5x+1=0的两根为x 1,x 2,下列结论正确的是( ) A .两根之和等于﹣52,两根之积等于1 B .x 1,x 2都是有理数 C .x 1,x 2为一正一负根 D .x 1,x 2都是正数8.已知一元二次方程x 2-2x-m=0有两个实数根,那么m 的取值范围是( ) A .B .C .D .9.已知一个正多边形的每个外角等于60,则这个正多边形是( ) A .正五边形B .正六边形C .正七边形D .正八边形10.下列成语所描述的事件为随机事件的是( ) A .守株待兔 B .水中捞月C .瓮中捉鳖D .拔苗助长二、填空题11.在平面直角坐标系中,将直线y=-2x+1的图象向左平移2个单位,再向上平移1个单位,所得到直线的解析式是__________。
甘肃省张掖市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积约为250000m2,则250000用科学记数法表示为( )A.25×104m2B.0.25×106m2C.2.5×105m2D.2.5×106m22.如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为()A.(3,3)B.(4,3)C.(﹣1,3)D.(3,4)3.某种微生物半径约为0.00000637米,该数字用科学记数法可表示为()A.0.637×10﹣5B.6.37×10﹣6C.63.7×10﹣7D.6.37×10﹣74.下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.5.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山6.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A.5个B.4个C.3个D.2个7.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A .80°B .90°C .100°D .102°8.如图,已知E ,F 分别为正方形ABCD 的边AB ,BC 的中点,AF 与DE 交于点M ,O 为BD 的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB ;③∠BMO=90°;④MD=2AM=4EM ;⑤23AM MF =.其中正确结论的是( )A .①③④B .②④⑤C .①③⑤D .①③④⑤9.若函数2m y x+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是( ) A .m >﹣2 B .m <﹣2 C .m >2D .m <210.估计8-1的值在( ) A .0到1之间B .1到2之间C .2到3之间D .3至4之间11.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 2 12.下列运算结果是无理数的是( ) A .32×2B .32⨯C .722÷D .22135-二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.比较大小:23_______3(填“>”或“<”或“=”)14.如图,已知圆锥的母线 SA 的长为 4,底面半径 OA 的长为 2,则圆锥的侧面积等于 .15.如图,点A 、B 、C 在圆O 上,弦AC 与半径OB 互相平分,那么∠AOC 度数为_____度.16.如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC 于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD 上运动时(不包括B、D两点),以下结论:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是2.其中正确的是________.(把你认为正确结论的序号都填上)17.函数1xy+=中,自变量x的取值范围是.18.如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣12PC的最大值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?20.(6分)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.21.(6分)(1)计算:﹣14+12sin61°+(12)﹣2﹣(π51.(2)解不等式组3(1)72513x xxx--≤⎧⎪⎨--⎪⎩p①②,并把它的解集在数轴上表示出来.22.(8分)某厂按用户的月需求量(件)完成一种产品的生产,其中.每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比.经市场调研发现,月需求量与月份(为整数,)符合关系式(为常数),且得到了表中的数据.月份(月) 1 2成本(万元/件) 11 12需求量(件/月) 120 100(1)求与满足的关系式,请说明一件产品的利润能否是12万元;(2)求,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第个月和第个月的利润相差最大,求.23.(8分)无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)的函数关系;(2)若该经营部希望日均获利1350元,那么销售单价是多少?24.(10分)为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).这次调查中,一共调查了________名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.25.(10分)先化简,再求值:,其中x=1.26.(12分)已知抛物线y=x2+bx+c(b,c是常数)与x轴相交于A,B两点(A在B的左侧),与y轴交于点C.(1)当A(﹣1,0),C(0,﹣3)时,求抛物线的解析式和顶点坐标;(2)P(m,t)为抛物线上的一个动点.①当点P关于原点的对称点P′落在直线BC上时,求m的值;②当点P关于原点的对称点P′落在第一象限内,P′A2取得最小值时,求m的值及这个最小值.27.(12分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.(1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是,推断的数学依据是.(2)如图②,在△ABC中,∠B=15°,AB=32,BC=8,AD为边BC的中线,求边BC的中垂距.(3)如图③,在矩形ABCD中,AB=6,AD=1.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求△ACF中边AF的中垂距.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.【详解】解:由科学记数法可知:250000 m2=2.5×105m2,故选C.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.2.B【解析】令x=0,y=6,∴B(0,6),∵等腰△OBC,∴点C在线段OB的垂直平分线上,∴设C(a,3),则C '(a-5,3),∴3=3(a-5)+6,解得a=4,∴C(4,3).故选B.点睛:掌握等腰三角形的性质、函数图像的平移.3.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.00000637的小数点向右移动6位得到6.37所以0.00000637用科学记数法表示为6.37×10﹣6,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.D【解析】分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.详解:A.是轴对称图形,也是中心对称图形,故此选项错误;B.不是轴对称图形,也不是中心对称图形,故此选项错误;C.不是轴对称图形,是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.5.A【解析】【分析】根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.【详解】由图可得,两个点之间距离最短的是三亚-永兴岛.故答案选A.【点睛】本题考查的知识点是两点之间直线距离最短,解题的关键是熟练的掌握两点之间直线距离最短.6.C【解析】矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.共3个既是轴对称图形又是中心对称图形.故选C.7.A【解析】分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°-∠1−∠A,代入求出即可.详解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°-∠1−∠A=80°,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°. 8.D 【解析】 【分析】根据正方形的性质可得AB=BC=AD ,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF ,然后利用“边角边”证明△ABF 和△DAE 全等,根据全等三角形对应角相等可得∠BAF=∠ADE ,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断①正确;根据中线的定义判断出∠ADE≠∠EDB ,然后求出∠BAF≠∠EDB ,判断出②错误;根据直角三角形的性质判断出△AED 、△MAD 、△MEA 三个三角形相似,利用相似三角形对应边成比例可得2AM MD ADEM AM AE===,然后求出MD=2AM=4EM ,判断出④正确,设正方形ABCD 的边长为2a ,利用勾股定理列式求出AF ,再根据相似三角形对应边成比例求出AM ,然后求出MF ,消掉a 即可得到AM=23MF ,判断出⑤正确;过点M 作MN ⊥AB 于N ,求出MN 、NB ,然后利用勾股定理列式求出BM ,过点M 作GH ∥AB ,过点O 作OK ⊥GH 于K ,然后求出OK 、MK ,再利用勾股定理列式求出MO ,根据正方形的性质求出BO ,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出③正确. 【详解】在正方形ABCD 中,AB=BC=AD ,∠ABC=∠BAD=90°, ∵E 、F 分别为边AB ,BC 的中点, ∴AE=BF=12BC , 在△ABF 和△DAE 中,AE BF ABC BAD AB AD ⎧⎪∠∠⎨⎪⎩=== , ∴△ABF ≌△DAE (SAS ), ∴∠BAF=∠ADE ,∵∠BAF+∠DAF=∠BAD=90°, ∴∠ADE+∠DAF=∠BAD=90°,∴∠AMD=180°-(∠ADE+∠DAF )=180°-90°=90°, ∴∠AME=180°-∠AMD=180°-90°=90°,故①正确; ∵DE 是△ABD 的中线, ∴∠ADE≠∠EDB ,∴∠BAF≠∠EDB ,故②错误; ∵∠BAD=90°,AM ⊥DE , ∴△AED ∽△MAD ∽△MEA ,∴2AM MD ADEM AM AE=== ∴AM=2EM,MD=2AM , ∴MD=2AM=4EM ,故④正确;设正方形ABCD 的边长为2a ,则BF=a , 在Rt △ABF 中,AF=()222225AB BF a a a +=+=∵∠BAF=∠MAE ,∠ABC=∠AME=90°, ∴△AME ∽△ABF , ∴AM AEAB AF= , 即25AM a a=, 解得AM=255a∴MF=AF-AM=25355=a aa -,∴AM=23MF ,故⑤正确; 如图,过点M 作MN ⊥AB 于N , 则MN AN AMBF AB AF== 即25525MN AN a a a== 解得MN=a 52,AN=45a ,∴NB=AB-AN=2a-45a =65a ,根据勾股定理,222262210555NB MN a a a ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭过点M 作GH ∥AB ,过点O 作OK ⊥GH 于K ,则OK=a-a 52=a 53,MK=65a -a=15a ,在Rt △MKO 中,5a ==根据正方形的性质,BO=2a×2=,∵BM 2+MO 2=222255a a a ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭)2222BO a ==∴BM 2+MO 2=BO 2,∴△BMO 是直角三角形,∠BMO=90°,故③正确; 综上所述,正确的结论有①③④⑤共4个. 故选:D 【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键. 9.B 【解析】 【分析】根据反比例函数的性质,可得m+1<0,从而得出m 的取值范围. 【详解】 ∵函数2m y x+=的图象在其象限内y 的值随x 值的增大而增大, ∴m+1<0, 解得m <-1. 故选B . 10.B 【解析】试题分析:∵23,∴1<2,在1到2之间, 故选B .考点:估算无理数的大小.11.A【解析】【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.【详解】解:A、(ab2)2=a2b4,故此选项正确;B、a2+a2=2a2,故此选项错误;C、a2•a3=a5,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:A.【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.12.B【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】A选项:原式=3×2=6,故A不是无理数;B,故B是无理数;C6,故C不是无理数;D=12,故D不是无理数故选B.【点睛】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.>.【解析】【分析】先利用估值的方法先得到,再进行比较即可.【详解】解:∵,3.4>3.∴故答案为:>.【点睛】本题考查了实数的比较大小,对.14.8π【解析】【分析】圆锥的侧面积就等于母线长乘底面周长的一半.依此公式计算即可.【详解】侧面积=4×4π÷2=8π.故答案为8π.【点睛】本题主要考查了圆锥的计算,正确理解圆锥的侧面积的计算可以转化为扇形的面积的计算,理解圆锥与展开图之间的关系.15.1.【解析】【分析】首先根据垂径定理得到OA=AB ,结合等边三角形的性质即可求出∠AOC 的度数.【详解】解:∵弦AC 与半径OB 互相平分,∴OA=AB ,∵OA=OC ,∴△OAB 是等边三角形,∴∠AOB=60°,∴∠AOC=1°,故答案为1.【点睛】本题主要考查了垂径定理的知识,解题的关键是证明△OAB 是等边三角形,此题难度不大.16.②③④【解析】【分析】①可用特殊值法证明,当P 为BD 的中点时,0MC =,可见MF MC ≠.②可连接PC ,交EF 于点O ,先根据SAS 证明ADP CDP ≅V V ,得到DAP DCP ∠=∠,根据矩形的性质可得DCP CFE ∠=∠,故DAP CFE ∠=∠,又因为90DAP AMD ∠+∠=︒,故90CFE AMD ∠+∠=︒,故AH EF ⊥.③先证明CPM HPC V :V ,得到PC PM HP PC=,再根据ADP CDP ≅V V ,得到AP PC =,代换可得. ④根据EF PC AP ==,可知当AP 取最小值时,EF 也取最小值,根据点到直线的距离也就是垂线段最短可得,当AP BD ⊥时,EF 取最小值,再通过计算可得.【详解】解:①错误.当P 为BD 的中点时,0MC =,可见MF MC ≠;②正确.如图,连接PC ,交EF 于点O ,Q 45AD CD ADP CDP DP DP =⎧⎪∠=∠=︒⎨⎪=⎩∴()ADP CDP SAS ≅V V∴DAP DCP ∠=∠,Q PF CD ⊥,PE BC ⊥,90BCD ∠=︒,∴四边形PECF 为矩形,∴OF OC =,∴DCP CFE ∠=∠,∴DAP CFE ∠=∠,Q 90DAP AMD ∠+∠=︒,∴90CFE AMD ∠+∠=︒,∴90FGM ∠=︒,∴AH EF ⊥.③正确.Q //AD BH ,∴H DAP ∠=∠,Q ADP CDP ≅V V ,∴DAP DCP ∠=∠,∴H DCP ∠=∠,又Q CPH MPC ∠=∠,∴CPM HPC V :V , ∴PC PM HP PC=, Q AP PC =, ∴AP PM HP AP=, ∴2AP PM PH =g .④正确.Q ()ADP CDP SAS ≅V V 且四边形PECF 为矩形,∴EF PC AP ==,∴当AP BD ⊥时,EF 取最小值,此时sin 4522AP AB =︒=⨯=g故EF .故答案为:②③④.【点睛】本题是动点问题,综合考查了矩形、正方形的性质,全等三角形与相似三角形的性质与判定,线段的最值问题等,合理作出辅助线,熟练掌握各个相关知识点是解答关键.17.x 1≥-且x 2≠.【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使2x -在实数范围内有意义,必须x+10x 1{{x 1x 20x 2≥≥-⇒⇒≥--≠≠且x 2≠.考点:1.函数自变量的取值范围;2.二次根式和分式有意义的条件.18.1【解析】分析: 由PD−12PC =PD−PG≤DG ,当点P 在DG 的延长线上时,PD−12PC 的值最大,最大值为DG =1. 详解: 在BC 上取一点G ,使得BG =1,如图,∵221PBBG==,422BCPB==,∴PB BC BG PB=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴12 PG BGPC PB==,∴PG=12 PC,当点P在DG的延长线上时,PD−12PC的值最大,最大值为DG2243+1.故答案为1点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得111x 1.5x12 +=,解得x=1.经检验,x=1是方程的解且符合题意.1.5 x=2.∴甲,乙两公司单独完成此项工程,各需1天,2天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:1×5000=100000(元);乙公司单独完成此项工程所需的施工费:2×(5000﹣1500)=105000(元);∴让一个公司单独完成这项工程,甲公司的施工费较少.【解析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.20.3【解析】试题分析:根据AB=30,BD=6,AD=8,利用勾股定理的逆定理求证△ABD 是直角三角形,再利用勾股定理求出CD 的长,然后利用三角形面积公式即可得出答案.试题解析:∵BD 3+AD 3=63+83=303=AB 3,∴△ABD 是直角三角形,∴AD ⊥BC ,在Rt △ACD 中,CD=222217815AC AD -=-=,∴S △ABC =12BC•AD=12(BD+CD)•AD=12×33×8=3, 因此△ABC 的面积为3.答:△ABC 的面积是3.考点:3.勾股定理的逆定理;3.勾股定理.21.(1)5;(2)﹣2≤x <﹣12. 【解析】【分析】(1)原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值以及二次根式的乘法计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算,然后根据实数的运算法则计算即可得到结果;(2)先求出两个不等式的解集,再找出解集的公共部分即可.【详解】(1)原式312341,=-+⨯+- 1341,=-++-=5;(2)解不等式①得,x≥﹣2,解不等式②得,12x <-,所以不等式组的解集是122x -≤<-.用数轴表示为:【点睛】本题考查了实数的混合运算,特殊角的三角函数值,负整数指数幂,零指数幂,不等式组的解法,是综合题,但难度不大,计算时要注意运算符号的处理以及解集公共部分的确定.22.(1),不可能;(2)不存在;(3)1或11.【解析】试题分析:(1)根据每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,结合表格,用待定系数法求y与x之间的函数关系式,再列方程求解,检验所得结果是还符合题意;(2)将表格中的n,对应的x值,代入到,求出k,根据某个月既无盈利也不亏损,得到一个关于n的一元二次方程,判断根的情况;(3)用含m的代数式表示出第m个月,第(m+1)个月的利润,再对它们的差的情况讨论.试题解析:(1)由题意设,由表中数据,得解得∴.由题意,若,则.∵x>0,∴.∴不可能.(2)将n=1,x=120代入,得120=2-2k+9k+27.解得k=13.将n=2,x=100代入也符合.∴k=13.由题意,得18=6+,求得x=50.∴50=,即.∵,∴方程无实数根.∴不存在.(3)第m个月的利润为w==;∴第(m+1)个月的利润为W′=.若W≥W′,W-W′=48(6-m),m取最小1,W-W′=240最大.若W<W′,W′-W=48(m-6),m+1≤12,m取最大11,W′-W=240最大.∴m=1或11.考点:待定系数法,一元二次方程根的判别式,二次函数的性质,二次函数的应用.23.(1)日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;(2)该经营部希望日均获利1350元,那么销售单价是9元.【解析】【分析】(1)设日均销售p(桶)与销售单价x(元)的函数关系为:p=kx+b(k≠0),把(7,500),(12,250)代入,得到关于k,b的方程组,解方程组即可;(2)设销售单价应定为x元,根据题意得,(x-5)•p-250=1350,由(1)得到p=-50x+850,于是有(x-5)•(-50x+850)-250=1350,然后整理,解方程得到x1=9,x2=13,满足7≤x≤12的x的值为所求;【详解】(1)设日均销售量p(桶)与销售单价x(元)的函数关系为p=kx+b,根据题意得7500{12250k bk b+=+=,解得k=﹣50,b=850,所以日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;(2)根据题意得一元二次方程(x﹣5)(﹣50x+850)﹣250=1350,解得x1=9,x2=13(不合题意,舍去),∵销售单价不得高于12元/桶,也不得低于7元/桶,∴x=13不合题意,答:若该经营部希望日均获利1350元,那么销售单价是9元.【点睛】本题考查了一元二次方程及一次函数的应用,解题的关键是通过题目和图象弄清题意,并列出方程或一次函数,用数学知识解决生活中的实际问题.24.(1)200;(2)答案见解析;(3)12.【解析】【分析】(1)由题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);(2)根据题意可求得B占的百分比为:1-20%-30%-15%=35%,C的人数为:200×30%=60(名);则可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案.【详解】解:(1)根据题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);故答案为:200;(2)C组人数:200-40-70-30=60(名)B组百分比:70÷200×100%=35%如图(3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;画树状图得:∵共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,∴一人是喜欢跳绳、一人是喜欢足球的学生的概率为:61 122.【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.25.【解析】【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先化简,然后再代入求值.【详解】解:原式=•﹣=﹣=﹣=,当x=1时,原式==.【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的运算法则.26.(1)抛物线的解析式为y=x3﹣3x﹣1,顶点坐标为(1,﹣4);(3)①m=3332±;②P′A3取得最小值时,m的值是2142-,这个最小值是154.【解析】【分析】(1)根据A(﹣1,3),C(3,﹣1)在抛物线y=x3+bx+c(b,c是常数)的图象上,可以求得b、c的值;(3)①根据题意可以得到点P′的坐标,再根据函数解析式可以求得点B的坐标,进而求得直线BC的解析式,再根据点P′落在直线BC上,从而可以求得m的值;②根据题意可以表示出P′A3,从而可以求得当P′A3取得最小值时,m的值及这个最小值.【详解】解:(1)∵抛物线y=x3+bx+c(b,c是常数)与x轴相交于A,B两点,与y轴交于点C,A(﹣1,3),C(3,﹣1),∴21103b cc⎧-+⨯-+=⎨=-⎩()(),解得:23bc=-⎧⎨=-⎩,∴该抛物线的解析式为y=x3﹣3x﹣1.∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴抛物线的顶点坐标为(1,﹣4);(3)①由P(m,t)在抛物线上可得:t=m3﹣3m﹣1.∵点P和P′关于原点对称,∴P′(﹣m,﹣t),当y=3时,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:点B(1,3).∵点B(1,3),点C(3,﹣1),设直线BC对应的函数解析式为:y=kx+d,303 k dd+=⎧⎨=-⎩,解得:13kd=⎧⎨=-⎩,∴直线BC的直线解析式为y=x﹣1.∵点P′落在直线BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=3332±;②由题意可知,点P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.∵二次函数的最小值是﹣4,∴﹣4≤t<3.∵点P(m,t)在抛物线上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,过点P′作P′H⊥x轴,H为垂足,有H (﹣m,3).又∵A(﹣1,3),则P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+12)3+154,∴当t=﹣12时,P′A3有最小值,此时P′A3=154,∴12-=m3﹣3m﹣1,解得:m=2142±.∵m<3,∴m=2142-,即P′A3取得最小值时,m的值是2142-,这个最小值是154.【点睛】本题是二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.27.(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等;(2)1;(3)9 5 .【解析】试题分析:(1)根据线段的垂直平分线的性质即可判断.(2)如图②中,作AE⊥BC于E.根据已知得出AE=BE,再求出BD的长,即可求出DE的长.(3)如图③中,作CH⊥AF于H,先证△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的长,然后证明△ADE∽△CHE,建立方程求出EH即可.解:(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等(2)解:如图②中,作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3 ,∴AE=BE=3,∵AD为BC边中线,BC=8,∴BD=DC=1,∴DE=BD﹣BE=1﹣3=1,∴边BC的中垂距为1(3)解:如图③中,作CH⊥AF于H.∵四边形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE≌△FCE,∴AE=EF,在Rt△ADE中,∵AD=1,DE=3,∴AE= =5,∵∠D=EHC,∠AED=∠CEH,∴△ADE∽△CHE,∴= ,∴= ,∴EH= ,∴△ACF中边AF的中垂距为。
甘肃省张掖市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知如图,△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( )A .315°B .270°C .180°D .135°2.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,﹣1),C (﹣2,﹣1),D (﹣1,1).以A 为对称中心作点P (0,2)的对称点P 1,以B 为对称中心作点P 1的对称点P 2,以C 为对称中心作点P 2的对称点P 3,以D 为对称中心作点P 3的对称点P 4,…,重复操作依次得到点P 1,P 2,…,则点P 2010的坐标是( )A .(2010,2)B .(2010,﹣2)C .(2012,﹣2)D .(0,2)3.一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为( ) A .2B .22C .23D .44.如图,在ABC ∆中,90, 4ACB AC BC ∠=︒== ,将ABC ∆折叠,使点A 落在BC 边上的点D 处, EF 为折痕,若3AE =,则sin CED ∠的值为( )A .13B .223C .24D .355.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是( )A .①B .②C .③D .④6.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 11B 11C 11D 11E 11F 11的边长为( )A .92432B .813C .82432D .8137.方程(2)0x x +=的根是( ) A .x=2B .x=0C .x 1=0,x 2=-2D . x 1=0,x 2=28.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是( ) 每周做家务的时间(小时) 0 1 2 3 4 人数(人) 22 311A .3,2.5B .1,2C .3,3D .2,29.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .84B .336C .510D .132610.下列计算正确的是( ) A .a 2+a 2=a 4B .a 5•a 2=a 7C .(a 2)3=a 5D .2a 2﹣a 2=211.如图,在△ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm/s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则△PBQ 的面积S 随出发时间t 的函数关系图象大致是( )A .B .C .D .12.定义运算“※”为:a ※b=()()2200ab b ab b ⎧>⎪⎨-≤⎪⎩,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.则函数y=2※x 的图象大致是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.二次函数y=x 2-2x+1的对称轴方程是x=_______.14.如图,六边形ABCDEF 的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.15.如图,已知ABC V ,D 、E 分别是边AB 、AC 上的点,且1.3AD AE AB AC ==设AB a u u ur r =,DE b u u u r r =,那么AC =u u u r ______.(用向量a r 、b r表示)16.化简:2222-2-2+1-121x x xx x x x-÷-+=_____.17.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC、BD,若S四边形ABCD=18,则BD的最小值为_________.18.如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F 处,联结FC,当△EFC是直角三角形时,那么BE的长为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?20.(6分)在△ABC中,∠A,∠B都是锐角,且sinA=12,tanB=3,AB=10,求△ABC的面积.21.(6分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.22.(8分)已知抛物线y=ax2+ c(a≠0).(2)若a>0,c =0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B 两点,求证:直线AB恒经过定点(0,1a );(3)若a>0,c <0,抛物线与x轴交于A,B两点(A在B左边),顶点为C,点P在抛物线上且位于第四象限.直线PA、PB与y轴分别交于M、N两点.当点P运动时,OCOM ON是否为定值?若是,试求出该定值;若不是,请说明理由.23.(8分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A 种树苗每棵80元,B种树苗每棵60元.若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.24.(10分)M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?25.(10分)图1 和图2 中,优弧»AB纸片所在⊙O 的半径为2,AB=23,点P为优弧»AB上一点(点P 不与A,B 重合),将图形沿BP 折叠,得到点 A 的对称点A′.发现:(1)点O 到弦AB 的距离是,当BP 经过点O 时,∠ABA′=;(2)当BA′与⊙O 相切时,如图2,求折痕的长.拓展:把上图中的优弧纸片沿直径MN 剪裁,得到半圆形纸片,点P(不与点M,N 重合)为半圆上一点,将圆形沿NP 折叠,分别得到点M,O 的对称点A′,O′,设∠MNP=α.(1)当α=15°时,过点A′作A′C∥MN,如图3,判断A′C 与半圆O 的位置关系,并说明理由;(2)如图4,当α=°时,NA′与半圆O 相切,当α=°时,点O′落在»NP上.26.(12分)如图①,AB是⊙O的直径,CD为弦,且AB⊥CD于E,点M为¼ACB上一动点(不包括A,B两点),射线AM与射线EC交于点F.(1)如图②,当F在EC的延长线上时,求证:∠AMD=∠FMC.(2)已知,BE=2,CD=1.①求⊙O的半径;②若△CMF为等腰三角形,求AM的长(结果保留根号).27.(12分)已知:如图,在正方形ABCD中,点E、F分别是AB、BC边的中点,AF与CE交点G,求证:AG=CG.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.【详解】如图,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°-∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选B.【点睛】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.2.B【解析】分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案.详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,又∵A的坐标是(1,1),结合中点坐标公式可得P1的坐标是(1,0);同理P1的坐标是(1,﹣1),记P1(a1,b1),其中a1=1,b1=﹣1.根据对称关系,依次可以求得:P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(4×1+a1,b1),∵1010=4×501+1,∴点P1010的坐标是(1010,﹣1),故选:B.点睛:本题考查了对称的性质,坐标与图形的变化---旋转,根据条件求出前边几个点的坐标,得到规律是解题关键.3.B【解析】【分析】圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解.【详解】解:∵圆内接正六边形的边长是1, ∴圆的半径为1. 那么直径为2.圆的内接正方形的对角线长为圆的直径,等于2. ∴圆的内接正方形的边长是12. 故选B . 【点睛】本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答. 4.B 【解析】 【分析】根据折叠的性质可知AE=DE=3,然后根据勾股定理求CD 的长,然后利用正弦公式进行计算即可. 【详解】解:由折叠性质可知:AE=DE=3 ∴CE=AC-AE=4-3=1在Rt △CED 中,CD=223122-=22sin 3CD CED DE ∠==故选:B 【点睛】本题考查折叠的性质,勾股定理解直角三角形及正弦的求法,掌握公式正确计算是本题的解题关键. 5.A 【解析】 【分析】根据题意得到原几何体的主视图,结合主视图选择. 【详解】解:原几何体的主视图是:.视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可. 故取走的正方体是①.【点睛】本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.6.A【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=3E1D1=3×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=32×2,同理可得正六边形A3B3C3D3E3F3的边长=(32)2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=(32)10×2,然后化简即可.详解:连接OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD231D132,∴正六边形A2B2C2D2E2F2的边长=32×2,同理可得正六边形A3B3C3D3E3F3的边长=(32)2×2,则正六边形A11B11C11D11E11F11的边长=310×2=92432.故选A.点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它7.C 【解析】试题解析:x (x+1)=0, ⇒x=0或x+1=0, 解得x 1=0,x 1=-1. 故选C . 8.D 【解析】试题解析:表中数据为从小到大排列.数据1小时出现了三次最多为众数;1处在第5位为中位数. 所以本题这组数据的中位数是1,众数是1. 故选D .考点:1.众数;1.中位数. 9.C 【解析】由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510, 故选:C .点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题. 10.B 【解析】 【分析】根据整式的加减乘除乘方运算法则逐一运算即可。
甘肃省张掖市2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价()元.A.3 B.2.5 C.2 D.52.如图,在平面直角坐标系xOy中,点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过()A.点M B.点N C.点P D.点Q3.如图是由四个相同的小正方体堆成的物体,它的正视图是()A.B.C.D.4.已知a为整数,且3<a<5,则a等于()A.1 B.2 C.3 D.45.如图,要使□ABCD成为矩形,需添加的条件是()A.AB=BC B.∠ABC=90°C.AC⊥BD D.∠1=∠26.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°7.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.8.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块9.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形10.下列大学的校徽图案是轴对称图形的是()A.B.C.D.11.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=12.如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧),则∠C 与∠D 的大小关系为( )A .∠C >∠DB .∠C <∠D C .∠C=∠D D .无法确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知点A (x 1, y 1)、B(x 2, y 2)在直线y=kx+b 上,且直线经过第一、二、四象限,当x 1<x 2时,y 1与y 2的大小关系为________.14.一个圆锥的母线长为5cm ,底面半径为1cm ,那么这个圆锥的侧面积为_____cm 1.15.计算:12×(﹣2)=___________. 16.若点(a ,b )在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________17.计算2211x x x ---的结果为_____. 18.据报道,截止2018年2月,我国在澳大利亚的留学生已经达到17.3万人,将17.3万用科学记数法表示为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系h =10t ﹣5t 1.小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t 在什么范围时,飞行高度不低于15m ?20.(6分)如图,抛物线2y a(x 1)4=-+与x 轴交于点A ,B ,与轴交于点C ,过点C 作CD ∥x 轴,交抛物线的对称轴于点D ,连结BD ,已知点A 坐标为(-1,0).求该抛物线的解析式;求梯形COBD 的面积.21.(6分)计算:3﹣1﹣cos61°﹣(121.22.(8分)P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把PA•PB的值称为点P关于⊙O的“幂值”(1)⊙O的半径为6,OP=1.①如图1,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为_____;②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙0的“幂值”的取值范围;(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围_____;(3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,若在直线y=3x+b上存在点P,使得点P 关于⊙C的“幂值”为6,请直接写出b的取值范围_____.23.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.24.(10分)如图,在△ABC中,∠C=90°,BC=4,AC=1.点P是斜边AB上一点,过点P作PM⊥AB 交边AC或BC于点M.又过点P作AC的平行线,与过点M的PM的垂线交于点N.设边AP=x,△PMN 与△ABC重合部分图形的周长为y.(1)AB=.(2)当点N在边BC上时,x=.(1)求y与x之间的函数关系式.(4)在点N位于BC上方的条件下,直接写出过点N与△ABC一个顶点的直线平分△ABC面积时x的值.25.(10分)如图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.以点O 为位似中心,在方格图中将△ABC 放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.26.(12分)(阅读)如图1,在等腰△ABC 中,AB=AC ,AC 边上的高为h ,M 是底边BC 上的任意一点,点M 到腰AB 、AC 的距离分别为h 1,h 1.连接AM .∵ABM ACM ABC S S S ∆∆∆+= ∴12111222h AB h AC hAC +=(思考)在上述问题中,h 1,h 1与h 的数量关系为: .(探究)如图1,当点M 在BC 延长线上时,h 1、h 1、h 之间有怎样的数量关系式?并说明理由. (应用)如图3,在平面直角坐标系中有两条直线l 1:334y x =+,l 1:y=-3x+3,若l 1上的一点M 到l 1的距离是1,请运用上述结论求出点M 的坐标.27.(12分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】设售价为x元时,每星期盈利为6125元,那么每件利润为(x-40),原来售价为每件60元时,每星期可卖出300件,所以现在可以卖出[300+20(60-x)]件,然后根据盈利为6120元即可列出方程解决问题.【详解】解:设售价为x元时,每星期盈利为6120元,由题意得(x-40)[300+20(60-x)]=6120,解得:x1=57,x2=1,由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x2=1.∴每件商品应降价60-57=3元.故选:A.【点睛】本题考查了一元二次方程的应用.此题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.2.C【解析】【分析】根据旋转的性质:对应点到旋转中心的距离相等,逐一判断即可.【详解】解:连接OA、OM、ON、OP,根据旋转的性质,点A的对应点到旋转中心的距离与OA的长度应相等根据网格线和勾股定理可得:OA=22345+=,ON=22+=,345+=,OM=22345OP=22+=,OQ=52425∵OA=OM=ON=OQ≠OP∴则点A不经过点P故选C.【点睛】此题考查的是旋转的性质和勾股定理,掌握旋转的性质:对应点到旋转中心的距离相等和用勾股定理求线段的长是解决此题的关键.3.A【解析】【分析】根据正视图是从物体的正面看得到的图形即可得.【详解】从正面看可得从左往右2列正方形的个数依次为2,1,如图所示:故选A.【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.4.B【解析】【分析】351,进而得出答案.【详解】∵a35∴a=1.故选:B.【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.5.B【解析】【分析】根据一个角是90度的平行四边形是矩形进行选择即可.【详解】解:A、是邻边相等,可判定平行四边形ABCD是菱形;B、是一内角等于90°,可判断平行四边形ABCD成为矩形;C、是对角线互相垂直,可判定平行四边形ABCD是菱形;D、是对角线平分对角,可判断平行四边形ABCD成为菱形;故选:B.【点睛】本题主要应用的知识点为:矩形的判定.①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.6.D【解析】题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7.D【解析】根据俯视图中每列正方形的个数,再画出从正面的,左面看得到的图形:几何体的左视图是:.故选D.8.C【解析】试题分析:根据题意设出未知数,列出相应的不等式,从而可以解答本题.设这批手表有x块,550×60+(x﹣60)×500>55000 解得,x>104 ∴这批电话手表至少有105块考点:一元一次不等式的应用9.C【解析】A 选项,∵在△ABC 中,点D 在BC 上,DE ∥AC ,DF ∥AB ,∴DE ∥AF ,DF ∥AE ,∴四边形AEDF 是平行四边形;即A 正确;B 选项,∵四边形AEDF 是平行四边形,∠BAC=90°,∴四边形AEDF 是矩形;即B 正确;C 选项,因为添加条件“AD 平分∠BAC”结合四边形AEDF 是平行四边形只能证明四边形AEDF 是菱形,而不能证明四边形AEDF 是矩形;所以C 错误;D 选项,因为由添加的条件“AB=AC ,AD ⊥BC”可证明AD 平分∠BAC ,从而可通过证∠EAD=∠CAD=∠EDA 证得AE=DE ,结合四边形AEDF 是平行四边形即可得到四边形AEDF 是菱形,所以D 正确.故选C.10.B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 11.C【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.12.A【解析】【分析】直接利用圆周角定理结合三角形的外角的性质即可得.【详解】连接BE,如图所示:∵∠ACB=∠AEB,∠AEB>∠D,∴∠C>∠D.故选:A.【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.y1>y1【解析】分析:直接利用一次函数的性质分析得出答案.详解:∵直线经过第一、二、四象限,∴y随x的增大而减小,∵x1<x1,∴y1与y1的大小关系为:y1>y1.故答案为:>.点睛:此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.14.10【解析】分析:根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.详解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=1π•5=10π,∴圆锥的侧面积=12•10π•1=10π(cm1).故答案为10π.点睛:本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R ,(l 为弧长). 15.-1【解析】【分析】根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论.【详解】 ()1212⨯-=-, 故答案为 1.-【点睛】本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键. 16.1【解析】【分析】根据题意,将点(a ,b )代入函数解析式即可求得2a-b 的值,变形即可求得所求式子的值.【详解】∵点(a ,b )在一次函数y=2x-1的图象上,∴b=2a-1,∴2a-b=1,∴4a-2b=6,∴4a-2b-1=6-1=1,故答案为:1.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答. 17.﹣2【解析】【分析】根据分式的运算法则即可得解.【详解】 原式=221x x --=2(1)1x x ---=2-, 故答案为:2-.【点睛】本题主要考查了同分母的分式减法,熟练掌握相关计算法则是解决本题的关键.18.1.73×1.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将17.3万用科学记数法表示为1.73×1.故答案为1.73×1.【点睛】本题考查了正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)小球飞行时间是1s时,小球最高为10m;(1) 1≤t≤3.【解析】【分析】(1)将函数解析式配方成顶点式可得最值;(1)画图象可得t的取值.【详解】(1)∵h=﹣5t1+10t=﹣5(t﹣1)1+10,∴当t=1时,h取得最大值10米;答:小球飞行时间是1s时,小球最高为10m;(1)如图,由题意得:15=10t﹣5t1,解得:t1=1,t1=3,由图象得:当1≤t≤3时,h≥15,则小球飞行时间1≤t≤3时,飞行高度不低于15m .【点睛】本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键.20.(1)2y (x 1)4=--+(2)()OCDA 133S 62+⨯==梯形 【解析】【分析】(1)将A 坐标代入抛物线解析式,求出a 的值,即可确定出解析式.(2)抛物线解析式令x=0求出y 的值,求出OC 的长,根据对称轴求出CD 的长,令y=0求出x 的值,确定出OB 的长,根据梯形面积公式即可求出梯形COBD 的面积.【详解】(1)将A (―1,0)代入2y a(x 1)4=-+中,得:0=4a+4,解得:a=-1.∴该抛物线解析式为2y (x 1)4=--+.(2)对于抛物线解析式,令x=0,得到y=2,即OC=2,∵抛物线2y (x 1)4=--+的对称轴为直线x=1,∴CD=1.∵A (-1,0),∴B (2,0),即OB=2.∴()OCDA 133S 62+⨯==梯形.21.【解析】【分析】利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可.【详解】解:原式=1121122--= 【点睛】本题考查了零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键.22.(1)①20;②当弦AB 的位置改变时,点P 关于⊙O 的“幂值”为定值,证明见解析;(2)点P 关于⊙O的“幂值”为r 2﹣d 2;(3)﹣.【解析】【详解】(1)①如图1所示:连接OA、OB、OP.由等腰三角形的三线合一的性质得到△PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;②过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′.先证明△APA′∽△B′PB,依据相似三角形的性质得到PA•PB=PA′•PB′从而得出结论;(2)连接OP、过点P作AB⊥OP,交圆O与A、B两点.由等腰三角形三线合一的性质可知AP=PB,然后在Rt△APO中,依据勾股定理可知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;(3)过点C作CP⊥AB,先求得OP的解析式,然后由直线AB和OP的解析式,得到点P的坐标,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程,从而可求得b的极值,据此即可确定出b的取值范围.【详解】(1)①如图1所示:连接OA、OB、OP,∵OA=OB,P为AB的中点,∴OP⊥AB,∵在△PBO中,由勾股定理得:PB=222-=-=25,OB OP64∴PA=PB=25,∴⊙O的“幂值”=25×25=20,故答案为:20;②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值,证明如下:如图,AB为⊙O中过点P的任意一条弦,且不与OP垂直,过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′,∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,∴△APA′∽△B′PB,∴PA PA PB PB='',∴PA•PB=PA′•PB′=20,∴当弦AB的位置改变时,点P关于⊙O的“幂值”为定值;(2)如图3所示;连接OP、过点P作AB⊥OP,交圆O与A、B两点,∵AO=OB,PO⊥AB,∴AP=PB,∴点P关于⊙O的“幂值”=AP•PB=PA2,在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,∴关于⊙O的“幂值”=r2﹣d2,故答案为:点P关于⊙O的“幂值”为r2﹣d2;(3)如图1所示:过点C作CP⊥AB,,∵CP⊥AB,AB的解析式为3,∴直线CP的解析式为y=33联立AB与CP,得333y x by x⎧=+⎪⎨=+⎪⎩,∴点P的坐标为(﹣34﹣34b,34+14b),∵点P关于⊙C的“幂值”为6,∴r2﹣d2=6,∴d2=3,即(﹣343)2+(314b)2=3,整理得:b 2+23b ﹣9=0, 解得b=﹣33或b=3,∴b 的取值范围是﹣33≤b≤3,故答案为:﹣33≤b≤3.【点睛】本题综合性质较强,考查了新定义题,解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b 的方程,从而求得b 的极值是解题的关键.23.13. 【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案.试题解析:解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为39=13.点睛:本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.24.(1)2;(2)4534;(1)详见解析;(4)满足条件的x 的值为45455943或. 【解析】【分析】(1)根据勾股定理可以直接求出(2)先证明四边形PAMN 是平行四边形,再根据三角函数值求解(1)分情况根据t 的大小求出不同的函数关系式(4)不同条件下:当点G 是AC 中点时和当点D 是AB 中点时,根据相似三角形的性质求解.【详解】解:(1)在Rt ABC V 中,2222AB AC BC 345+=+=,故答案为2.(2)如图1中,PA MN PN AM Q P P ,,∴四边形PAMN是平行四边形,5,cos3PAMN PA x AM PN xA∴=====当点N在BC上时,PN3sinPB5A==,53355xx=-4534x∴=.(1)①当4534t剟时,如图1,45|PM x,AM x33==45|433y PN MN PM x x x x∴=++=++=.②当459345t<<时,如图2,45444x EN EN EN4x EN,3335334x(5x)x3351544y x445y x EN NF EFEN PN PE=--+=--+=-=-=--=-∴=+y③当955t剟时,如图1,3412PM PM PM PM,5553PM(5x)49y x95y PM PE EM=++=++==-∴=+(4)如图4中,当点G是AC中点时,满足条件//5533524559PN AGPN BPAG BAx xx∴=-∴=∴=Q.如图2中,当点D是AB中点时,满足条件.//5 333454352MN ADMN CMAD CAxxx∴=-∴=∴=Q.综上所述,满足条件的x的值为4559或4543.【点睛】此题重点考查学生对一次函数的应用,勾股定理,平行四边形的判定,相似三角形的性质和三角函数值的综合应用能力,熟练掌握勾股定理和三角函数值的解法是解题的关键.25.(1)作图见解析;(2)作图见解析;5π(平方单位).【解析】【分析】(1)连接AO、BO、CO并延长到2AO、2BO、2CO长度找到各点的对应点,顺次连接即可.(2)△A′B′C′的A′、C′绕点B′顺时针旋转90°得到对应点,顺次连接即可.A′B′在旋转过程中扫过的图形面积是一个扇形,根据扇形的面积公式计算即可.【详解】解:(1)见图中△A′B′C′(2)见图中△A″B′C″扇形的面积()22901242053604Sπππ=+=⋅=(平方单位).【点睛】本题主要考查了位似图形及旋转变换作图的方法及扇形的面积公式.26.【思考】h1+h1=h;【探究】h1-h1=h.理由见解析;【应用】所求点M的坐标为(13,1)或(-13,4).【解析】【分析】 思考:根据等腰三角形的性质,把代数式12111222h AB h AC hAC +=化简可得12h h h +=. 探究:当点M 在BC 延长线上时,连接AM ,可得ABM ACM ABC S S S ∆∆∆-=,化简可得12h h h -=.应用:先证明AB AC =,△ABC 为等腰三角形,即可运用上面得到的性质,再分点M 在BC 边上和在CB 延长线上两种情况讨论,第一种有1+My=OB ,第二种为M y -1=OB ,解得M 的纵坐标,再分别代入2l 的解析式即可求解.【详解】思考Q ABM ACM ABC S S S ∆∆∆+= 即12111222h AB h AC hAC += Q AB AC =∴h 1+h 1=h .探究h 1-h 1=h .理由.连接AM ,∵ABM ACM ABC S S S ∆∆∆-= ∴12111222h AB h AC hAC -= ∴h 1-h 1=h .应用 在334y x =+中,令x=0得y=3; 令y=0得x=-4,则:A (-4,0),B (0,3)同理求得C (1,0),5AB =,又因为AC=5,所以AB=AC ,即△ABC 为等腰三角形.①当点M 在BC 边上时,由h 1+h 1=h 得:1+My=OB ,My=3-1=1,把它代入y=-3x+3中求得:13x M =, ∴1,23M ⎛⎫ ⎪⎝⎭;②当点M 在CB 延长线上时,由h 1-h 1=h 得:M y -1=OB ,M y =3+1=4,把它代入y=-3x+3中求得: 13x M =-, ∴1,43M ⎛⎫- ⎪⎝⎭, 综上,所求点M 的坐标为1,23⎛⎫ ⎪⎝⎭或1,43⎛⎫- ⎪⎝⎭.【点睛】本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.27. (1)1000;(2)54°;(3)见解析;(4)32万人【解析】【分析】根据“每项人数=总人数×该项所占百分比”,“所占角度=360度×该项所占百分比”来列出式子,即可解出答案.【详解】解:(1)400÷40%=1000(人)(2)360°×1501000=54°, 故答案为:1000人; 54°; (3)1-10%-9%-26%-40%=15%15%×1000=150(人)(4)80×6601000=52.8(万人)答:总人数为52.8万人.【点睛】本题考查获取图表信息的能力,能够根据图表找到必要条件是解题关键.。
甘肃省张掖市2020年中考数学二模试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2020·天水) 下列图形中,是中心对称图形但不是轴对称图形的是()A .B .C .D .2. (2分)下列计算正确的是()A .B .C .D .3. (2分)(2016·海宁模拟) 初步测算,2015年海宁市全年实现地区生产总值700.23亿元,比上年增长6.7%.其中700.23亿用科学记数法表示为()A . 700.23×108B . 70.023×109C . 7.0023×1010D . 7.0023×1094. (2分) (2019八下·杭州期中) 下列判定正确的是()A . 是最简二次根式B . 方程不是一元二次方程C . 已知甲、乙两组数据的平均数分别是,,方差分别是,,则甲组数据的波动较小D . 若与都有意义,则的值为55. (2分)下列函数中,自变量的取值范围是的是()A .B .C .D .6. (2分)如图所示,菱形ABCD的周长为20 cm,DE⊥AB,垂足为E,sinA= ,则下列结论错误的是()A . DE=3 cmB . BE=1 cmC . 菱形的面积为15 cm2D . BD=27. (2分)下列说法中正确的是()A . 轴对称图形只有一条对称轴B . 两个三角形关于某直线对称,不一定全等C . 两个全等三角形一定成轴对称D . 直线MN垂直平分线段AB,则直线MN是线段AB的对称轴8. (2分)一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A . 45%×(1+80%)x﹣x=50B . 80%×(1+45%)x﹣x=50C . x﹣80%×(1+45%)x=50D . 80%×(1﹣45%)x﹣x=509. (2分)一次函数y=﹣x+1的图象不经过的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. (2分)(2018·新乡模拟) 抛物线y=(x﹣1)2+3的顶点坐标是()A . (1,3)B . (﹣1,3)C . (﹣1,﹣3)D . (1,﹣3)11. (2分)(2017·丰台模拟) 如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A . 7.2 cmB . 5.4 cmC . 3.6 cmD . 0.6 cm12. (2分)(2019·广西模拟) 如图,P是边长为2的正三角形内任意一点,过P点分别作三边的垂线,垂足分别为D,E,F,则PD+PE+PF的值为()A .B .C . 2D . 2二、填空题 (共4题;共4分)13. (1分) (2017·江都模拟) 已知a、b是方程x2﹣x﹣3=0的两个根,则代数式a3﹣a2+3b﹣2的值为________.14. (1分) (2015九上·柘城期末) 若关于x的方程 = ﹣1无解,则a=________15. (1分)(2019·大连模拟) 在平面直角坐标系xOy中,A(1,1),B(3,1),双曲线y=与线段AB 有公共点,则k的取值范围是________.16. (1分) (2018九上·鄞州期中) 如图所示,两根竖直的电线杆AB长为6,CD长为3,AD交BC于点E,则点E到地面的距离EF的长是 ________ 。
甘肃省张掖市甘州区甘州中学2019-2020学年八年级下学期第二次阶段测试数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 下列图形中,既是轴对称图形又是中心对称图形的是()
A.B.
C.D.
2. 已知一个等腰三角形一内角的度数为,则这个等腰三角形顶角的度数为
A.B.C.或D.或
3. 适合条件∠A=∠B=∠C的三角形一定是()
A.锐角三角形;B.钝角三角形;C.直角三角形;D.任意三角形.
4. 如图,在? ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为()
A.5 B.4 C.3 D.2
5. 平行四边形的边长为5,则它的对角线长可能是( )
A.4和6 B.2和12 C.4和8 D.4和3
6. 下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是( )
A.上方B.右方C.下方D.左方
7. ?ABCD中,∠A=55°,则∠B,∠C的度数分别是()
A.135°,55°B.55°,135°C.125°,55°D.55°,125°
8. 如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一直线上,则三角板ABC旋转的度数是()
A.60°B.90°C.120°D.150°
9. 下列说法不正确的是()
A.平行四边形对边平行B.两组对边平行的四边形是平行四边形
C.平行四边形对角相等D.两组邻角互补的四边形是平行四边形
10. 如图,E,F是四边形ABCD的对角线BD上的两点,AE∥CF,AB∥CD,BE=DF,则下列结论:
①AE=CF,②AD=BC,③AD∥BC,④∠BCF=∠DAE,
其中正确的个数为()
A.1个B.2个C.3个D.4个
二、填空题
11. 已知:等腰三角形的两边长分别为 6cm,3cm,则此等腰三角形的周长是_____cm.
12. 既是轴对称图形,又是中心对称图形的四边形是______.
13. 如图,在中,与的平分线相交于点O,过点O作
,分别交AB、AC于点M、若的周长为15,,则
的周长为______.
14. 如图,中,于D,要使,若根据“”判定,还需要加条件__________
15. 如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点
D,AC的垂直平分线交BC于点E,则∠DAE=______.
16. 如图,△A′B′C′是由△ABC沿射线AC方向平移得到的.已知∠A=
55°,∠B=60°,则∠C′=________.
17. 如图,AC是?ABCD的对角线,点E、F在AC上,要使四边形BFDE是平行四边形,还需要增加的一个条件是_____(只要填写一种情
况).
18. 如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC 于D,且OD=3,△ABC的面积是_____.
19. 直角三角形两边长为4和5,则第三边长为____________.
20. 下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确的命题是_________________(将命题的序号填上即可)
三、解答题
21. 如图,三角形ABO中,A(﹣2,﹣3)、B(2,﹣1),三角形A′B′O′是三角形ABO平移之后得到的图形,并且O的对应点O′的坐标为(4,3).
(1)求三角形ABO的面积;
(2)作出三角形ABO平移之后的图形三角形A′B′O′,并写出A′、B′两点的坐标分别为A′、B′;
(3)P(x,y)为三角形ABO中任意一点,则平移后对应点P′的坐标
为.
22. 某地有两所大学和两条相交叉的公路,如图所示(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,
到两条公路的距离也相等.你能确定仓库应该建在什么位置吗?在所给的图形中
画出你的设计方案;
23. 一个多边形的外角和等于内角和的,求这个多边形的边数.
24. 如图,在?ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.
求证:∠CBE=∠BAD.
25. 如图,在△ABC中,点D在BC上,CD=CA,CF平分∠ACB,AE=EB,求证:EF=BD
26. 如图已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、A.求证:
(1)∠ECD=∠EDC;
(2)OE是CD的垂直平分线.
27. 已知:如图,等腰三角形ABC中,AC=BC,∠ACB=90°,直线l经过点C (点A、B都在直线l的同侧),AD⊥l,BE⊥l,垂足分别为D、E.求证:
△ADC≌△CEB.
28. 已知,如图,在?ABCD中,延长AB到点E,延长CD到点F,使得BE=DF,连接EF,分别交BC,AD于点M,N,连接AM,CN.
(1)求证:△BEM≌△DFN;
(2)求证:四边形AMCN是平行四边形.
29. 如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,
∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.
(1)求证:△OCD是等边三角形.
(2)当α=150°时,试判断△AOD的形状(按角分类),并说明理由.(3)求∠OAD的度数.
(4)探究:当α=时,△AOD是等腰三角形.(不必说明理由)。