第6章 输电线路的三段式电流保护原理
- 格式:pdf
- 大小:417.57 KB
- 文档页数:33
三段式电流保护原理电路中的电流保护是非常重要的,它可以避免电路中的电流过载或短路而导致的设备损坏或人身安全问题。
在电力系统中,电流保护更是必不可少的,因为电力系统中的电流非常大,一旦发生故障,后果将不堪设想。
为了保护电力系统中的设备和人员安全,电力系统中采用了三段式电流保护原理。
三段式电流保护原理是指将电流保护分为三段,每一段都有自己的保护方法和保护措施,以确保电路的稳定和安全运行。
下面将详细介绍三段式电流保护原理的具体内容。
第一段电流保护:瞬时电流保护瞬时电流保护是指在电路中,当电流超过设定值时,立即进行保护。
这种保护方式主要是通过电流互感器和电流保护器来实现的。
电流互感器是一种用于测量电流的传感器,它可以将电路中的电流转换为与之成正比的电压信号,然后将这个信号输入到电流保护器中进行处理。
电流保护器根据设定的电流阈值进行比较,如果电流超过设定值,就会触发保护动作,以避免电路中的电流过载或短路。
第二段电流保护:时间电流保护时间电流保护是指在电路中,当电流超过设定值并持续一定时间时,进行保护。
这种保护方式主要是通过时间电流继电器来实现的。
时间电流继电器是一种用于测量电流和时间的继电器,它可以根据设定的电流和时间阈值进行比较,如果电流超过设定值并持续一定时间,就会触发保护动作,以避免电路中的电流过载或短路。
第三段电流保护:差动电流保护差动电流保护是指在电路中,通过比较电路两端的电流差异来进行保护。
这种保护方式主要是通过差动电流继电器来实现的。
差动电流继电器可以测量电路两端的电流,并将它们进行比较,如果电流差异超过设定值,就会触发保护动作,以避免电路中的电流过载或短路。
综上所述,三段式电流保护原理是一种非常有效的电流保护方法,它可以确保电路的稳定和安全运行。
在电力系统中,三段式电流保护原理是必不可少的,因为它可以避免电力系统中的电流过载或短路而导致的设备损坏或人身安全问题。
因此,我们应该认真学习和掌握三段式电流保护原理,以确保电路的安全和可靠运行。
三段式电流保护的基本原理
三段式电流保护是一种常见的电气保护方式,它主要是通过分段设置不同的电流阈值,来实现对电路中电流异常的快速检测和切断。
其基本原理如下:
第一段:过载保护
在正常工作情况下,电路中的电流应该是在一定范围内波动的。
当电路中出现过载情况时,即负载电流超过额定电流时,第一段过载保护会立即启动。
该保护器通常设置一个较低的触发阈值,当检测到负载电流超过该阈值时,就会切断电路。
第二段:短路保护
当电路中出现短路故障时,即两个或多个导体直接相连而产生大量短暂高峰电流时,第二段短路保护会启动。
该保护器通常设置一个较高的触发阈值,当检测到负载电流超过该阈值时,就会迅速切断故障部分的供电。
第三段:接地故障保护
在某些特殊情况下,如果设备或线路出现接地故障,则可能会导致漏
电和火灾等严重后果。
第三段接地故障保护会检测电路中的接地电流,一旦检测到异常的接地电流,就会立即切断电路。
该保护器通常设置
一个较低的触发阈值,以确保快速、准确地检测到接地故障。
综上所述,三段式电流保护是一种基于不同电流阈值的分段式保护方式,通过对过载、短路和接地故障等异常情况进行快速检测和切断,
来确保电气设备和线路的安全运行。
输电线路相间短路的三段式电流保护第⼀章输电线路相间短路的三段式电流保护第⼀节瞬时电流速断保护⼀、短路电流的分析计算瞬时电流速断保护(⼜称第I 段电流保护)它是反映电流升⾼,不带时限动作的⼀种电流保护。
1.短路电流计算在单侧电源辐射形电⽹各线路的始端装设有瞬时电流速断保护。
当系统电源电势⼀定,线路上任⼀点发⽣短路故障时,短路电流的⼤⼩与短路点⾄电源之间的电抗忽略电阻)及短路类型有关,三相短路和两相短路时,流过保护安装地点的短路电流为:lX X E I S S k 1)3(+= lX X E I S S k 1)2(23+= 2、运⾏⽅式与短路电流的关系当系统运⾏⽅式改变或故障类型变化时,即使是同⼀点短路,短路电流的⼤⼩也会发⽣变化。
在继电保护装置的整定计算中,⼀般考虑两种极端的运⾏⽅式,即最⼤运⾏⽅式和最⼩运⾏⽅式。
(1)最⼤运⾏⽅式——流过保护安装处的短路电流最⼤时的运⾏⽅式称为最⼤运⾏⽅式,此时系统的阻抗Xs 为最⼩;(2)最⼩运⾏⽅式——当流过保护安装处的短路电流最⼩的运⾏⽅式称为系统最⼩运⾏⽅式,此时系统阻抗Xs 最⼤。
图3- 1中曲线1表⽰最⼤运⾏⽅式下三相短路电流随J 的变化曲线。
曲线2表⽰最⼩运⾏⽅式下两相短路电流随J 的变化曲线。
⼆、动作电流的整定计算1、动作电流假定在线路L1和线路L2上分别装设瞬时电流速断保护。
根据选择性的要求,瞬时电流速断保护的动作范围不能超出被保护线路,故保护1瞬时电流速断保护的动作电流可按⼤于本线路末端短路时流过保护安装处的最⼤短路电流来整定,即max .1kB rel I op I I K I =1op I I ——保护装置1瞬时电流速断保护的动作电流,⼜称⼀次动作电流rel I K ——可靠系数,考虑到继电器的整定误差、短路电流计算误差和⾮周期分量的影响等⽽引⼈的⼤于1的系数,⼀般取1.2~1.3;I k1.max ——被保护线路末端B 母线上三相短路时流过保护安装处的最⼤短路电流,⼀般取次暂态短路电流周期分量的有效值.2、保护范围分析在图1中,以动作电流画⼀平⾏于横坐标的直线3,其与曲线1和曲线2分别相交于M 和N 两点,在交点到保护安装处的⼀段线路上发⽣短路故障时,I k >I I op1保护1会动作。
三段式电流保护的工作原理
三段式电流保护是一种常见的电路保护机制,通常用于保护电路免受过载和短路等故障的影响。
其工作原理可以分为三个阶段:预警、限流和断路。
第一阶段:预警
当电路中出现过载或短路故障时,电流会迅速增大,超过额定值。
在这种情况下,三段式电流保护会进入预警阶段。
此时,保护器会检测到异常的电流,并发出一个警告信号。
这个信号可以触发其他设备或系统,以便及时采取措施来避免更严重的损害。
第二阶段:限流
如果故障没有被及时处理并消除,在预警阶段后,三段式电流保护将进入限流阶段。
在这个阶段中,保护器会自动降低电路中的电压和功率,并限制通过电路的最大电流。
这样可以减少额定负载以下的负荷并避免进一步损坏设备。
第三阶段:断路
如果故障没有被及时处理并消除,在限流阶段后,三段式电流保护将进入断路阶段。
在这个阶段中,保护器会切断电路,以避免电流继续流动并造成更大的损害。
此时,需要手动复位保护器才能恢复电路的正常运行。
总之,三段式电流保护是一种有效的电路保护机制,可以在故障发生时及时采取措施来避免设备受到严重损害。
其工作原理包括预警、限流和断路三个阶段,每个阶段都有不同的功能和作用,以确保电路的安全和可靠性。
实验一线路三段式电流保护一、传统电磁型继电器三段式电流保护(1)实验目的1.掌握无时限电流速断保护、带时限电流速断保护及过电流保护的电路原理、工作特性及整定原则。
2.理解输电线路阶段式电流保护的原理图、展开图及保护装置中各继电器的功用。
(2)实验原理1.阶段式电流保护的构成无时限电流速断只能保护线路的一部分,带时限电流速断只能保护本线路全长,但却不能作为下一线路的后备保护,还必须采用过电流保护作为本线路和下一线路的后备保护。
由无时限电流速断、带时限电流速断与定时限过电流保护相配合可构成的一整套输电线路阶段式电流保护,叫做三段式电流保护。
输电线路并不一定都要装三段式电流保护,有时只装其中的两段就可以了。
例如用于“线路-变压器组”保护时,无时限电流速断保护按保护全线路考虑后,此时,可不装设带时限电流速断保护,只装设无时限电流速断和过电流保护装置。
又如在很短的线路上,装设无时限电流速断往往其保护区。
图1 三段式电流保护各段的保护范围及时限配合很短,甚至没有保护区,这时就只需装设带时限电流速断和过电流保护装置,叫做二段式电流保护。
在只有一个电源的辐射式单侧电源供电线路上,三段式电流保护装置各段的保护范围和时限特性见图2.11-1。
XL-1线路保护的第Ⅰ段为无时限电流速断保护,它的保护范围为线路XL-1的前一部分即线路首端,动作时限为t1I,它由继电器的固有动作时间决定。
第Ⅱ段为带时限电流速断保护,它的保护范围为线路XL-1的全部并延伸至线路XL-2的一部分,其动作时限为t1II = t2I+△t。
无时限电流速断和带时限电流速断是线路XL-1的主保护。
第Ⅲ段为定时限过电流保护,保护范围包括XL-1及XL-2全部,其动作时限为t1III,它是按照阶梯原则来选择的,即t1III=t2III+△t ,t2III为线路XL-2的过电流保护的动作时限。
当线路XL-2短路而XL-2的保护拒动或断路器拒动时,线路XL-1的过电流保护可起后备作用使断路器1跳闸而切除故障,这种后备作用称远后备。
三段式零序保护原理三段式零序保护是变电站保护系统中的重要部分,主要用于保护三相电网中的设备不受零序故障的影响。
该保护方案将零序电流的保护分为三段进行,以提高零序保护的可靠性和精度。
本文将对三段式零序保护的原理、应用和特点进行详细介绍。
一、三段式零序保护的原理。
1.第一段:基础保护。
第一段即是基础保护,主要是通过对变电站和配电系统中的接地电阻进行监测,当检测到电阻值超过设定值时,则说明电网中存在零序故障,此时保护系统会发出报警信号或进行自动断电,以避免设备损坏和人员伤亡。
2.第二段:可靠保护。
第二段即是可靠保护,主要是通过对三相电流和零序电流进行比较,确定零序电流是否超过设定值,以判断电网中是否存在零序故障。
当零序电流超过设定阈值时,保护系统会自动进行断电或发出报警信号,以确保设备的安全运行。
3.第三段:灵敏保护。
第三段即是灵敏保护,主要是针对在前两段监测无法检测到的小电流故障,对电网的零序电流进行高精度的测量和分析,以检测出较小的零序故障,可以有效地提高保护系统的精度和可靠性。
二、三段式零序保护的应用。
三段式零序保护主要应用于变电站和配电系统中,可以保护电力系统中的各种设备,如变压器、电容器、电机等,以提高电力系统的稳定性和可靠性。
同时,该保护方案还可以避免人员伤亡和设备损坏,对电网的安全运行具有重大的意义。
三、三段式零序保护的特点。
1.可靠性高。
2.灵活性强。
3.技术含量高。
总之,三段式零序保护是现代电力系统中的重要组成部分,通过对电网的零序电流进行监测和分析,可以有效地避免各种故障发生,保护电网设备的安全稳定运行,有着重要的实用意义。
三段式电流保护的工作原理介绍三段式电流保护是一种常用于电力系统中的保护装置,用于检测和保护电路免受过载、短路和地故障等异常电流的影响。
本文将详细探讨三段式电流保护的工作原理。
电流保护的意义电流保护在电力系统中非常重要,它能够实时监测电路中的电流,并在异常情况下及时采取措施,以避免电路损坏、设备烧毁,甚至安全事故的发生。
三段式电流保护通过分段检测电流的方式,提供了更加准确和可靠的保护。
工作原理三段式电流保护通常由三个不同的段落组成,分别是过载保护段、短路保护段和地故障保护段。
下面将详细介绍每个段落的工作原理。
过载保护段过载保护段主要用于检测电路中的过载电流。
当电路中的电流超过了设定的额定电流值时,过载保护段将会触发保护动作,以避免电路过载而损坏。
过载保护通常采用热负荷继电器或电流互感器来实现。
当电流超过额定值时,负荷继电器或电流互感器会感知到电流的变化,并通过触发输出信号,控制断路器或隔离开关的动作,切断电路。
短路保护段短路保护段主要用于检测电路中的短路和故障电流。
短路指两个电源回路或电源极性之间的低阻抗连接,故障电流常常比正常工作电流大几倍甚至更多。
短路保护段通过短路电流传感器或电流互感器来检测电流的异常变化。
当感测到短路电流时,短路保护段将会触发快速保护动作,切断电路,以避免电路受到损坏。
地故障保护段地故障保护段主要用于检测电路中的地故障电流。
地故障是指电路中发生的电流通过地或其他非预定的回路途径泄漏到地上。
地故障通常由绝缘破坏或线路接地导致。
地故障保护段通过地故障电流传感器或电流互感器来感知电流的泄漏,并触发保护动作,以切断故障电路并确保人身安全。
总结三段式电流保护通过过载保护段、短路保护段和地故障保护段来实现对电路的全面保护。
它能够检测并快速响应电流的异常变化,及时切断电路,保护设备和人身安全。
电流保护在各种电力系统中都得到了广泛应用,为电力系统的稳定运行和安全提供了重要的保障。
继电保护知识,三段式电流保护工作原理、整定计算什么是三段式电流保护三段式电流保护指的是电流速断保护(第一段)、限时电流速断保护(第二段)、定时限过电流保护(第三段)相互配合构成的一套保护、下面我们就来详细介绍一下三段时电流保护的工作原理和整定计算方法。
一、电流速断保护(第I段)简单网络接线示意图对于仅反应于电流增大而瞬时动作的电流保护,称为电流速断保护。
为优先保证继电保护动作的选择性,就要在保护装置起动参数的整定上保证下一条线路出口处短路时不起动,这在继电保护技术中,又称为按躲过下一条线路出口处短路的条件整定。
以上图1所示的网络接线为例,假定每条线路上均装有电流速断保护,对于安装在A母线处的保护1来讲,其起动电流必须整定得大于d2点处短路时,可能出现的最大短路电流,即在最大运行方式下B母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在A 母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在B 母线处的保护2就能起动,最后动作于跳断路器2。
后面几段线路的电流速断保护整定原则同上。
电流速断保护的主要优点是:简单可靠,动作迅速,因而获得了广泛的应用。
但由于引入的可靠系数,所以不难看出,电流速断保护的缺点是:不能保护本线路的全长,且保护范围直接受系统运行方式变化的影响。
运行实践证明,电流速断保护的保护范围大概是本线路的85%~90%。
二、限时电流速断保护(第II段)1、工作原理及整定计算的基本原则由于有选择性的电流速断保护不能保护本线路的全长,因此我们考虑增加一段新的保护,用来切除速断范围以外的故障,保护本线路的全长,同时也能作为电流速断保护的后备保护。
由于要求它必须保护本线路的全长,因此它的保护范围必然要延伸到下一条线路中去,这样当下一条线路出口处(如图1中,对于保护1来说,d2点处)发生短路时,它就要起动,在这种情况下,为了保证动作的选择性,就必须使保护的动作带有一定的时限,但又为了使这一时限尽量缩短,我们就考虑使它的保护范围不超过下一条线路速断保护(如图1中的保护2)的保护范围,而动作时限则比下一条线路速断保护高出一个时间阶段,即如图2(a)所示,由于它能以较小的时限快速切除全线路范围以内的故障,所以我们称它为限时电流速断保护。
三段式电流保护原理三段式电流保护是一种用于电力系统中的电流保护方式,其主要目的是检测和快速断开故障电流,以保护电力设备和人员的安全。
三段式电流保护主要分为测量阶段、判据阶段和动作阶段。
测量阶段是三段式电流保护的第一阶段,在这个阶段中,系统通过测量电流信号以获得故障信息。
常用的测量装置包括电流互感器、电流变送器等。
电流互感器主要用于将高电流转换为低电流,以便测量设备可以正确读取。
电流变送器主要用于将测得的电流信号传递给其他设备。
判据阶段是三段式电流保护的第二阶段,主要用于判定是否存在故障。
在这个阶段中,系统根据预设的电流阈值和时间限制来判断是否出现了短路或过载故障。
当电流超过阈值并持续一定的时间后,系统会判定为故障。
此外,还可以根据不同的电流故障类型设置不同的判据条件。
动作阶段是三段式电流保护的第三阶段,主要用于断开故障电流,以保护电力设备和人员的安全。
在这个阶段中,系统会通过开关或保护装置等方式迅速断开故障电流。
动作时间应尽量短,以减少故障对系统的不利影响。
三段式电流保护的优点在于其快速、准确的故障检测和断开故障电流的能力。
它能够有效地保护电力设备免受故障电流的损害,同时还能保护人员的安全。
此外,三段式电流保护还可以根据不同的系统和设备需求进行定制化设置,提高了保护的灵活性和可靠性。
然而,三段式电流保护也存在一些局限性。
首先,它需要在测量、判据和动作三个阶段中进行多次处理,可能引起一定的延迟。
其次,三段式电流保护需要设置合适的阈值和时间限制,如果设置不当,可能会导致误判或延迟动作。
另外,三段式电流保护对电流的测量精度要求较高,需要选用性能稳定的测量装置。
总的来说,三段式电流保护是一种重要的电力保护方式,能够有效地检测和断开故障电流,保护电力设备和人员的安全。
虽然存在一些局限性,但通过合理设置判据条件和选择合适的测量装置,可以提高三段式电流保护的可靠性和灵活性,确保电力系统的正常运行。