变频器散热量计算
- 格式:pdf
- 大小:62.26 KB
- 文档页数:2
变频器散热量计算施耐德
施耐德(Schneider)变频器的散热量可以根据以下几个因素来计算:
1. 变频器的功率:根据变频器的额定功率来计算散热量。
功率通常以千瓦(kW)为单位。
2. 工作时间:变频器的散热量与工作时间密切相关。
长时间高负载运行会产生更多的热量。
3. 运行环境温度:施耐德变频器的散热量还要考虑环境温度。
高温环境下散热量会更大。
4. 散热器效率:施耐德变频器通常配备了散热器来散热,散热器的效率也会影响散热量的大小。
通常来说,变频器的散热量可以根据以下公式计算:
散热量 = 变频器功率 ×工作时间 ×散热器效率 × (环境温度 - 变频器自身温度)
需要注意的是,以上只是一个大致的计算方法,实际情况可能会因为具体的变频器型号、工况等因素而有所不同。
为了得到准确的散热量,最好参考施耐德变频器的技术手册或咨询施耐德公司的工程师。
2500kw高压变频器散热量
高压变频器的散热量取决于多个因素,包括工作负载、环境温度、散热器设计、风扇效率等。
一般来说,高压变频器的散热量可以通过以下几个方面来进行分析和计算:
1. 负载情况,高压变频器在不同的负载下产生的热量会有所不同。
在额定负载下,变频器的散热量会达到最大值。
2. 环境温度,环境温度对高压变频器的散热影响很大。
在高温环境下,变频器的散热需求会增加,而在低温环境下则会减少。
3. 散热器设计,散热器的设计对于高压变频器的散热效果至关重要。
合理的散热器设计可以有效地提高散热效率,减少热量对设备的影响。
4. 风扇效率,如果高压变频器采用了风冷散热方式,风扇的效率也会对散热量产生影响。
高效的风扇可以加速空气流动,提高散热效果。
一般来说,计算高压变频器的散热量需要结合以上因素进行综
合分析。
在实际工程中,可以通过测量变频器表面的温度、风扇转速、电流等参数来间接计算散热量。
此外,还可以参考厂家提供的
散热性能曲线和相关技术资料,以获得更准确的散热量数据。
综上所述,高压变频器的散热量是一个复杂的问题,需要综合
考虑多个因素。
在实际应用中,需要根据具体情况进行计算和评估,以确保设备的安全稳定运行。
变频器的散热与漏电流1. 如果要正确的使用变频器, 必须认真地考虑散热的问题.变频器的故障率随温度升高而成指数的上升,使用寿命随温度升高而成指数的下降。
环境温度每升高10度,变频器平均使用寿命减半。
在变频器工作时,流过变频器的电流是很大的, 变频器产生的热量也是非常大的,不能忽视其发热所产生的影响。
通常,变频器安装在控制柜中。
我们要了解一台变频器的发热量大概是多少. 可以用以下公式估算: 发热量的近似值=变频器容量(KW)×55 [W] 在这里, 如果变频器容量是以恒转矩负载为准的(过流能力150% * 60s) 如果变频器带有直流电抗器或交流电抗器, 并且也在柜子里面, 这时发热量会更大一些。
电抗器安装在变频器侧面或测上方比较好。
这时可以用下式估算: 变频器容量(KW)×60 [W] 因为各变频器厂家的硬件都差不多, 所以上式可以针对各品牌的产品. 注意:如果有制动电阻的话,因为制动电阻的散热量很大,因此最好安装位置最好和变频器隔离开,如装在柜子上面或旁边等。
2. 怎样降低控制柜内的发热量?当变频器安装在控制机柜中时,要考虑变频器发热值的问题。
根据机柜内产生热量值的增加,要适当地增加机柜的尺寸。
因此,要使控制机柜的尺寸尽量减小,就必须要使机柜中产生的热量值尽可能地减少。
如果在变频器安装时,把变频器的散热器部分放到控制机柜的外面,将会使变频器有70%的发热量释放到控制机柜的外面。
由于大容量变频器有很大的发热量,所以对大容量变频器更加有效。
还可以用隔离板把本体和散热器隔开, 使散热器的散热不影响到变频器本体。
这样效果也很好。
注意:变频器散热设计中都是以垂直安装为基础的,横着放散热会变差的!3. 关于冷却风扇一般功率稍微大一点的变频器,都带有冷却风扇。
同时,也建议在控制柜上出风口处安装冷却风扇。
进风口处要加过滤网以防止灰尘进入控制柜。
注意控制柜和变频器上的风扇都是要的,不能谁替代谁。
变频器发热量计算
变频器的发热量也许是多少. 可以用以下公式估算:
发热量的近似值= 变频器容量(KW)×55 [W] 在这里, 假如变频器容量是以恒转矩负载为准的(过流力量150% * 60s) 假如变频器带有直流电抗器或沟通电抗器, 并且也在柜子里面, 这时发热量会更大一些。
电抗器安装在变频器侧面或测上方比较好。
这时可以用估算: 国产变频器容量(KW)×60 [W] 由于各变频器厂家的硬件都差不多, 所以上式可以针对各品牌的产品. 留意:假如有制动电阻的话,由于制动电阻的散热量很大,因此最好安装位置最好和变频器隔离开,如装在柜子上面或旁边等。
变频器的发热是由内部的损耗产生的。
在变频器中各部分损耗中主要以主电路为主,约占98%,掌握电路占2%。
为了保证变频器正常牢靠运行,必需对变频器进行散热,通常采纳以下方法:
① 采纳风扇散热:变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应马上停止变频器运行。
② 降低安装环境温度:由于变频器是电子装置,内含电子元、电解电容等,所以温度对其寿命影响比较大。
通用变频器的环境运行温度一般要求-10℃~-50℃,假如能够实行措施尽可能降低变频器运行温度,那么变频器的使用寿命就延长,性能也比较稳定。
我们实行两种方法:一种方法是建筑单独的变频器低压间,内部安装空调,保持低压间温度在+15℃~+20℃之间。
另一种方法是变频器的安
装空间要满意变频器使用说明书的要求。
以上所谈到的变频器发热是指变频器在额定范围之内正常运行的损耗。
当变频器发生非正常运行(如过流,过压,过载等)产生的损耗必需通过正常的选型来避开此类现象的发生。
风扇总热量=空气比热X空气重量X温差,这里的温差是指,你进风的温度与最终加热片的温度的差值,照你说的,250-80(最加热片的温度)-25(进风空气的温度)=145度,你给的倏件还一样,就是热量不知道,或者电器做的总功不知道,电器做的总功/4.2=风扇排出的总热量知道的话就可以根空气重量=风量/60X空气密度逆推出风量.设:半导体发热芯片平均温度T1(工作时的温度上限,也就是说改芯片能承受的最高温度,取决你的设计要求了),散热片平均温度T2,散热片出口处空气温度T3简化问题,假设:1.散热片为热的良导体,达到热平衡时间忽略,则有T1=T2;2.只考虑热传导,对流和辐射不予考虑。
又因为半导体发出的热量最终用来加热空气,则有:880W=40CFM*空气比热*(T3-38°C)注意单位统一,至于空气的比热用定容的吧。
上式可以求出(实际上也就是估算而已)出口处空气温度T3,根据散热片的散热公式(也是估算),有:P=λ*【T2-0.5(T3+38°C)】*A其中:P为散热功率,λ为散热系数,A为与空气的接触面积,【T2-0.5(T3+38°C)】为温差;其中:λ可以通过对照试验求(好吧,还是估算)出来,这样就能大概估算出需要的散热器面积A了。
P.S.误差来源1:散热器温度和芯片温度肯定不相等,热传导需要时间,而且散热片不同位置的温度也不严格相同,只是处在动态平衡;误差来源2:散热片的散热公式是凭感觉写的。
应该没大错,但肯定很粗糙。
自己修正吧能想到的就这么多了。
轴流风机风量散热器的信息讲解2011-06-02 17:06轴流风机风量散热器的信息讲解风量是指风冷散热器风扇每分钟排出或纳入的空气总体积,如果按立方英尺来计算,单位就是CFM;如果按立方米来算,就是CMM。
散热器产品经常使用的风量单位是CFM(约为0.028立方米/分钟)。
50×50×10mm CPU风扇一般会达到10 CFM,60×60×25mm风扇通常能达到20-30的CFM。
变频器散热量计算公式
在电力传动系统中,变频器起着重要的作用,通过控制电机的转速和扭矩,实
现能源的节约和运行效率的提高。
然而,变频器在运行过程中会产生热量,而过高的温度会导致变频器的故障甚至损坏。
因此,准确计算变频器的散热量是非常重要的。
散热量是指变频器在单位时间内散发出的热能,通常用单位时间内散发出的功
率来表示。
变频器的散热量计算公式如下:
散热量(W)= 功耗(W)+ 平均负载损耗(W)+ 其他损耗(W)
其中,
- 功耗是指变频器正常运行时耗电的功率。
通常,在变频器的技术文档中能够
找到其额定功率或者额定输入电流。
根据变频器的厂商和型号,可以确定变频器的额定功率或输入电流。
- 平均负载损耗是指变频器在工作过程中由于电气和机械损失而产生的功率。
这部分损耗通常在技术手册中提供了参考值,或者通过实际测量获得。
- 其他损耗是指变频器运行过程中产生的其他热量损耗。
这些损耗包括变频器
内部电子元件的损耗、风扇的功率消耗等。
对于一些特定的变频器,可能会提供这些额外损耗的测量值,否则需要根据厂商提供的数据进行估计。
需要注意的是,散热量的计算并不是一个简单的累加过程,不同的变频器型号、额定功率和工作条件会对散热量产生影响。
因此,在实际应用中,我们应当按照变频器厂商的技术手册或指导进行散热量的计算,并结合实际情况进行验证。
总结起来,变频器散热量的计算公式包括了功耗、平均负载损耗和其他损耗。
正确计算变频器的散热量对于保证其正常运行非常重要,同时也有助于我们设计合适的散热系统和提高电气设备的寿命。
高压变频器室空--水冷却系统改造分析与研究作者:宋鹏飞来源:《中国化工贸易·上旬刊》2020年第02期摘要:随着时代的发展,我国建设现代化的进程加快,水冷却系统的作用得到了广泛的关注和重视。
本文对高压变频器室空--水冷却系统改造分析与研究进行讨论,从其改造意义展开,提出了存在的问题和解决方案,进而提升水冷却系统的运行效率,促进其现代化的发展。
关键词:高压变频;水冷却系统;系统改造水冷却系统能够降低高温下变频器的温度,保障其稳固运行。
在此基础上,高压变频器室空--水冷却系统改造有利于实现工厂对于变频器温度的正常控制,促进其稳固运行。
既能够提升高压变频器的工作效率,又能够促进我国现代化进程的提升。
因此,有必要对高压变频器室空--水冷却系统改造展开讨论。
1 高压变频器室空--水冷却系统改造的意义由于煤化工等工业园区的锅炉系统存在着环境灰尘大等不利因素,导致了为锅炉风机供电的高压变频器运行环境差,原有的变频器室负压大,灰尘、水汽容易进入室内,造成变频器功率单元及设备滤网积灰严重,尤其雨雪天,空气湿度大,空气进入高压变频器后与灰尘混合,极易造成设备短路损坏。
同时恶劣的运行环境也不利于设备的维护保养。
而封闭式水冷却系统能够在温度较高的情况下,降低变频器的温度,使其在散热及循环中的良好运行得到保障。
这就很好的解决了现有环境问题造成的困扰。
同时因水冷却系统使得变频器运行环境得到了改善,其电气回路的耐压能力也得到了保障,提升了高压变频器的运行效率,大大增加了变频器电气回路的使用寿命,实现了工厂节能增效、稳定良好的发展。
在此基础上,水冷却系统改造能够实行我国技术的现代化的发展,促进我国机械建设产业化的创新与变革。
高压变频设备对于提升机械设备的运行效率和运行质量都有着不可或缺的作用,对于我国的产业升级和水冷却技术的更新换代都起着促进和转型的作用,实现我国技术手段的现代化发展,进而促进我国社会主义社会的建设,进而促进我国机械设备运行的转型升级。
机房设备的散热量计算公式在现代社会中,机房设备已经成为各种企业和机构运行的重要基础设施。
然而,随着机房设备的不断更新和扩展,散热问题也变得越来越重要。
机房设备的散热量不仅影响着设备的稳定运行,还直接关系到机房的能耗和运行成本。
因此,了解机房设备的散热量计算公式成为了非常重要的一项技术。
散热量是指物体由于温度差而向外界传递热量的过程。
在机房中,设备的散热量主要来自于设备内部的电子元件和电路板的工作产生的热量。
一般来说,机房设备的散热量可以通过以下公式进行计算:Q = m c ΔT。
其中,Q为散热量,单位为焦耳(J);m为物体的质量,单位为千克(kg);c为物体的比热容,单位为焦耳/千克·摄氏度(J/kg·℃);ΔT为物体的温度变化,单位为摄氏度(℃)。
在机房中,设备的散热量通常是以功率的形式给出,即单位时间内散热的能量。
因此,可以将上述公式进行改写,得到如下形式:P = Q / t。
其中,P为单位时间内的散热功率,单位为瓦特(W);t为时间,单位为秒(s)。
通过上述公式,我们可以看到,机房设备的散热量与设备的质量、比热容以及温度变化有关。
在实际应用中,我们通常会根据具体的设备参数和工作环境来进行计算。
首先,我们需要了解设备的质量。
设备的质量通常可以通过设备的规格参数来获取,例如设备的重量等。
在进行计算时,我们需要将设备的质量转换为标准单位,即千克。
其次,我们需要了解设备的比热容。
设备的比热容通常可以通过设备的材质和结构来确定。
一般来说,常见的设备材质如金属、塑料等都有相应的比热容数值。
在进行计算时,我们需要根据设备的具体材质来确定比热容的数值。
最后,我们需要了解设备的温度变化。
设备的温度变化通常可以通过设备的工作状态和环境温度来确定。
在进行计算时,我们需要根据设备的实际工作情况和环境温度来确定温度变化的数值。
通过上述步骤,我们可以得到设备单位时间内的散热功率。
在实际应用中,我们通常会根据设备的功率来确定散热量的大小,并进一步进行散热设计和设备布局。
高压变频器冷却方式介绍及对比摘要高压变频器主要由变压器、功率单元和控制系统组成。
功率单元和控制系统内置很多发热电子元器件,而变压器本身更是发热设备。
高压变频器的故障中,因过热导致的占总故障的30%左右。
所以解决高压变频器冷却方式。
本文通过介绍高压变频器的原理及常见的散热方式,并把几种冷却方式在不同的维度进行对比,最终得出结论:在什么情况下应该选用哪种冷却方式。
关键词:冷却;高压变频器;散热;第1章高压变频器各种冷却方式简述1.1 强迫风冷变频器运行时,变压器和功率单元要产生大约输出功率 3%~5% 的热量,为了顺利带走变频器产生的热量,在变压器柜和单元柜上安装冷却风机。
变频器柜顶风机大量抽风,把变频器产生的热风通过管道排出室外,在变频器室进风口处形成强力负压,使室外的冷风大量进入变频器室内,以达到冷却效果。
为了保证散热,在变频器安装时周围需要留出距离,以保证冷却风路的畅通。
变频器安装时,后面与墙间隔不小于1.2米,左右和顶部与墙间隔不小于0.8米,变频器正面与墙间隔不小于1.5米(操作液晶屏安装于控制柜正面,考虑操作上的安全和方便)。
强迫风冷具有以下特点:投资成本低运行成本低节约变频器室空间防尘效果差1.2 空水冷系统1.2.1空-水冷却系统冷却原理空-水冷却系统冷却原理见图1-1 风路循环图和图1-2 水循环图:图1-1风路循环图图1-2水循环图1.2.2空-水冷却系统主要特点冷却效果好密闭性强价格适中技术成熟1.3空调冷却该方式主要是根据需要散热的高压变频器的总发热量和房间面积算出所采用的空调匹数及数量,然后配置相应的空调。
为高压变频器提供一个固定的具有隔热保温效果的变频器室[1]。
空调冷却具有以下特点:高效制冷室温均匀舒适独立除湿低温、低电压启动室外机耐高温运转室内密闭冷却防尘效果好运行成本高1.4纯水冷(设备本体水冷却)现阶段,对纯水冷高压变频器介绍的内容并不多。
只有少数技术水平领先的公司有此设备。
高压变频器发热量估算方法全文共四篇示例,供读者参考第一篇示例:高压变频器在工业领域中具有非常重要的作用,它通过调节电压和频率来控制电动机的转速,从而实现对生产设备的精确控制。
在变频器工作过程中,由于电路中存在一定的损耗以及电子元件的寄生电阻等因素,会造成一定的发热现象。
对于高压变频器而言,由于其功率较大,发热量往往更加显著。
对高压变频器的发热量进行准确估算对于设备的稳定运行和安全使用具有重要意义。
一、发热量估算的重要性发热是电子设备正常工作时产生的一种常见现象,而高压变频器的工作原理决定了其会产生较为显著的发热现象。
如果无法准确估算高压变频器的发热量,容易导致设备的过热,进而影响设备的性能和寿命。
对高压变频器的发热量进行准确估算就显得尤为重要。
二、高压变频器的发热机理高压变频器的工作主要依靠功率元件(IGBT、MOSFET等)实现对电压和频率的调节,从而控制电机的转速。
在功率元件工作时会产生一定的损耗,主要包括导通损耗和开关损耗。
导通损耗是指功率元件在导通状态下因电阻产生的损耗,而开关损耗是指功率元件在开关状态下由于电容和漏电感产生的损耗。
这些损耗会转化为热量,导致高压变频器发热。
1. 理论计算法理论计算法是一种最基础的发热量估算方法,其基本思想是通过功率元件的参数和工作条件来计算功率元件的损耗,从而得到发热量。
具体步骤是:(1)确定工作条件,包括输入电压、输出功率、开关频率等参数;(2)根据功率元件的参数和工作条件,计算导通损耗和开关损耗;(4)根据功率元件的热阻参数,计算功率元件的温升;(5)通过功率元件的温度传导模型,计算出整个高压变频器的发热量。
2. 实测法实测法是一种比较直观和精确的发热量估算方法,其基本思想是通过对高压变频器的实际温度进行测量,进而计算出发热量。
具体步骤是:(1)安装温度传感器在高压变频器的关键部位,如功率元件、散热片等;(2)对高压变频器的温度进行连续测量,并记录数据;3. 综合法理论计算法和实测法各有其优缺点,综合两者的优点可以得到更为准确的发热量估算结果。
STDVFD变频器散热量计算
How to calculate the STDVFD inverter radiation
关键词发热计算
Key Words calculate radiation
变频器运行时都会有一定的热量耗散,本文介绍计算温升的经验公式(变频器安装在柜体内),变频器满载时的最大散热量取决于变频器的型号、尺寸。
一、 如果几台装置装在一个密不通风的箱体内。
由于装置散热会使柜内温度升高,温升值与柜内设备总的功率损失及柜体的散热面积相关,可估算如下:
温升DT=总的功率损失(W)/(5.5*柜体散热面积(㎡))
功率损失是包含变频器,进/出线电抗器等其他热源的总功率损失。
变频器的功率损失可以用以下公式计算:
△P=Pc*(1-η)
Pc:变频器的额定功率
η:变频器满载运行时的效率
通常情况下柜体主要散热面指柜顶、柜体侧面和柜前,柜底和柜后门不能作为有效的散热面(依赖于不同的安装方式)。
若一个独立的变频柜柜体尺寸为800*600*2200,则其散热面积为4.88㎡。
若该柜内只装一台变频器,变频器的功率损失计算值若为300W,则满载运行时该柜内的温升为:
DT=300/(5.5*4.88)=11.18℃
这个温升值只是变频器自身引起的,前面提到的其他散热源等引起的温升不可忽视。
二、 变频器运行在强制风冷的箱体内
如果该箱体采用风冷方式,则柜内温升可以按照下面公式计算:
温升DT=(0.053*总的功率损失(W))/柜内空气流量(M3/min)
此时注意:
1、前面提到的柜内其他散热源等引起的温升不可忽视。
2、高海拔处空气稀薄风机风量减少。
3、注意环境温度,环境温度不能高于变频器允许值,否则不能保证变频器正常运行。
4、如果变频器安装在柜内的话,则我们通常所说的环境温度指该柜内的温度。