引一条射线OX,叫做极轴。
再选定一个长度单位和角度单位及它 的正方向(通常取逆时针方向). O 这样就建立了一个极坐标系.
X
2、极坐标系内一点的极坐标的规定 对于平面上任意一点M,用表示线段OM的长度, 用表示以射线OX为始边,射线OM为终边所成的 角,叫做点M的极径, 叫做点M的极角,有序数对 (,)就叫做M的极坐标。
A(3, 0) 4 D(5, ) 3 5 G (6, ) 3
B(6, 2 ) 5 E (3, ) 6
C (3,
2
)
F (4, )
[小结] 由极坐标描点的步骤: (1) 先按极角找到点所在射线; (2) 在此射线上按极径描点.
思考: ①平面上一点的极坐标是否唯一?若不唯一, 那有多少种表示方法? ② 不同的极坐标是否可以写 出统一表达式? 3、点的极坐标的表达式的研究 如图:OM的长度为4,
M
P (ρ,θ) X
[1]给定(,),就可以在极坐标平 面内确定唯一的一点M
O
[2]给定平面上一点M,但却有无数个极坐标与之对应。 原因在于:极角有无数个。 如果限定ρ >0,0≤θ <2π 那么除极点外,平面内的点和极坐标就可以一一对应了.
例2. 在极坐标系中, (1) 已知两点 P(5, ), (2, 4 ),求线段PQ的长度; Q 3 3 (2) 已知点M的极坐标为(, ), R, 说明满足上述 4 条件的点M的位置.
思考: 对比直角坐标系,比较异同 极点、极轴、长度单位、 (1) 要素:____________________ 角度单位和正方向 ____________________;
M
O X
(, ) (2) 平面内点的极坐标用_____表示.