整流、滤波、稳压电路
- 格式:docx
- 大小:499.36 KB
- 文档页数:10
整流滤波与稳压电路实验报告整流滤波与稳压电路实验报告一、引言电子技术在现代社会中起着重要的作用,而电路是电子技术的基础。
在电路实验中,整流滤波与稳压电路是常见的实验内容。
本实验旨在通过实际操作,探索整流滤波与稳压电路的原理和应用。
二、实验目的1. 了解整流滤波电路的原理和特点;2. 掌握稳压电路的原理和设计方法;3. 实际搭建整流滤波与稳压电路,观察电路的输出特性。
三、实验原理1. 整流滤波电路整流滤波电路是将交流电转换为直流电的电路。
在实验中常用的整流电路有单相半波整流电路和单相全波整流电路。
半波整流电路只能利用交流电的一半周期,而全波整流电路则能利用交流电的整个周期。
为了减小输出波形中的纹波,需要加入滤波电路,常用的滤波电路有电容滤波电路和电感滤波电路。
2. 稳压电路稳压电路是在输入电压变化时,通过控制电路元件的导通和截止,使输出电压保持稳定的电路。
常见的稳压电路有简单稳压电路、Zener稳压电路和集成稳压电路。
其中,简单稳压电路通过二极管的正向压降来稳定输出电压,Zener稳压电路则利用Zener二极管的反向击穿特性来实现稳压。
四、实验步骤1. 整流滤波电路实验步骤:(1)搭建单相半波整流电路,连接电源和负载电阻;(2)观察输出电压波形,记录纹波电压的大小;(3)在输出端并联适当容量的电容,搭建电容滤波电路;(4)观察滤波后的输出电压波形,记录纹波电压的大小。
2. 稳压电路实验步骤:(1)搭建简单稳压电路,将Zener二极管与负载电阻串联;(2)调节输入电压,观察输出电压的稳定性;(3)更换Zener二极管,观察输出电压的变化;(4)搭建集成稳压电路,观察其输出电压的稳定性。
五、实验结果与分析1. 整流滤波电路实验结果:(1)单相半波整流电路输出的纹波电压较大,波形不稳定;(2)加入电容滤波电路后,输出电压波形更加平滑,纹波电压减小。
2. 稳压电路实验结果:(1)简单稳压电路能够在一定范围内稳定输出电压;(2)更换Zener二极管后,输出电压发生变化;(3)集成稳压电路输出电压稳定性较好。
整流滤波稳压电路实验报告一、实验目的。
本实验旨在通过搭建整流滤波稳压电路,验证其在直流电源中的稳压性能,并观察其对输入信号的整流和滤波效果。
二、实验原理。
整流滤波稳压电路是由整流电路、滤波电路和稳压电路组成的。
整流电路主要用于将交流电转换为直流电,滤波电路则用于对直流电进行滤波处理,去除交流成分,最终稳压电路则用于保持输出电压的稳定性。
三、实验器材。
1. 电压表。
2. 电流表。
3. 二极管。
4. 电容。
5. 电阻。
6. 直流电源。
四、实验步骤。
1. 按照电路图搭建整流滤波稳压电路。
2. 接通直流电源,观察电压表和电流表的读数。
3. 测量输出电压的稳定性。
4. 更换不同数值的电容和电阻,观察输出波形的变化。
五、实验结果。
通过实验,我们观察到整流滤波稳压电路能够有效地将交流电转换为直流电,并且能够对直流电进行滤波处理,去除交流成分,使输出电压更加稳定。
在更换不同数值的电容和电阻后,我们也观察到输出波形的变化,进一步验证了整流滤波稳压电路的性能。
六、实验分析。
整流滤波稳压电路在电子电路中具有重要的应用价值,它能够有效地将交流电转换为直流电,并且能够对直流电进行滤波处理和稳压,保证电路工作的稳定性和可靠性。
因此,对整流滤波稳压电路的研究和实验具有重要的意义。
七、实验总结。
通过本次实验,我们深入了解了整流滤波稳压电路的工作原理和性能特点,掌握了搭建和调试整流滤波稳压电路的方法,并且验证了其在直流电源中的稳压性能。
同时,我们也发现了一些问题和不足之处,对于整流滤波稳压电路的进一步研究提出了一些建议。
八、实验改进。
在今后的实验中,我们可以尝试使用不同类型和数值的电容和电阻,以及不同的整流和稳压电路,进一步探究整流滤波稳压电路的性能和应用范围。
同时,我们也可以结合实际工程应用,对整流滤波稳压电路进行优化和改进,提高其稳定性和可靠性。
通过本次实验,我们对整流滤波稳压电路有了更深入的了解,同时也积累了丰富的实验操作经验,这对我们今后的学习和科研工作都具有重要的意义。
整流滤波稳压电路实验报告实验目的:本实验旨在通过搭建整流滤波稳压电路,了解其原理和特性,并进行相关参数的测量和分析,从而加深对电路原理和实际应用的理解。
实验仪器和器件:1. 电源,直流稳压电源。
2. 示波器,数字示波器。
3. 电阻、电容、二极管等基本电子元件。
4. 万用表、示波器探头等辅助工具。
实验原理:整流滤波稳压电路是由整流电路、滤波电路和稳压电路组成的。
整流电路用于将交流电信号转换为脉动的直流电信号,滤波电路用于对脉动的直流电信号进行平滑处理,稳压电路用于对处理后的直流电信号进行稳压输出。
实验步骤:1. 搭建整流电路,根据电路图连接二极管、电阻等元件,接通电源进行测试,观察输出波形。
2. 搭建滤波电路,在整流电路的基础上加入电容等元件,接通电源进行测试,观察输出波形。
3. 搭建稳压电路,在滤波电路的基础上加入稳压元件,接通电源进行测试,观察输出波形。
4. 测量各电路输出的波形特性,利用示波器测量各电路输出的波形,并记录相关数据。
5. 分析实验结果,根据测量数据,分析各电路的特性和性能。
实验结果与分析:经过实验测试和数据分析,我们得到了如下结论:1. 整流电路可以将交流电信号转换为脉动的直流电信号,但输出波形仍然存在一定的纹波。
2. 滤波电路可以对脉动的直流电信号进行平滑处理,减小纹波幅度,使输出波形更加稳定。
3. 稳压电路可以对处理后的直流电信号进行稳压输出,保持输出电压的稳定性。
结论:通过本次实验,我们深入了解了整流滤波稳压电路的原理和特性,掌握了相关的搭建和测试技能,对电路的实际应用有了更深入的理解和认识。
实验中也发现了一些问题,如电路参数的选择对电路性能有重要影响,对于不同的应用场景需要选择合适的参数进行设计。
此外,电路中元件的质量和连接方式也会对电路性能产生影响,需要在实际应用中加以注意和调整。
总之,本次实验为我们提供了一个很好的学习机会,通过动手搭建电路、测试波形、分析数据,我们对整流滤波稳压电路有了更加深入的了解,也为今后的学习和工作打下了坚实的基础。
整流、滤波和稳压电路滤波电路交流电经过二极管整流之后,方向单一了,但是大小(电流强度)还是处在不断地变化之中。
这种脉动直流一般是不能直接用来给无线电装供电的。
要把脉动直流变成波形平滑的直流,还需要再做一番“填平取齐”的工作,这便是滤波。
换句话说,滤波的任务,就是把整流器输出电压中的波动成分尽可能地减小,改造成接近恒稳的直流电。
一、电容滤波电容器是一个储存电能的仓库。
在电路中,当有电压加到电容器两端的时候,便对电容器充电,把电能储存在电容器中;当外加电压失去(或降低)之后,电容器将把储存的电能再放出来。
充电的时候,电容器两端的电压逐渐升高,直到接近充电电压;放电的时候,电容器两端的电压逐渐降低,直到完全消失。
电容器的容量越大,负载电阻值越大,充电和放电所需要的时间越长。
这种电容带两端电压不能突变的特性,正好可以用来承担滤波的任务。
图5-9是最简单的电容滤波电路,电容器与负载电阻并联,接在整流器后面,下面以图5-9(a)所示半波整施情况说明电容滤波的工作过程。
在二极管导通期间,e2 向负载电阻R fz提供电流的同时,向电容器C充电,一直充到最大值。
e2 达到最大值以后逐渐下降;而电容器两端电压不能突然变化,仍然保持较高电压。
这时,D受反向电压,不能导通,于是Uc便通过负载电阻R fz放电。
由于C和R fz较大,放电速度很慢,在e2 下降期间里,电容器C上的电压降得不多。
当e2 下一个周期来到并升高到大于Uc时,又再次对电容器充电。
如此重复,电容器C两端(即负载电阻R fz:两端)便保持了一个较平稳的电压,在波形图上呈现出比较平滑的波形。
图5-10(a)(b)中分别示出半波整流和全波整流时电容滤波前后的输出波形。
显然,电容量越大,滤波效果越好,输出波形越趋于平滑,输出电压也越高。
但是,电容量达到一定值以后,再加大电容量对提高滤波效果已无明显作用。
通常应根据负载电用和输出电说的大小选择最佳电容量。
表5-2 中所列滤波电容器容量和输出电流的关系,可供参考。
整流滤波稳压电路原理一、引言稳压电路是现代电子设备中常用的一种电路,其作用是将不稳定的输入电压转换为稳定的输出电压,以保证电子设备的正常工作。
而整流滤波稳压电路则是稳压电路中的一种重要形式,本文将详细介绍整流滤波稳压电路的原理和工作过程。
二、整流滤波稳压电路的原理整流滤波稳压电路主要包括整流电路和滤波电路两部分。
整流电路的作用是将交流输入电压转换为直流电压,而滤波电路则用于去除直流电压中的纹波,得到稳定的直流输出电压。
1. 整流电路整流电路采用整流元件(如二极管)将输入电压的负半周期或正半周期截取,使其成为单向导通的电流。
常见的整流电路有半波整流电路和全波整流电路两种。
(1)半波整流电路半波整流电路只能将输入电压的正半周期截取,而负半周期则被截去。
其电路中只需一个二极管即可实现,结构简单、成本低廉,但输出电压的纹波较大,稳定性较差。
(2)全波整流电路全波整流电路能够将输入电压的正半周期和负半周期均截取。
其电路中一般采用两个二极管,实现了电流的双向导通。
相比半波整流电路,全波整流电路的输出电压波动较小,稳定性较好。
2. 滤波电路滤波电路的作用是将整流后的直流电压中的纹波去除,得到稳定的直流输出电压。
常见的滤波电路有电容滤波电路和电感滤波电路两种。
(1)电容滤波电路电容滤波电路通过在电路中串联一个电容器,将纹波电压的高频成分通过电容器绕过,从而实现对纹波的滤波作用。
电容滤波电路具有结构简单、成本低廉的优点,但对于低频纹波的滤波效果较差。
(2)电感滤波电路电感滤波电路通过在电路中串联一个电感元件,利用电感元件的自感性质,将纹波电压的低频成分通过电感元件绕过,从而实现对纹波的滤波作用。
电感滤波电路对于低频纹波的滤波效果较好,但结构复杂、成本较高。
三、整流滤波稳压电路的工作过程整流滤波稳压电路的工作过程如下:1. 输入电压经过整流电路,将交流电压转换为直流电压。
2. 直流电压经过滤波电路,去除直流电压中的纹波成分。
物理实验中心实验指导书整流、滤波与稳压电路ﻬ整流、滤波与稳压电路整流电路是将工频交流电转为具有直流电成分的脉动直流电.整流电路由整流器件组成。
滤波电路是将脉动直流中的交流成分滤除,减少交流成分,增加直流成分。
滤波电路直接接在整流电路后面,通常由电容器,电感器和电阻器按照一定的方式组合而成.作用是把脉动的直流电变为平滑的直流电供给负载.稳压电路对整流后的直流电压采用负反馈技术进一步稳定直流电压。
直流电源的方框图如图1所示。
滤波电路利用电抗性元件对交、直流阻抗的不同,实现滤波。
电容器C对直流开路,对交流阻抗小,所以CL对直流阻抗小,对交流阻抗大,因此L 应与负载串联.经过滤波电路后,既可保留直流分量、又可滤掉一部分交流分量,改变了交直流成分的比例,减小了电路的脉动系数,改善了直流电压的质量。
一、实验目的1。
了解整流、滤波电路的作用.2。
进一步熟悉示波器的使用.3。
观察单相半波、单相桥式及单相桥式整流电容滤波电路的输入、输出电压波形。
二、实验原理为方便分析,把二极管当作理想器件,即认为它加上正向电压导通时电阻为零,加上反向电压截止时电阻为无穷大.电容器在电路中有储存和释放能量的作用,电源供给的电压升高时,它把部分能量储存起来,而当电源电压降低时,就把能量释放出来,从而减少脉动成分,使负载电压比较平滑。
1。
单相半波整流电路电路如图2所示。
设在输入交流电压正半周:A端为正、B端为负,二极管因承受正向电压而导通,电流I L通路是A-V1—RL-B。
忽略二极管正向压降时,输入电压全部加在负载R L上。
在输入交流电压负半周:B端为正、A端为负,二极管因承受反向电压而截止。
输入电压几乎全部降落在二极管V上,负载RL上电压基本为零。
图1 直流稳压电路方框图由图5可见,在交流电一个周期内,二极管半个周期导通半个周期截止,以后周期重复上述过程.2.单相桥式整流电路电路如图3所示。
设在输入交流电压正半周:A端为正、B端为负,即A点电位高于B点电位。
整流、滤波和稳压电路第一节整流电路电力网供给用户的是交流电,而各类无线电装置需要用直流电。
整流,确实是把交流电变成直流电的进程。
利用具有单向导电特性的器件,能够把方向和大小交变的电流变换为直流电。
下面介绍利用晶体二极管组成的各类整流电路。
一、半波整流电路图5-一、是一种最简单的整流电路。
它由电源变压器B、整流二极管D和负载电阻R fz,组成。
变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D再把交流电变换为脉动直流电。
下面从图5-2的波形图上看着二极管是如何整流的。
变压器砍级电压e2,是一个方向和大小都随时刻转变的正弦波电压,它的波形如图5-2(a)所示。
在0~K时刻内,e2为正半周即变压器上端为正下端为负。
现在二极管经受正向电压面导通,e2通过它加在负载电阻R fz上,在π~2π时刻内,e2为负半周,变压器次级下端为正,上端为负。
这时D经受反向电压,不导通,R fz,上无电压。
在π~2π时刻内,重复0~π时刻的进程,而在3π~4π时刻内,又重复π~2π时刻的进程…如此反复下去,交流电的负半周就被"削"掉了,只有正半周通过R fz,在R fz上取得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,可是,负载电压U sc。
和负载电流的大小还随时刻而转变,因此,通常称它为脉动直流。
这种除去半周、图下半周的整流方式,叫半波整流。
不难看出,半波整说是以"捐躯"一半交流为代价而换取整流成效的,电流畅用率很低(计算说明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压U sc =)因此经常使用在高电压、小电流的场合,而在一样无线电装置中很少采纳。
二、全波整流电路若是把整流电路的结构作一些调整,能够取得一种能充分利用电能的全波整流电路。
图5-3 是全波整流电路的电原理图。
全波整流电路,能够看做是由两个半波整流电路组合成的。
变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a、e2b,组成e2a、D一、R fz与e2b、D2、R fz,两个通电回路。
实验六整流、滤波、稳压电路一、实验目的1.掌握桥式整流的特点。
2.了解稳压电路的组成和稳压作用。
3.熟悉集成三端可调稳压器的使用。
二、实验属性验证性实验三、实验仪器设备及器材1.试验台2.示波器3.数字万用表四、预习要求1.二极管全波整流的工作原理及整流输出波形。
2.整流电路分别接电容、稳压管时的工作原理及输出波形。
3.熟悉集成三端可调稳压器的工作原理。
五、实验内容与步骤首先校准示波器1.桥式整流:按图 8-1 接线,在输入端接入交流 14V 电压,调节 W2 使 I0= 50mA时,测出 Vo,同时用示波器的 DC 档观察输出波形并记入表 8-1 中。
表8-1图8-1 仿真参考电路2.加电容滤波:上述实验电路不动,在桥式整流后面加电容滤波,如图8-2 接线,测量接电容的情况下输入电压V0 及输出电流I0 ,同时用示波器的DC 档观察输出波形并记入表8-2 中。
表8-2图8-2 仿真参考电路3.加稳压二极管上述电路不动,在电容后面加稳压二极管电路,如图8-3 接线,在接通交流14V 电源后,调整W2 使I0 分别为10mA、15mA、20 mA 时,测出V AO 和V0,并用示波器的DC 档观测波形,记入表8-3 中。
、表8-3图8-3仿真参考电路当I0=10mA时当I0=15mA时当I0=20mA时六、实验报告1.总结桥式整流的特点。
答:脉动较小,使用的整流器件较全波整流时多一倍,整流电压脉动与全波整流相同,每个器件所承受的反向电压为电源电压峰复值。
2.说明滤波电容 C 的作用。
C有关答:滤波。
输出电压的脉动程度与平均值与放电时间常数RL3.总结稳压二极管的稳压作用和可调三端稳压器的稳压作用。
答:稳压二极管:稳定电压,稳压值是固定的,并联在电路上,功率较小,主要用在电路中稳定某一点的工作电压,多应用在控制电路,在击穿情况下才起控制作用的。
可调三端稳压器:稳定电压,稳压值是可调,串联在电路上,功率较大,主要用在为整个或部分电路提供稳定或可调的供电电源,多用在供电电路,不能击穿。
实训三整流滤波电路及稳压管电路
一、实训的目的
1.掌握单相桥式整流电路的应用
2.掌握电容滤波电路的特性
3.掌握稳压管稳压的应用和测试
二、实训电路
三、实训内容与步骤
1.整流电路
(1)按图14-1连接好实训电路,不加滤波电容,取RL=240Ω,将实训台上AC220V交流电源用实训连接线和DDZ-21上变压器的220 V输入端相连接,低压交流电源14V连接到实训电路的输入端。
(2)打开电源开关,用直流电压表测UL,并与理论计算值相比较。
(3)用示波器分别观察U2和UL的波形,并绘制其波形图。
2.滤波电路
(1)按图14-1连接好实训电路,取RL=240Ω,C=470uF,将实训台上低压交流电源14V 连接到实训电路的输入端。
(2)打开电源开关,用直流电压表测UL,并与理论计算值相比较。
(3)用示波器分别观察U2和UL的波形,并绘制其波形图。
3.稳压二极管稳压电路
(1)按图14-2连接好实训电路,取RL=240Ω,C=470uF,整流电路同图1实训电路,将实训台上低压交流电源10V连接到实训电路的输入端。
(2)打开电源开关,用直流电压表测稳压二极管两端电压。
(3)将240Ω的电阻换成120Ω+1k电位器,改变电位器的阻值,在测量稳压管两端电压,看稳压二极管两端电压变化情况,根据稳压二极管的工作原理说明上述现象。
四、实训总结
1.改接电路,必须切断交流电源。
2.总结整流、滤波电路特点。
3.总结稳压管稳压电路的特性。
实验六整流、滤波、稳压电路
一、实验目的
1. 掌握桥式整流的特点。
2. 了解稳压电路的组成和稳压作用。
3. 熟悉集成三端可调稳压器的使用。
二、实验属性
验证性实验
三、实验仪器设备及器材
1. 试验台
2. 示波器
3. 数字万用表
四、预习要求
1. 二极管全波整流的工作原理及整流输出波形。
2. 整流电路分别接电容、稳压管时的工作原理及输出波形
3. 熟悉集成三端可调稳压器的工作原理。
五、实验内容与步骤
首先校准示波器
1. 桥式整流:
按图 8-1 接线,在输入端接入交流 14V 电压,调节 W2 使 I0= 50mA 时,测
出 Vo ,同时用示波器的 DC 档观察输出波形并记入表 8-1 中。
表 8-1
图 8-1仿真参考电路
2. 加电容滤波:
上述实验电路不动,在桥式整流后面加电容滤波,如图8-2 接线,测量接电容的情况下输入电压V0 及输出电流I0 ,同时用示波器的DC 档观察输出波形并记入表8-2 中。
表8-2
V0 波形
V i(V)V0 (V)I0 (mA)
17.95319.79877.852如下
桥式整流带
电
容滤波电
图 8-2
仿真参考电路
3. 加稳压二极管
上述电路不动,在电容后面加稳压二极管电路,如图8-3 接线,在接通交流14V 电源后,调整W2 使I0 分别为10mA 、15mA 、20 mA 时,测出V AO 和V0,并用示波器的DC 档观测波形,记入表8-3 中。
、
表8-3
图 8-3
仿真参考电路
当 I0=10mA 时
当I0=15mA 时
当I0=20mA 时
≡Λ
VI
6 135 V
14
Vf∏⅜C
βOHz o∙
♦J⅛S-XMM1
—I I I
▼
7QH
MU t Sim 2020-(
AJnr 2L∣(S
×∖
z
' ZtCI
♦万厂.衣ZMM3
柯示波器∙XSC1 X
T2-T1
时间通道」通道.B 385.016 ms19.7S9V 6.136 V
比例IMmSyt>v 乂位贵∣0
F7τr Mi I B/A I MB I
通道A ____________ 通道3 ________________
比例I io v∕r>iv比例Ile) VQV
Y f⅛≡ ∣o Y f⅛≡ l≡
ACl 0 [DC e ACl o [PC J e
艮向I
保存I Ext. Trigger
触发1
边沿孑弋∣[Γ 8 I外部|| 电平fo
厂
类型正弦I标准1自动I贡
六、实验报告
1. 总结桥式整流的特点。
答:脉动较小,使用的整流器件较全波整流时多一倍,整流电压脉动
与全波整流相同,每个器件所承受的反向电压为电源电压峰复值。
2. 说明滤波电容 C 的作用。
答:滤波。
输出电压的脉动程度与平均值与
放电时间常数 R L C有关
3. 总结稳压二极管的稳压作用和可调三端稳压器的稳压作用。
答:
稳压二极管:稳定电压,稳压值是固定的,并联在电路上,功率较小,主要用在电路中稳定某一点的工作电压,多应用在控制电路,
在击穿情况下才起控制作用的。
可调三端稳压器:稳定电压,稳压值是可调,串联在电路上,功率较大,主要用在为整个或部分电路提供稳定或可调的供电电源,多
用在供电电路,不能击穿。