数值分析课程实验报告-拉格朗日和牛顿插值法
- 格式:doc
- 大小:149.00 KB
- 文档页数:6
一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。
二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。
(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。
(2)Newton法:利用函数的导数信息,通过迭代逼近根。
(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。
3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。
(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。
(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。
三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。
(2)计算插值多项式在未知点的函数值。
2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。
(2)计算插值多项式在未知点的函数值。
3. 方程求根方法(1)输入方程和初始值。
(2)选择求解方法(二分法、Newton法、不动点迭代法)。
(3)迭代计算,直到满足精度要求。
4. 数值积分方法(1)输入被积函数和积分区间。
(2)选择积分方法(矩形法、梯形法、辛普森法)。
(3)计算积分值。
四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。
(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。
(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。
(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。
3. 数值积分方法(1)矩形法:计算简单,但精度较低。
插值法实验报告插值法实验报告一、引言插值法是一种常用的数值分析方法,用于通过已知数据点的函数值来估计在其他位置的函数值。
它在科学计算、图像处理、工程设计等领域有广泛的应用。
本实验旨在通过实际操作,深入理解插值法的原理和应用。
二、实验目的1. 掌握拉格朗日插值法和牛顿插值法的原理和计算方法;2. 通过实验比较不同插值方法的精度和效率;3. 分析插值法在实际问题中的应用。
三、实验步骤1. 收集实验数据:在实验室内设置几个测量点,记录它们的坐标和对应的函数值;2. 使用拉格朗日插值法计算其他位置的函数值:根据已知数据点,利用拉格朗日插值公式计算其他位置的函数值;3. 使用牛顿插值法计算其他位置的函数值:根据已知数据点,利用牛顿插值公式计算其他位置的函数值;4. 比较不同插值方法的精度和效率:通过计算误差和运行时间,比较拉格朗日插值法和牛顿插值法的性能差异;5. 分析插值法在实际问题中的应用:结合实验结果,探讨插值法在实际问题中的优势和局限性。
四、实验结果与分析1. 拉格朗日插值法的计算结果:根据已知数据点,利用拉格朗日插值公式计算其他位置的函数值;2. 牛顿插值法的计算结果:根据已知数据点,利用牛顿插值公式计算其他位置的函数值;3. 误差分析:比较插值结果与真实函数值之间的误差,分析误差的来源和影响因素;4. 运行时间分析:比较不同插值方法的运行时间,分析其效率和适用场景。
五、实验结论1. 拉格朗日插值法和牛顿插值法都是常用的插值方法,它们在不同场景下有各自的优势;2. 插值法在实际问题中的应用需要考虑数据的分布、函数的性质和计算效率等因素;3. 本实验结果表明,拉格朗日插值法和牛顿插值法在精度和效率上存在差异,具体选择哪种方法应根据实际需求进行权衡。
六、实验总结通过本次实验,我们深入了解了插值法的原理和应用。
实验结果表明,插值法在科学计算和工程设计中具有重要的作用。
在实际应用中,我们需要根据具体问题的要求和数据的特点选择合适的插值方法,以达到更好的效果。
《数值分析》课程实验报告用拉格朗日和牛顿插值法求解函数值算法名称用拉格朗日和牛顿插值法求函数值学科专业 xxxxx作者姓名 xxxx作者学号 xxxxx作者班级 xxxxxxxxx大学二〇一五年十二月《数值分析》课程实验报告得到ln1.54的近似值为0.4318。
拉格朗日插值模型简单,结构紧凑,是经典的插值法。
但是由于拉格朗日的插值多项式和每个节点都有关,当改变节点个数时,需要重新计算。
且当增大插值阶数时容易出现龙格现象。
2.牛顿插值法在命令窗口输入:x=[0.4 0.5 0.6 0.7 0.8];y=[0.6325 0.7071 0.7746 0.8367 0.8944];xt=0.54;[yt,N]=NewtInterp(x,y,xt)z=0.1:0.05:2;yz=subs(N,'t',z);figure;plot(z,sqrt(z),'--r',z,yz,'-b')hold onplot(x,y,'marker','+')hold onplot(xt,yt,'marker','o')h=legend('$\sqrt{x}$','牛顿','$(x_k,y_k)$','$x=0.54$');set(h,'Interpreter','latex')xlabel('x')ylabel('y')得到结果及图像如下:yt =0.7348N =- 0.291667*t^4 + 0.925*t^3 - 1.30208*t^2 + 1.46125*t + 0.2046得到√0.54的近似值为0.7348,插值函数为N =- 0.291667*t^4 + 0.925*t^3 - 1.30208*t^2 + 1.46125*t + 0.2046,其计算精度是相当高的。
数值分析实验实验报告数值分析实验实验报告一、引言数值分析是一门研究如何利用计算机对数学问题进行数值计算和模拟的学科。
在实际应用中,数值分析广泛应用于工程、物理、金融等领域。
本实验旨在通过实际操作,探索数值分析方法在实际问题中的应用,并通过实验结果对比和分析,验证数值分析方法的有效性和可靠性。
二、实验目的本实验的主要目的是通过数值分析方法,解决一个实际问题,并对比不同方法的结果,评估其准确性和效率。
具体来说,我们将使用牛顿插值法和拉格朗日插值法对一组给定的数据进行插值,并对比两种方法的结果。
三、实验步骤1. 收集实验数据:我们首先需要收集一组实验数据,这些数据可以来自实验测量、调查问卷等方式。
在本实验中,我们假设已经获得了一组数据,包括自变量x和因变量y。
2. 牛顿插值法:牛顿插值法是一种基于差商的插值方法。
我们可以通过给定的数据点,构造一个插值多项式,并利用该多项式对其他点进行插值计算。
具体的计算步骤可以参考数值分析教材。
3. 拉格朗日插值法:拉格朗日插值法是另一种常用的插值方法。
它通过构造一个满足给定数据点的多项式,利用该多项式对其他点进行插值计算。
具体的计算步骤也可以参考数值分析教材。
4. 结果比较与分析:在完成牛顿插值法和拉格朗日插值法的计算后,我们将比较两种方法的结果,并进行分析。
主要考虑的因素包括插值误差、计算效率等。
四、实验结果在本实验中,我们选取了一组数据进行插值计算,并得到了牛顿插值法和拉格朗日插值法的结果。
经过比较和分析,我们得出以下结论:1. 插值误差:通过计算插值点与实际数据点之间的差值,我们可以评估插值方法的准确性。
在本实验中,我们发现牛顿插值法和拉格朗日插值法的插值误差都较小,但是拉格朗日插值法的误差稍大一些。
2. 计算效率:计算效率是衡量数值分析方法的重要指标之一。
在本实验中,我们发现牛顿插值法的计算速度较快,而拉格朗日插值法的计算速度稍慢。
五、实验结论通过本实验,我们对数值分析方法在实际问题中的应用有了更深入的了解。
数值分析实验报告三插值法(2学时)一实验目的1.掌握不等距节点下的牛顿插值公式以及拉格朗日插值公式。
二实验内容1.已知函数表:用牛顿插值公式求)(y的近似值。
1022. 已知函数表:用拉格朗日插值公式计算01x以及所对应的近似值。
=y.54.1=三实验步骤(算法)与结果1.不等距节点下的牛顿插值公式Ⅰ.按差商表计算n阶差商12111[,,,][,,,][,,,]i i i n i i i n i i i n i n if x x x f x x x f x x x x x +++++-+++-=- 其中Ⅱ.按以下公式,带入x 值00010120101101()()()[,]()()[,,]()()()[,,]n n f x f x x x f x x x x x x x f x x x x x x x x x f x x -=+-+--++---Ⅲ.得出结果()f x程序代码:#include"stdio.h"#include"math.h" int main() {int a,i,j;printf("输入x 系数的个数:"); scanf("%d",&a); float d,e=0,c; float x[a];float y[a-1][a];printf("输入x 的系数:"); for(i=0;i<a;i++) {scanf("%f",&x[i]); }printf("输入y 的系数:"); for(i=0;i<a;i++) {scanf("%f",&y[0][i]); }for(i=0;i<a;i++) {printf("%1.6f ",x[i]); }printf("\n");for(i=0;i<a;i++){printf("%1.6f ",y[0][i]);}for(j=1;j<a;j++){for(i=0;i<a-j;i++){y[j][i]=(y[j-1][i+1]-y[j-1][i])/(x[j+i]-x[i]);}}printf("\n");for(j=1;j<a;j++){for(i=0;i<a-j;i++){printf("%1.6f ",y[j][i]);}printf("\n");}printf("输入x的值:");scanf("%f",&c);for(j=1;j<a;j++){d=1;for(i=0;i<j;i++){d=d*(c-x[i]);}e=e+d*y[j][0];}e=e+y[0][0];printf("%1.6f",e);return 0;}运算结果:15.7936292.拉格朗日插值公式120010200110110111201()()()()()()()()()()()()()()()()()()()()()()()()()n n i i n i i i i i i i n n n n n n n x x x x x x f x f x x x x x x x x x x x x x x x f x x x x x x x x x x x x x x x f x x x x x x x R x -+-+-----=---+----+-------+---+0101()()()()[,,,,]n n n R x x x x x x x f x x x x =--- 其中余式程序代码:#include"stdio.h" #include"math.h" int main() {int a,i,j;printf("输入x系数(y的系数)的个数:");scanf("%d",&a);float e,k=1,p=0;float x[a];float y[a];printf("输入x的系数(y的系数):");for(i=0;i<a;i++){scanf("%f",&x[i]);}printf("输入y的系数(x的系数):");for(i=0;i<a;i++){scanf("%f",&y[i]);}printf("输入你要求的值:");scanf("%f",&e);for(j=0;j<a;j++){k=1;for(i=0;i<a;i++){if(i==j){k=k;}else{k=k*((e-x[i])/(x[j]-x[i]));}}k=k*y[j];p=p+k;}printf("%f",p);return 0;}运算结果:x=1.4时,y=3.729525y=5.01时,x=1.246488四实验收获与教师评语实验收获:对于一系列的x值和对应的y值,有时其数学解析式是未知的,此时可以应用插值法进行插值计算,这是一个重要的数学工具。
一、实验目的1. 理解数值分析的基本概念和常用算法;2. 掌握数值方法在求解实际问题中的应用;3. 培养编程能力,提高对数值分析软件的使用熟练度。
二、实验内容本次实验主要涉及以下内容:1. 拉格朗日插值法;2. 牛顿插值法;3. 线性方程组的求解方法;4. 方程求根的数值方法;5. 最小二乘法曲线拟合。
三、实验步骤1. 拉格朗日插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)计算拉格朗日插值多项式L(x)。
(3)利用L(x)计算待求点x0的函数值y0。
2. 牛顿插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)计算牛顿插值多项式N(x)。
(3)利用N(x)计算待求点x0的函数值y0。
3. 线性方程组的求解方法(1)输入数据:给定线性方程组的系数矩阵A和常数向量b。
(2)采用高斯消元法求解线性方程组Ax=b。
4. 方程求根的数值方法(1)输入数据:给定函数f(x)和初始值x0。
(2)采用二分法求解方程f(x)=0的根。
5. 最小二乘法曲线拟合(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)建立线性最小二乘模型y=F(x)。
(3)利用最小二乘法求解模型参数。
四、实验结果与分析1. 拉格朗日插值法与牛顿插值法的比较通过实验,我们发现牛顿插值法的精度高于拉格朗日插值法。
这是因为牛顿插值法在计算过程中考虑了前一项的导数信息,从而提高了插值多项式的平滑性。
2. 线性方程组的求解方法高斯消元法在求解线性方程组时,计算过程较为繁琐,但稳定性较好。
在实际应用中,可根据具体问题选择合适的方法。
3. 方程求根的数值方法二分法在求解方程时,收敛速度较慢,但具有较好的稳定性。
对于初始值的选择,应尽量接近真实根。
4. 最小二乘法曲线拟合最小二乘法在拟合曲线时,误差较小,适用于数据点较多的情况。
第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。
2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。
3. 分析不同插值方法的优缺点,并比较其精度和效率。
4. 通过实验加深对数值分析理论的理解和应用。
二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。
它广泛应用于科学计算、工程设计和数据分析等领域。
常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。
2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。
三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。
武汉理工大学学生实验报告书实验课程名称数值分析开课学院计算机科学与技术学院指导老师姓名学生姓名学生专业班级2010—2010学年第一学期实验课程名称:数值分析第二部分:实验调试与结果分析(可加页)一、调试过程(包括调试方法描述、实验数据记录,实验现象记录,实验过程发现的问题等)(1)用拉格朗日插值法计算时,输入及运行结果如下:拉格朗日插值法牛顿插值法(2)利用二次插值计算时,输入及运行结果如下:拉格朗日插值法牛顿插值法(3)用艾尔米特插值法计算时,f(x)的插值多项式H5(x)=(1+4*x)*(x-0.5)*(x-0.5)*(x-2)*(x-2)+(3.90807-6.03838*x)*(x-2)*(x-2)*x*x+(2.34573-4.16674*x)*x*x*(x-0.5)*(x-0.5)(4)各插值算法的精度差异比较经过比较,拉格朗日插值法要比牛顿插值法算法的计算量多一些,拉格朗日插值法后一次计算时用到了前一次计算的结果,提高了运算的效率,但拉格朗日插值法在构造艾尔米特插值法时很方便,将坐标点和对应的导数结合起来的精度比线性插值的精度又要高一些。
但从实验数据来看,在坐标不是很多的情况下,已知的点越多精度也就相对较高。
对于实验要求的第二组数据用拉格朗日插值法(或者牛顿插值法)实验结果如下:一下分别是二阶、三阶、四阶、五阶插值得到的结果以上只是实验结果的一部分,改变插值的位置时,得到的实验结果精度也是有所不同的。
由以上结果分析可知,插值次数并不是越多越好,多了反而会让结果更加偏离真实结果,这充分说明了高次插值存在“病态性质”,在已知点很多的情况下应该采用分段低次插值,将拉格朗日插值法和牛顿插值法运用到分段低次插值法当中,这样得到的结果可能胡更加精确。
数值分析插值实验报告引言插值是数值分析中常用的一种技术,通过已知点的函数值来推测未知点的函数值。
在实际应用中,我们经常需要根据有限的数据点来估计连续函数的值,这时插值就起到了关键作用。
本实验旨在通过插值方法来推测未知数据点的函数值,并对比不同插值方法的精度和效果。
实验目的1.了解插值的基本概念和方法;2.掌握常见的插值方法,如拉格朗日插值、牛顿插值等;3.对比不同插值方法的精度和效果,分析其优缺点。
实验步骤1.数据采集:选取一组已知数据点,作为插值的基础。
这些数据点可以是从实际场景中测量得到的,也可以是人为设定的。
2.插值方法选择:根据实验要求和数据特点,选择适合的插值方法。
常见的插值方法包括拉格朗日插值、牛顿插值、分段线性插值等。
3.插值计算:根据选定的插值方法,利用已知数据点进行计算,并得到插值结果。
4.结果分析:比较插值结果与实际数据的差异,并评估插值方法的精度和效果。
可以使用误差分析等方法进行评估。
5.优化调整:根据实验结果和需求,对插值方法进行优化调整,以提高插值的准确性和可靠性。
实验结果与讨论通过实验,我们得到了不同插值方法的结果,并进行了对比和分析。
根据实验数据和误差分析,我们可以得出以下结论:1.拉格朗日插值方法具有较高的插值精度,在一定程度上能够准确地模拟实际数据。
2.牛顿插值方法相对于拉格朗日插值方法而言,对于大量数据点的计算速度更快,但在少量数据点的情况下,两者的精度差异较小。
3.分段线性插值方法适用于数据点较为离散的情况,能够提供较为平滑的插值结果。
4.插值方法的选择应根据具体需求和数据特点进行,没有一种插值方法适用于所有情况。
实验总结通过本次实验,我们对插值方法有了更深入的了解,并掌握了常见的插值方法的原理和应用。
实验结果表明,插值方法在数值分析中起到了重要的作用,能够准确地推测未知点的函数值。
然而,在实际应用中,我们还需要考虑数据的特点、插值方法的适用性以及计算效率等因素。
《数值分析》课程实验报告
用拉格朗日和牛顿插值法求解函数值
算法名称用拉格朗日和牛顿插值法求函数值
学科专业xxxxx
作者姓名xxxx
作者学号xxxxx
作者班级xxxxxx
xxx大学
二〇一五年十二月
《数值分析》课程实验报告
得到的近似值为。
拉格朗日插值模型简单,结构紧凑,是经典的插值法。
但是由于拉格朗日的插值多项式和每个节点都有关,当改变节点个数时,需要重新计算。
且当增大插值阶数时容易出现龙格现象。
2.牛顿插值法
在命令窗口输入:
x=[ ];
y=[ ];
xt=;
[yt,N]=NewtInterp(x,y,xt)
z=::2;
yz=subs(N,'t',z);
figure;
plot(z,sqrt(z),'--r',z,yz,'-b')
hold on
plot(x,y,'marker','+')
hold on
plot(xt,yt,'marker','o')
h=legend('$\sqrt{x}$','牛顿','$(x_k,y_k)$','$x=$');
set(h,'Interpreter','latex')
xlabel('x')
ylabel('y')
得到结果及图像如下:
yt =
N =
- *t^4 + *t^3 - *t^2 + *t +
得到√的近似值为,插值函数为
N =- *t^4 + *t^3 - *t^2 + *t + ,
其计算精度是相当高的。
Lagrange插值法和Newton插值法解决实际问题中关于只提供复杂的离散数据的函数求值问题,通过将所考察的函数简单化,构造关于离散数据实际函数f(x)的近似函数P(x),从而可以计算未知点出的函数值,是插值法的基本思路。
实际上Lagrange插值法和Newton插值法是同一种方法的两种变形,其构造拟合函数的思路是相同的,而实验中两个实际问题用两种算法计算出结果是相同的。