压力容器焊接检测热处理技术要求
- 格式:ppt
- 大小:53.00 KB
- 文档页数:37
焊后热处理管理规定(QB/SAR0308-2005)1.0总则1.1目的:对公司制造的压力容器产品(或泵压部件)焊后热处理过程实施有效监督和控制,确保产品(或承压部件)焊后热处理质量符合设计、使用和相关标准规定要求。
1.2编制依据1.2.1《压力容器安全技术监察规程》;1.2.2《锅炉压力容器制造监督管理办法》;1.2.3《钢制压力容器》(GB150-1998);1.2.4《锅炉压力容器产品安全性能监督检验规则》;1.2.5本公司相关的管理规定。
1.3适用范围本规程适用于公司制造的压力容器产品(或承压部件)的焊后热处理过程的监督和控制。
主要包括以下内容:1.3.1本公司自行进行的产品(或承压部件)局部(焊缝、热影响区)焊后热处理。
1.3.2本公司暂无能力实施需委托分包单位进行的产品(承压部件)整体焊后热处理。
2.0局部焊后热处理2.1局部热处理范围2.1.1压力容器产品的B、C、D类焊接接头,球形封头与圆角相连的A类焊接接头及缺陷补焊部位。
2.1.2局部热处理时,焊缝每侧加热宽度不小于钢材厚度的2倍;接管与壳体相焊时加热宽度不得小于钢材厚度的6倍。
2.1.3靠近加热区的部位应采取保温措施,使温度梯度不致影响材料的组织和性能。
2.2局部热处理控制2.2.1由热处理工艺员编制热处理过程工艺卡,经热处理责任师审批后实施。
2.2.2由热处理签发热处理任务单,对需进行焊后热处理内容向热处理人员进行安排,必要时还应附有示意简图,并对热处理开始时间作出要求。
2.2.3热处理人员按接受的热处理任务单和工艺卡的规定要求,实施过程参数控制,确保热处理过程和质量符合规定要求。
3.0产品(或受压部件)整体热处理因公司目前暂不具备压力容器产品(或受压部件)整体焊后热处理能力,根据《锅炉压力容器制造监督管理办法》的相关规定,可委托具备相应资质和能力的分包供方对我公司制造的压力容器(或承压部件)进行焊后整体热处理工序,具体按以下规定执行。
压力容器技术规范最新标准压力容器技术规范是确保压力容器安全运行的重要指导性文件,随着技术的发展和实践经验的积累,这些规范会不断更新以适应新的应用需求和安全标准。
以下是最新的压力容器技术规范的主要内容:1. 适用范围:本规范适用于所有工业用途的压力容器,包括但不限于储存、反应、换热等设备。
2. 设计原则:压力容器的设计应遵循安全、可靠、经济和环保的原则,确保在规定的使用条件下能够安全运行。
3. 材料选择:选用的材料应满足设计要求,包括力学性能、耐腐蚀性、焊接性等,并应符合相关材料标准。
4. 设计标准:压力容器的设计应符合国家或国际上认可的设计标准,如ASME(美国机械工程师协会)标准、EN(欧洲标准)等。
5. 制造和检验:压力容器的制造应严格按照设计图纸和技术规范进行,制造过程中应进行严格的质量控制和检验。
6. 焊接和无损检测:焊接是压力容器制造中的关键环节,应采用合格的焊接工艺和焊接材料。
无损检测包括射线检测、超声波检测等,以确保焊接质量。
7. 热处理:对于某些材料和结构形式的压力容器,可能需要进行热处理以改善材料性能或消除焊接应力。
8. 安全附件:压力容器应配备必要的安全附件,如安全阀、压力表、液位计等,并确保这些附件的可靠性和准确性。
9. 操作和维护:压力容器的操作应遵循操作规程,定期进行维护和检查,以确保其长期安全运行。
10. 事故预防和应急处理:应制定压力容器事故预防措施和应急处理预案,以应对可能发生的事故。
11. 法规和标准更新:压力容器的设计、制造和使用应随时关注相关法规和标准的更新,确保符合最新的安全和技术要求。
12. 环保要求:在设计和制造过程中,应考虑环保因素,减少对环境的影响。
13. 用户培训:压力容器的用户应接受专业培训,了解设备的操作规程和安全知识。
14. 记录和文档管理:应建立完整的压力容器记录和文档管理系统,记录设备的设计、制造、检验、使用和维护等信息。
15. 结束语:压力容器的安全运行对于保障人员安全和环境安全至关重要。
压力容器焊接检测热处理技术要求压力容器是工业生产中常见的一种设备,用于储存或运输加压气体或液体。
由于其具有承受高压力的特点,焊接、检测以及热处理技术十分重要。
本文将从这三个方面来介绍压力容器的相关技术要求。
一、焊接技术要求焊接是连接压力容器构件的关键技术,对焊接的质量要求极高。
以下几点是焊接技术要求的重点:1.材料选择:焊接材料应与压力容器材料相近,确保焊接接头的密封性和强度。
2.焊接方法:常见的焊接方法有手工电弧焊、气体保护焊、等离子焊等。
选择合适的焊接方法,确保焊缝的质量和强度。
3.焊接接头设计:焊接接头应设计为使应力分布均匀的形状,避免应力集中导致焊缝破裂。
4.焊接质量控制:焊接前应对焊缝的表面进行清洁,焊接过程中要控制好焊接参数,避免焊接变形和气孔、裂纹等缺陷的产生。
二、检测技术要求为保证压力容器的安全运行,对焊接接头进行检测是必要的。
以下是常见的焊接接头检测技术:1.X射线检测(RT):通过照射X射线,观察焊缝中的缺陷如气孔、夹渣等。
根据焊缝的表面形态和密度变化,判断焊缝是否合格。
2.超声波检测(UT):利用超声波的传播和回波特性来检测焊缝内的缺陷。
可以发现焊缝内的气孔、夹渣、裂纹等缺陷。
3.磁粉检测(MT):通过涂抹磁粉,利用磁场的变化来检测焊缝表面和近表面的裂纹、夹渣等缺陷。
4.渗透检测(PT):将渗透剂涂敷在焊接接头上,根据渗透剂在缺陷处的渗透性能,来检测焊接接头中的裂纹、夹渣等缺陷。
在焊接完成后,还需要对焊接接头进行热处理,以提高焊接接头的强度和韧性。
以下是常见的热处理技术要求:1.退火处理:通过加热至一定温度,保持一定时间后,再慢慢冷却,使焊接接头内部的组织发生变化,消除焊缝处的应力,提高焊接接头的韧性和强度。
2.回火处理:焊接接头在退火处理后,如果硬度过高,会影响其韧性和冲击性能,回火处理可以调整焊接接头的硬度,保证其力学性能达到要求。
综上所述,焊接、检测以及热处理技术是压力容器制造过程中的关键环节。
压力容器焊后热处理工艺规程前言本标准代替《压力容器焊后热处理工艺规程》。
本标准与相比主要变化如下:——将常用钢原材料牌号变更为按GB713-2008标准的相应牌号自本标准实施之日起,原标准压力容器焊后热处理工艺规程》停止使用。
标准起草人:标准化审查:审核:批准:压力容器焊后热处理工艺规程1 范围本标准规定了压力容器焊后热处理工艺、设备、测量、检验等技术要求。
本标准适用于我公司制造的、有焊后热处理要求的压力容器及其零部件热处理。
2 热处理工艺2.1 整体热处理工艺2.1.1 装炉容器或零部件必须放置在有效加热区内。
装炉量、装炉方式及堆放形式均应确保加热、冷却均匀一致,且不致造成畸变及其它缺陷。
2.1.2 容器或零部件的装、出炉温度不大于400℃。
2.1.3 容器或零部件在炉内升温至400℃后,再继续升温,升温速度限制在55℃/h—220℃/h之间,一般升温速度按V升=5500/δS℃/h(δS为焊后热处理厚度,mm)控制;升温过程中要求加热均匀,被加热容器或零部件任意5米距离内温差不大于120℃。
2.1.4 炉温达到退火温度后进行保温,保温时间按(δS/25)小时计算;但不得少于0.5小时;保温期间被加热容器或零部件的全部受热段,最大温差不超过65℃。
2.1.5 保温阶段完成后炉冷至400℃以下出炉在空气中冷却;炉冷速度控制在55℃/h—280℃/h之间,一般炉冷速度按V降=7000/δS℃/h控制,炉冷过程温差要求与加热升温过程相同。
2.1.6 焊后热处理允许在炉内分段进行,分段热处理时,其重复热处理长度应不小于1500mm,炉外部分应采取保温措施,使温度梯度不致影响材料的组织和性能。
其它与整体热处理要求相同。
2.1.7 我公司常用钢材的压力容器焊后退火温度按表1执行,其它钢种按专用热处理工艺卡执行。
表12.1.8 焊后热处理通用工艺曲线图1注1:50℃/h≤V升=5000/δS ℃/h≤200℃/h50℃/h≤V降=6500/δS ℃/h≤260℃/h注2:同炉处理两种以上容器或零部件时,δS应选取最大厚度者。