(完整版)高阶、隐函数的导数和微分练习题
- 格式:doc
- 大小:241.51 KB
- 文档页数:5
高数第二章导数与微分知识点总结第一节 导数1.基本概念 (1)定义0000000000()()()()()|(|)'()lim lim lim x x x x x x x f x x f x f x f x dy df x yf x dx dx x x x x ==∆→∆→→+∆--∆====∆∆-或注:可导必连续,连续不一定可导.注:分段函数分界点处的导数一定要用导数的定义求. (2)左、右导数0'000000()()()()()lim lim x x x f x x f x f x f x f x x x x ---∆→→+∆--==∆-. 0'00000()()()()()lim lim x x x f x x f x f x f x f x x x x +++∆→→+∆--==∆-. 0'()f x 存在''00()()f x f x -+⇔=.(3)导数的几何应用曲线()y f x =在点00(,())x f x 处的切线方程:000()'()()y f x f x x x -=-.法线方程:0001()()'()y f x x x f x -=--. 2.基本公式(1)'0C = (2)'1()a a x ax -=(3)()'ln xxa a a =(特例()'xxe e =)(4)1(log )'(0,1)ln a x a a x a=>≠ (5)(sin )'cos x x = (6)(cos )'sin x x =-(7)2(tan )'sec x x = (8)2(cot )'csc x x =- (9)(sec )'sec tan x x x = (10)(csc )'csc cot x x x =-(11)2(arcsin )'1x x=- (12)2(arccos )'1x x=-(13)21(arctan )'1x x =+ (14)21(arccot )'1x x =-+ (152222[ln()]'x x a x a++=+3.函数的求导法则 (1)四则运算的求导法则()'''u v u v ±=± ()'''uv u v uv =+ 2''()'u u v uv v v-= (2)复合函数求导法则--链式法则设(),()y f u u x ϕ==,则(())y f x ϕ=的导数为:[(())]''(())'()f x f x x ϕϕϕ=.例5 求函数21sin xy e=的导数.(3)反函数的求导法则设()y f x =的反函数为()x g y =,两者均可导,且'()0f x ≠,则11'()'()'(())g y f x f g y ==. (4)隐函数求导设函数()y f x =由方程(,)0F x y =所确定,求'y 的方法有两种:直接求导法和公式法'''x yF y F =-.(5)对数求导法:适用于若干因子连乘及幂指函数 4.高阶导数二阶以上的导数为高阶导数.常用的高阶求导公式: (1)()()ln (0)x n x n a a a a => 特别地,(n)()x x e e =(2) ()(sin )sin()2n n kx k kx n π=+(3)()(cos )cos()2n n kx k kx n π=+(4)()1(1)(1)n n nn x x --+=-+ (5)()()(1)(2)(1)k n k n x k k k k n x -=---+(6)莱布尼茨公式:()()()()nn k n k k n k uv C u v -==∑,其中(0)(0),u u v v == 第二节 微分1.定义背景:函数的增量()()y f x x f x ∆=+∆-.定义:如果函数的增量y ∆可表示为()y A x o x ∆=∆+∆,其中A 是与x ∆无关的常数,则称函数()y f x =在点0x 可微,并且称A x ∆为x ∆的微分,记作dy ,则dy A x =∆.注:,y dy x dx ∆≠∆= 2.可导与可微的关系一元函数()f x 在点0x 可微,微分为dy A x =∆⇔函数()f x 在0x 可导,且0'()A f x =. 3.微分的几何意义 4.微分的计算(1)基本微分公式'()dy f x dx =. (2)微分运算法则 ②四则运算法则()d u v du dv ±=± duv vdu udv =+ 2()u vdu udvd v v-= ②一阶微分形式不变若u 为自变量,(),'()'()y f u dy f u u f u du ==∆=;若u 为中间变量,()y f u =,()u x ϕ=,'()'()'()dy f u x dx f u du ϕ==.练习题1、求下列函数的导数。
高阶导数练习题一、基本概念题1. 若函数f(x)的二阶导数f''(x)存在,则f''(x)是______的导数。
2. 设y = f(x^2),求y关于x的二阶导数。
3. 已知f(x) = x^3 + 3x^2 + 2x + 1,求f''(x)。
4. 若f(x) = e^(2x),求f^(4)(x)。
二、计算题1. 已知f(x) = sin(x^2),求f''(x)。
2. 设y = ln(x^2 + 1),求y的第三阶导数。
3. 已知y = (x^2 + 1)^(1/2),求y的第四阶导数。
4. 设f(x) = (x^3 3x)^5,求f''(x)。
5. 已知y = e^x cos(x),求y的第三阶导数。
三、应用题1. 设物体在直线运动中的位移s关于时间t的函数为s = t^3 3t^2 + 2t,求物体在t = 2时的加速度。
2. 已知某曲线的方程为y = 3x^4 4x^3 + 2x^2,求该曲线在x = 1处的曲率。
3. 设某函数f(x)的二阶导数f''(x) = 6x 4,求f(x)在x = 0处的拐点。
4. 已知某函数的图像在点(x, y)处的切线斜率为y' = 2x + 1,求该函数在x = 2处的曲率半径。
5. 设某物体的速度v关于时间t的函数为v = t^2 2t + 3,求物体在t = 1时的加速度和减速度。
四、综合题1. 已知函数f(x) = arctan(x^2),求f''(x)。
2. 设y = (x^2 + 1) e^x,求y的第四阶导数。
3. 已知y = x^3 ln(x),求y的第三阶导数。
4. 设f(x) = (1 + x^2)^(1/2),求f''(x)。
5. 已知y = (x^4 2x^2 + 1)^(1/3),求y的第四阶导数。
高阶导数1. 填空题.(1)x y 10=,则()()=0n y. (2)y x =sin 2,则()()y x n = ..2. 选择题. (1)设f x ()在()-∞+∞,内为奇函数且在()0,+∞内有'>f x ()0,''>f x ()0,则f x ()在()-∞,0内是( )A.'<f x ()0且''<f x ()0; B.'<f x ()0 且''>f x ()0; C.'>f x ()0且''<f x ()0; D.'>f x ()0 且''>f x ()0.(2)设函数()yf x =的导数'f x ()与二阶导数''f x ()存在且均不为零,其反函数为()x y =ϕ,则()''=ϕy ( )A .()1''f x ; B. ()()[]-'''f x f x 2;C. ()[]()'''f x f x 2; D. ()()[].3x f x f '''- 3. 求下列函数的n 阶导数. (1) .)1(αx y += (2) .5x y =4.计算下列各题.(1)()y x x =-11,求()().24y (2)()ye x x =-21,求().20y (3)y x x =-+1322,求()y n . (4)x y 2sin =,求().n y(5),2sin 2x x y = 求()..50y5. 设x x f 2cos )(cos '=,求).(''x f6. 已知)(''x f 存在,)(ln x f y =,求'.'y隐函数及由参数方程所确定的函数的导数1. 设y ey x x sin 22=-,求.dx dy 2. 设063sin 33=+-+y x y x ,求.0=x dx dy3.求曲线⎪⎪⎩⎪⎪⎨⎧+=+=2221313t ty t t x 在2=t 处的切线方程和法线方程. 4.利用对数求导法求导数.(1).1sin x e x x y -=(2)().sin ln x x y =5.设()y y x =由方程e y x xy +-=350所确定,试求d d y x x =0,.d d 022=x x y 6.求下列参数方程所确定的函数的各阶导数.(1) 设()x t y e t ==+⎧⎨⎪⎩⎪-ln sin tan 1,02<<⎛⎝ ⎫⎭⎪t π,求.d d x y (2) 设)(x y y =由⎩⎨⎧=+-++=01sin 3232y t e t t x y 确定,求.0=t dx dy 7.已知函数()()f x ax bx c x x x =++<+≥⎧⎨⎪⎩⎪2010,ln , ,在点x =0处有二阶导数,试确定参数a b c ,,的值.函数的微分1. 填空题.(1)设x x y 22-=在x 02=处∆x =001.,则=∆y ,=y d . (2) 设()y f x =在x 0处可微,则=∆→∆y x 0lim .(3)函数)(x f 在点0x 可微的必要充分条件是函数)(x f 在点0x .(4)d .1dx x = (5)d .3dx e x =(6)d .112dx x -=(7)d .2tan 2sec xdx x =.2. 选择题.(1) 设()y f u =是可微函数,u 是x 的可微函数,则d y =( )A .();d x u u f 'B .();d x u f 'C .();d u u f 'D .().d u u u f ''(2) 若f x ()可微,当∆x →0时,在点x 处的∆y y -d 是关于∆x 的 ( )A .高阶无穷小;B .等价无穷小;C .同阶无穷小;D .低阶无穷小. (3) 当∆x 充分小,'≠f x ()0时,函数()y f x =的改变量∆y 与微分d y 的关系是( )A .;d y y =∆B .;d y y <∆C .;d y y >∆D ..d y y ≈∆(4)()y f x =可微,则d y ( )A .与∆x 无关;B .为∆x 的线性函数;C .当∆x →0时是∆x 的高阶无穷小;D .当∆x →0时是∆x 的等价无穷小.3.求下列函数的微分.(1).412x x y += (2).2cos x x y =(3).2x e x y -=(4) .1cos 2x x y -= (5).)2ln (ln 3x y =4.设x x x y cos ln 22-=,求1=x dy .5.)(x f 可微,)(sin )(sin x f x f y -=,求.dy6.223y xy x y ++=,求.dy7.计算302.1和98.0ln 的近似值.8.钟摆摆动的周期T 与摆长l 的关系是g l T π2=,其中g 是重力加速度。
高中导数与微分精选练习题1. 导数的定义问题1给定函数$f(x) = 3x^2 + 2x - 5$,求函数$f(x)$在$x = 2$处的导数。
解答:导数的定义是函数在某一点的切线斜率,可以用极限的概念来表示。
函数$f(x)$的导数可以用$f'(x)$表示,即$f'(x) = \lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$。
首先,计算函数$f(x)$在$x = 2$处的导数。
将$x = 2$代入函数$f(x)$得$f(2) = 3(2)^2 + 2(2) - 5 = 15$。
接下来,我们计算导数的定义式。
将$x = 2$代入定义式得到:\[f'(2) = \lim_{h\to 0} \frac{f(2+h) - f(2)}{h}\]\[= \lim_{h\to 0} \frac{3(2+h)^2 + 2(2+h) - 5 - 15}{h}\]\[= \lim_{h\to 0} \frac{12h + 3h^2 + 6h + 7}{h}\]\[= \lim_{h\to 0} (3h + 6 + \frac{7}{h})\]\[= 6\]所以,函数$f(x)$在$x = 2$处的导数为6。
问题2对于函数$g(x) = \sqrt{4x + 1}$,求函数$g(x)$在$x = 3$处的导数。
解答:首先,计算函数$g(x)$在$x = 3$处的值。
将$x = 3$代入函数$g(x)$得$g(3) = \sqrt{4(3) + 1} = \sqrt{13}$。
接下来,我们使用导数的定义来计算导数。
将$x = 3$代入定义式得到:\[g'(3) = \lim_{h\to 0} \frac{g(3+h) - g(3)}{h}\]\[= \lim_{h\to 0} \frac{\sqrt{4(3+h) + 1} - \sqrt{13}}{h}\]由于根式的导数计算比较复杂,我们可以将定义式进行简化,令$t = 3 + h$,则上述式子可以改写为:\[g'(3) = \lim_{t\to 3} \frac{\sqrt{4t + 1} - \sqrt{13}}{t - 3}\]接下来,我们使用极限性质来计算该极限。
【090501】【计算题】【中等0.5】【隐函数的求导公式】【隐函数的求导】 【试题内容】设函数z z x y =(,)由z x e t t xy+=-⎰2d 所确定,试求∂∂∂∂z x z y,。
【试题答案及评分标准】解:原式两边分别对x y ,求偏导得∂∂∂∂zxye zxye xy xy +==---1122()()。
(6分)∂∂zyxe xy =-()2 (10分)【090502】【计算题】【中等0.5】【隐函数的求导公式】【隐函数的求导】 【试题内容】设函数z z x y =(,)由yz zx xy ++=3所确定,试求∂∂∂∂z x zy,(其中x y +≠0)。
【试题答案及评分标准】 解:原式两边对x 求导得yz x x z xz y ∂∂∂∂+++=0 则∂∂z x z y y x=-++(6分)同理可得:∂∂z y z xy x=-++ (10分)也可:∂∂∂∂z x F F z y y x z y F F z x y xx y y x =-=-++=-=-++【090503】【计算题】【中等0.5】【隐函数的求导公式】【隐函数的求导】 【试题内容】设函数z z x y =(,)由sin()y z e x z -+=-2所确定,试求∂∂∂∂z x zy,。
【试题答案及评分标准】解:原式sin()y z e x y-+=-2两边求微分得cos()(d d )(d d )y z y z e x z x z --+--= 0d d cos()d cos()z e x y z ye y z x z x z=+-+--- (6分)则∂∂z x e e y z x zx z=+---cos()(8分)∂∂z y y z e y z x z=-+--cos()cos()(10分)【090504】【计算题】【中等0.5】【隐函数的求导公式】【隐函数的求导】 【试题内容】设y y x z =(,)由方程e e e xyz x y z ++=3所确定,试求∂∂∂∂y x yz,。
第二章 导数与微分(A)1.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,相应函数的改变量=∆y ( )A .()x x f ∆+0B .()x x f ∆+0C .()()00x f x x f -∆+D .()x x f ∆0 2.设()x f 在0x 处可,则()()=∆-∆-→∆xx f x x f x 000lim( )A .()0x f '-B .()0x f -'C .()0x f 'D .()02x f ' 3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 4.设函数()u f y =是可导的,且2x u =,则=dxdy( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x 5.若函数()x f 在点a 连续,则()x f 在点a ( )A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义 6.()2-=x x f 在点2=x 处的导数是( ) A .1 B .0 C .-1 D .不存在7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( ) A .8 B .12 C .-6 D .68.设()x f e y =且()x f 二阶可导,则=''y ( )A .()x f e B .()()x f e x f '' C .()()()[]x f x f e x f ''' D .()()[](){}x f x f e x f ''+'29.若()⎩⎨⎧≥+<=0,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( )A .2=a ,1=bB . 1=a ,2=bC .2-=a ,1=bD .2=a ,1-=b10.若函数()x f 在点0x 处有导数,而函数()x g 在点0x 处没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .恰有一个有导数D .至少一个有导数11.函数()x f 与()x g 在0x 处都没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .至少一个有导数D .至多一个有导数 12.已知()()[]x g f x F =,在0x x =处可导,则( ) A .()x f ,()x g 都必须可导 B .()x f 必须可导C .()x g 必须可导D .()x f 和()x g 都不一定可导13.xarctg y 1=,则='y ( )A .211x +-B .211x + C .221x x +- D . 221x x +14.设()x f 在点a x =处为二阶可导,则()()=-+→hh a f h a f h 0lim ( )A .()2a f '' B .()a f '' C .()a f ''2 D .()a f ''- 15.设()x f 在()b a ,内连续,且()b a x ,0∈,则在点0x 处( )A .()x f 的极限存在,且可导B .()x f 的极限存在,但不一定可导C .()x f 的极限不存在D .()x f 的极限不一定存在 16.设()x f 在点a x =处可导,则()()=--→hh a f a f n 0lim。
第三章导数与微分[单选题]1、设函数,则高阶导数=()A、12!B、11!C、10!D、0【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】本题考察高阶导数计算.因为多项式的最高次幂为11,故=0.[单选题]2、f(x)=4x-x3在点(-1,-3)处的切线方程为( )A、y=x-2B、y=x+2C、y=-x+2D、y=-2x+1【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】f(x)=4x-x3, f(-1)=-4+1=-3,故(-1,-3)在所给的曲线上. 又f ' (x)=4-3x2故f ' (-1)=4-3=1∴过(-1,-3)的切线方程为y=(x+1)-3=x-2.[单选题]3、y=cos3x-cos3x的导数为( )A、3(sin3x-sinxcos2x)B、3(sin3x+sinxcos2x)C、3(sinx-sinxcos2x)D、3(sin3x-sin3xcos2x)【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】 y’=(cos3x)' -(cos3x) '=3cos2x(-sinx)-(-sin3x)×3=3(sin3x-sinxcos2x)[单选题]4、设y=x n+e-x,则y(n)(0)=()A、n!+(-1)nB、n!C、n!+(-1)n-1D、n!-1【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】y(n)(x)=n!+(-1)n e-x,从而y(n)(0)=n!+(-1)n[单选题]5、设函数f(x)=arctanx,求=( )A、-2B、1C、3D、0【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】[单选题]6、设y=lnx,则y(n)=()A、(-1)n n!x-nB、(-1)n(n-1)!x-2nC、(-1)n-1(n-1)!x-nD、(-1)n-1n!x-n+1【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】y′=x-1,y′′=-1!x-2, y′′′=2!x-3,…. y(n)= (-1)n-1(n-1)!x-n[单选题]7、已知函数,则f(x)在点x=0处()A、连续但导数不存在B、间断C、导数f ’(0)=-1D、导数f ’(0)=1【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】所以,f(x)在点x=0处间断,答案为B.[单选题]8、y=(2x2-x+1)2的导数为( )A、2(2x2-x+1)(4x-1)B、(2x2-x+1)(4x-1)C、(2x2-x+1)(4x+1)D、(2x2+x+1)(4x-1)【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】y’=2(2x2-x+1)(2x2-x+1)’=2(2x2-x+1)(4x-1)[单选题]9、设函数f(x)在x0点可微是f(x)在该点可导的( )A、充分必要条件B、充分条件C、必要条件D、无关条件【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】设函数f(x)在x0点可导是f(x)在该点可微的充要条件,对于一元函数,两者是等价的。
高阶导数
1. 填空题.
(1)x y 10=,则()()=0n y
. (2)y x =sin 2,则()()y x n = ..
2. 选择题. (1)设
f x ()在()-∞+∞,内为奇函数且在()0,+∞内有'>f x ()0,''>f x ()0,则f x ()在()-∞,0内是( )
A.
'<f x ()0且''<f x ()0; B.'<f x ()0 且''>f x ()0; C.'>f x ()0且''<f x ()0; D.'>f x ()0 且''>f x ()0.
(2)设函数()y
f x =的导数'f x ()与二阶导数''f x ()存在且均不为零,其反函数为()x y =ϕ,则()''=ϕy ( )
A .()1''f x ; B. ()()[]
-'''f x f x 2;C. ()[]()'''f x f x 2; D. ()()[].3x f x f '''- 3. 求下列函数的n 阶导数. (1) .)1(αx y += (2) .5x y =
4.计算下列各题.
(1)()
y x x =-11,求()().24y (2)()y
e x x =-21,求().20y (3)y x x =-+132
2,求()y n . (4)x y 2sin =,求().n y
(5),2sin 2x x y = 求()..50y
5. 设x x f 2cos )(cos '=,求).(''x f
6. 已知)(''x f 存在,)(ln x f y =,求'.'y
隐函数及由参数方程所确定的函数的导数
1. 设y e
y x x sin 22=-,求.dx dy 2. 设063sin 33=+-+y x y x ,求
.0=x dx dy
3.求曲线⎪⎪⎩
⎪⎪⎨⎧+=+=222
1313t t
y t t x 在2=t 处的切线方程和法线方程. 4.利用对数求导法求导数.
(1).1sin x e x x y -=
(2)().sin ln x x y =
5.设()y y x =由方程e y x xy +-=3
50所确定,试求d d y x x =0,.d d 022=x x y 6.求下列参数方程所确定的函数的各阶导数.
(1) 设()
x t y e t ==+⎧⎨⎪⎩⎪-ln sin tan 1,02<<⎛⎝ ⎫⎭⎪t π,求.d d x y (2) 设)(x y y =由⎩⎨⎧=+-++=0
1sin 3232y t e t t x y 确定,求.0=t dx dy 7.已知函数()()f x ax bx c x x x =++<+≥⎧⎨⎪⎩⎪2010
,ln , ,在点x =0处有二阶导数,试确定参数a b c ,,的值.
函数的微分。