现代光学系统第四章习题答案
- 格式:ppt
- 大小:109.00 KB
- 文档页数:3
第四章 光的偏振(2)一.选择题:(共30分)1.在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹,若在两缝后放一个偏振片,则[ ](A ) 干涉条纹的间距不变,但明纹的亮度加强。
(B ) 干涉条纹的间距不变,但明纹的亮度减弱。
(C ) 干涉条纹的间距不窄,但明纹的亮度减弱。
(D ) 无干涉条纹。
2.光强为I 0的自然光垂直通过两个偏振片,它们的偏振化方向之间的夹角α =600,设偏振片没有吸收,则出射光强I 与入射光强I 0之比为 [ ](A )1/4 (B ) 3/4 (C )1/8 (D )3/83.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为600,假设二者对光无吸收,光强为I 0的自然光垂直入在偏振片上,则出射光强为 [ ](A) I 0/8 (B) 3I 0 /8 (C) I 0 /4 (D) 3 I 0/44.光强为I 0的自然光依次通过两个偏振片和,若的偏振化方向的夹角,则透射偏振光的强度是[ ](A) I 0/4 (B) √3 I 0/4 (C) √3 I 0/2 (D) I 0/8 (E) 3I 0 /85.两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过。
当其中一偏振片慢慢转动1800时透射光强度发生变化为: [ ](A) 光强单调增加。
(B) 光强先增加,后有减小至零(C) 光强先增加,后减小,再增加(D) 光强先增加,然后减小,再增加,再减小至零6.一束自然光自空气射向 一块平板玻璃(如图),设入射角等于布儒斯特角i 0 ,则在界面2的反射光 [ ](A) 是自然光(B) 是完全偏振光且光矢量的振动方向垂直入射面 (C) 是完全偏振光且光矢量的振动方向平行入射面(D) 是部分偏振光7.一束单色平面偏振光,垂直投射到一块用方解石(负晶体)制成的四分之一波片(对投射光的频率)上,如图所示,如果入射光的振动面与光轴成450角,则对着光看从波片射出的光是(A) 逆时针方向旋转的圆偏振光(B) 逆时针方向旋转的椭圆偏振光(C) 顺时针方向旋转的圆偏振光(D) 顺时针方向旋转的椭圆偏振光8(A) 线偏振光 (B) 部分偏振光(C) 和原来旋转方向相同的圆偏振光(D) 和原来旋转方向相反的圆偏振光9(对投射光的频率)上,如图所示 成300角,则对着光看从波片射出的光是(A) 逆时针方向旋转的圆偏振光(B) 逆时针方向旋转的椭圆偏振光(C) 顺时针方向旋转的圆偏振光(D) 顺时针方向旋转的椭圆偏振光10.一束单色线偏振光其偏振化方向与1/4波片的光轴夹角α =π/4。
第四章习题4.1 若光波的波长宽度为λΔ,频率宽度为νΔ,试证明:λλννΔΔ=。
设光波波长为nm 8632=.λ,nm 8-10⨯2=λΔ,试计算它的频宽νΔ。
若把光谱分布看成是矩形线型,那么相干长度?=c l证明:参阅苏显渝,李继陶《信息光学》P349,第4.1题答案。
421.510c λνλ∆∆==⨯赫,32010()c c cl ct m ν===⨯∆4.2 设迈克尔逊干涉仪所用的光源为nm 0589=1.λ,nm 6589=.2λ的钠双线,每一谱线的宽度为nm 010.。
(1)试求光场的复自相干度的模。
(2)当移动一臂时,可见到的条纹总数大约为多少?(3)可见度有几个变化周期?每个周期有多少条纹? 答:参阅苏显渝,李继陶《信息光学》P349,第4.2题答案。
假设每一根谱线的线型为矩形,光源的归一化功率谱为 ()^1212rect rect νννννδνδνδν⎡--⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦G (1)光场的复相干度为^1()()exp(2)1sin ()exp(2)[1exp(2)]2r j d c j j τνπντνδντπντπντ∞==+∆⎰G式中12ννν-=∆,复相干度的模为ντπδνττ∆=cos )(sin )(c r 由于νδν∆,故第一个因子是τ的慢变化非周期函数,第二个因子是τ的快变化周期函数。
相干时间由第一个因子决定,它的第一个零点出现在δντ1=c 的地方,c τ为相干时间,故相干长度δλλδλλδντ22≈===cc l c c 。
(2)可见到的条纹总数589301.05893====δλλλcl N (3)复相干度的模中第二个因子的变化周期ντ∆=1,故可见度的变化周期数601.06==∆=∆==δλλδννττc n 每个周期内的条纹数9826058930===n N4.3假定气体激光器以N 个等强度的纵模振荡,其归一化功率谱密度可表示为()()()()∑21-21--=+-1=N N n n NνννδνΔgˆ 式中,νΔ是纵模间隔,ν为中心频率并假定N 为奇数。
1λ第四章 习题及答案 1。
双缝间距为1mm ,离观察屏1m ,用钠灯做光源,它发出两种波长的单色光 =589.0nm 和2λ=589.6nm ,问两种单色光的第10级这条纹之间的间距是多少? 解:由杨氏双缝干涉公式,亮条纹时:dDm λα=(m=0, ±1, ±2···) m=10时,nm x 89.511000105891061=⨯⨯⨯=-,nm x 896.511000106.5891062=⨯⨯⨯=- m x x x μ612=-=∆2。
在杨氏实验中,两小孔距离为1mm ,观察屏离小孔的距离为50cm ,当用一片折射率1.58的透明薄片帖住其中一个小孔时发现屏上的条纹系统移动了0.5cm ,试决定试件厚度。
21r r l n =+∆⋅22212⎪⎭⎫⎝⎛∆-+=x d D r 22222⎪⎭⎫⎝⎛∆++=x d D r x d x d x d r r r r ∆⋅=⎪⎭⎫⎝⎛∆--⎪⎭⎫ ⎝⎛∆+=+-222))((221212mm r r d x r r 2211210500512-=⨯≈+⋅∆=-∴ ,mm l mm l 2210724.110)158.1(--⨯=∆∴=∆-3.一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。
继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长λ=656.28nm,空气折射率为000276.10=n 。
试求注入气室内气体的折射率。
0008229.10005469.0000276.1301028.6562525)(600=+=⨯⨯=-=-∆-n n n n n l λ4。
垂直入射的平面波通过折射率为n 的玻璃板,透射光经透镜会聚到焦点上。
玻璃板的厚度沿着C 点且垂直于图面的直线发生光波波长量级的突变d,问d 为多少时焦点光强是玻璃板无突变时光强的一半。
第四章 光学系统中的光束限制1.设照相物镜的焦距等于75mm ,底片尺寸为55×55㎜2,求该照相物镜的最大视场角等于多少?解:3.假定显微镜目镜的视角放大率Γ目=15⨯,物镜的倍率β=2.5⨯,求物镜的焦距和要求的通光口径。
如该显微镜用于测量,问物镜的通光口径需要多大(u =-︒3.42y =8mm 显微镜物镜的物平面到像平面的距离为180mm )? 解: (1)在此情况下,物镜即为显微镜的孔径光阑L 目(2)用于测量时,系统中加入了孔径光阑,目镜是视场光阑 由于u 已知,根据u 可确定孔径光阑的大小在中M M B B '∆ OA P AB A O M B A D B ‘‘’‘’‘孔=++21 答:物镜的焦距为36.73mm ,物镜的孔径为7.734mm ,用于测量时物镜孔径为15.726mm 。
4. 在本章第二节中的双目望远镜系统中,假定物镜的口径为30mm ,目镜的通光口径为20mm ,如果系统中没有视场光阑,问该望远镜最大的极限视场角等于多少?渐晕系数k =0.5的视场角等于多少? 解:(1)A ’F 2出瞳L 目αω'F '1f ‘物L '-目fL ‘Z-uOB‘(2)答:极限视场角等于11.33︒渐晕系数为0.5的视场角为9.08︒。
5. 如果要求上述系统的出射瞳孔离开目镜像方主面的距离为15mm,求在物镜焦面上加入的场镜焦距。
解:D 物对场镜成像,位置为mm f l 1081-=-=’物对目镜有’目f l l 1112'2=- l mm l Z 15''2== mm f 18=‘目 可得 mm l 902=对场镜‘场f l l 1111'1=- 答:场镜焦距为54mm 。
6.思考题:当物点在垂直光轴方向上下移动时,系统的孔径光阑是否改变?答:当物点在垂直光轴方向上下移动时,孔径光阑对来自不同点的成像光束 口径限制最大,所以系统的孔径光阑不变。
2.单薄透镜成像时,若共轭距(物与像之间的距离)为250mm , 求下列情况下透镜应有的焦距:1)实物,β=-4;2)实物,β=-1/4;3)虚物,β=-4;4)实物,β=4;5)虚物, β=4。
解:由薄透镜的物象位置关系''111fl l =-和l l '=β,共轭距mm l l 250'=-(1) 实物,β=-4。
由mm l l 250'=-和4'-==ll β,解得mm l 200'=,mm l 50-=,代入''111fl l =-得到焦距40'=f mm (2) 实物,β=-1/4。
由mm l l 250'=-和41'-==l l β,解得mm l 50'=,mm l 200-=,代入''111fl l =-得到焦距40'=f mm (3) 虚物,β=-4。
由mm l l 250'=-和4'-==ll β,解得mm l 200'-=,mm l 50=,代入''111fl l =-得到焦距40'-=f mm (4) 实物,β=4。
由mm l l 250'=-和4'==l l β,解得mm l 31000'-=,mm l 3250-=,代入''111fl l =-得到焦距11.111'=f mm (5) 虚物, β=4。
由mm l l 250'=-和4'==l l β,解得mm l 31000'=,mm l 3200=,代入''111fl l =-得到焦距11.111'-=f mm 。
3.一个f '=80mm 的薄透镜当物体位于其前何处时,正好能在1)透镜之前250mm 处;2) 透镜之后250mm 处成像? 解: 由薄透镜的物象位置关系''111fl l =- (1)l’=-250代入'111'l l f -=得l=-60.6061mm(2)l’=250代入'111'l l f -=得l=-117.647mm 4.有一实物被成一实像于薄透镜后300mm 处时,其放大率正好为1倍。