防电磁干扰的重要措施
- 格式:docx
- 大小:33.52 KB
- 文档页数:3
防电磁干扰的重要措施——滤波技巧【2 】引言防重要有三项措施,即屏障.滤波和接地.往往单纯采用屏障不能供给完全的电磁干扰防护,因为装备或体系上的电缆是最有效的干扰接收与发射天线.很多装备单台做实验时都没有问题,但当两台装备衔接起来今后,就不知足电磁兼容的请求了,这就是电缆起了接收和辐射天线的感化.独一的措施就是加滤波器,割断电磁干扰沿旌旗灯号线或电源线传播的路径,与屏障配合构成完善的电磁干扰防护,无论是克制干扰源.清除耦合或进步接收电路的抗才能.都可以采用.2线上干扰的类型线上的干扰电流按照其流淌路径可以分为两类:一类是差模干扰电流,另一类是共模干扰电流.差模干扰电流是在前线和零线之间流淌的干扰电流,共模干扰电流是在前线.零线与大地(或其它参考物体)之间流淌的干扰电流,因为这两种干扰的克制方法不同,是以准确辨认干扰的类型是实行准确滤波办法的前提.两种干扰共模干扰一般是由来自外界或电路其它部分的干扰电磁波在电缆与“地”的回路中感应产生的,有时因为电缆两头的接“地”电位不同,也会产生共模干扰.它对电磁兼容的伤害很大,一方面,共模干扰会使电缆线向外发射出强烈的电磁辐射,干扰电路的其它部分或周边电子装备;另一方面,假如电路不均衡,在电缆中不同导线上的共模干扰电流的幅度.相位产生差异时,共模干扰则会改变成差模干扰,将轻微影响正常旌旗灯号的质量,所以人们都在尽力克制共模干扰.差模干扰主如果电路中其它部分产生的电磁干扰经由传导或耦合的门路进入旌旗灯号线回路,如高次谐波.自激振荡.电网干扰等.因为差模干扰电流与正常的旌旗灯号电流同时.同偏向在回路中流淌,所以它对旌旗灯号的干扰是轻微的,必须设法克制.综上所述可知,为了达到电磁兼容的请求,对共模干扰和差模干扰都应设法克制.3滤波器的分类滤波器是由分散参数的电阻.电感和电容,或散布参数的电阻.电感和电容构成的一种收集.这种收集许可一些频率经由过程,而对其它频率成份加以克制.依据要滤除的干扰旌旗灯号的频率与工作频率的相对关系,干扰滤波器有低通滤波器.高通滤波器.带通滤波器.带阻滤波器等种类.低通滤波器的类型低通滤波器是最常用的一种,重要用在干扰旌旗灯号频率比工作旌旗灯号频率高的场合.如在数字装备中,脉冲旌旗灯号有丰硕的高次谐波,这些高次谐波并不是电路工作所必需的,但它们倒是很强的干扰源.是以在数字电路中,常用低通滤波器将脉冲旌旗灯号中不必要的高次谐波滤除掉落,而仅保留可以或许保持电路正常工作最低频率.电源线滤波器也是低通滤波器,它仅许可50Hz的电流畅过,对其它高频干扰旌旗灯号有很大的衰减.●常用的低通滤波器是用电感和电容组合而成的,电容并联在要滤波的旌旗灯号线与旌旗灯号地之间(滤除差模干扰电流)或旌旗灯号线与机壳地或大地之间(滤除共模干扰电流)电感串联在要滤波的旌旗灯号线上.按照电路构造分,有单电容型(C型),单电感型,L型和反Γ型,T型,π型.●高通滤波器用于干扰频率比旌旗灯号频率低的场合,如在一些接近电源线的迟钝旌旗灯号线上滤除电源谐波造成的干扰.●带通滤波器用于旌旗灯号频率仅占较窄带宽的场合,如通讯接收机的天线端口上要安装带通滤波器,仅许可通讯旌旗灯号经由过程.●带阻滤波器用于干扰频率带宽较窄,而旌旗灯号频率较宽的场合,如距离大功率电台很近的电缆端口处要安装带阻频率等于电台发射频率的带阻滤波器.不同构造的滤波电路重要有两点不同:1.电路中的滤波器件越多,则滤波器阻带的衰减越大,滤波器通带与阻带之间的过渡带越短.2.不同构造的滤波电路合适于不同的源阻抗和负载阻抗,它们的关系应遵守阻抗掉配原则.但要留意的是,现实电路的阻抗很难估算,特殊是在高频时(电磁干扰问题往往产生在高频),因为电路寄生参数的影响,电路的阻抗变化很大,并且电路的阻抗往往还与电路的工作状况有关,再加上电路阻抗在不同的频率上也不一样.是以,在现实中,哪一种滤波器有效重要靠实验的成果肯定.4滤波器的根本道理滤波器是由电感和电容构成的低通滤波电路所构成,它许可有效旌旗灯号的电流畅过,对频率较高的干扰旌旗灯号则有较大的衰减.因为干扰旌旗灯号有差模和共模两种,是以滤波器要对这两种干扰都具有衰减感化.其根本道理有三种: A)应用电容通高频隔低频的特征,将前线.零线高频干扰电流导入地线(共模),或将前线高频干扰电流导入零线(差模);B)应用电感线圈的阻抗特征,将高频干扰电流反射回干扰源;C)应用干扰克制铁氧体可将必定频段的干扰旌旗灯号接收转化为热量的特征,针对某干扰旌旗灯号的频段选择合适的干扰克制铁氧体磁环.磁珠直接套在须要滤波的电缆上即可.5电源滤波器高频插入损耗的重要性尽管各类标准中关于传导发射的限制仅到30MHz(旧军标到50MHz,新军标到10MHz),但是对传导发射的克制毫不能疏忽高频的影响.因为,电源线上高频传导电流会导致辐射,使装备的辐射发射超标.别的,瞬态脉冲迟钝度实验中的实验波形往往包含了很高的频率成份,假如不滤除这些高频干扰,也会导致装备的迟钝度实验掉败.电源线滤波器的高频特征差的重要原因有两个,一个是内部寄生参数造成的空间耦合,另一个是滤波器件的不幻想性.是以,改良高频特征的办法也是从这两个方面着手.内部构造:滤波器的连线要按照电路构造向一个偏向布置,在空间许可的前提下,电感与电容之间保持必定的距离,必要时,可设置一些隔离板,减小空间耦合.电感:按照前面所介绍的办法掌握电感的寄生电容.必要时,应用多个电感串联的方法.差模滤波电容:电容的引线要尽量短.要懂得这个请求的寄义:电容与须要滤波的导线(前线和零线)之间的连线尽量短.假如滤波器安装在线路板上,线路板上的走线也会等效成电容的引线.这时,要留意保证机会的电容引线最短.共模电容:电容的引线要尽量短.对这个请求的懂得和留意事项同差模电容雷同.但是,滤波器的共模高频滤波特征重要靠共模电容保证,并且共模干扰的频率一般较高,是以共模滤波电容的高频特征加倍重要.应用三端电容可以显著改良高频滤波后果.但是要留意三端电容的准确应用办法.即,要使接地线尽量短,而其它两根线的长短对后果几乎没有影响.必要时可以应用穿心电容,这时,滤波器本身的机能可以保持到1GHz以上.特殊提醒:当装备的辐射发射在某个频率上不知足标准的请求时,不要忘却检讨电源线在这个频率上的共模传导发射,辐射发射很可能是由这个共模发射电流引起的.6滤波器的选择依据干扰源的特征.频率规模.电压和阻抗等参数及负载特征的请求,恰当选择滤波器,一般斟酌:其一,请求滤波器在响应工作频段规模内,能知足负载请求的衰减特征,若一种滤波器衰减量不能知足请求时,则可采用多级联,可以获得比单级更高的衰减,不同的滤波器级联,可以获得在宽频带内优越衰减特征.其二,要知足负载电路工作频率和需克制频率的请求,假如要克制的频率和有效旌旗灯号频率异常接近时,则须要频率特征异常峻峭的滤波器,才能知足把克制的干扰频率滤掉落,只许可经由过程有效频率旌旗灯号的请求.其三,在所请求的频率上,滤波器的阻抗必须与它衔接干扰源阻抗和负载阻抗相掉配,假如负载是高阻抗,则滤波器的输出阻抗应为低阻;假如电源或干扰源阻抗是低阻抗,则滤波器的输入阻抗应为高阻;假如电源阻抗或干扰源阻抗是未知的或者是在一个很大的规模内变化,很可贵到稳固的滤波特征,为了获得滤波器具有优越的比较稳固的滤波特征,可以在滤波器输入和输出端,同时并接一个固定电阻.其四,滤波器必须具有必定耐压才能,要依据电源和干扰源的额定电压来选择滤波器,使它具有足够高的额定电压,以保证在所有预期工作的前提下都能靠得住地工作,可以或许经受输入瞬时高压的冲击.其五,滤波器许可经由过程应与电路中持续运行的额定电流一致.额定电流高了,会加大滤波器的体积和重量;额定电流低了,又会下降滤波器的靠得住性,其六,滤波器应具有足够的机械强度,构造简略.重量轻.体积小.安装便利.安全靠得住.7滤波器的应用为了进步电源的品德.电路的线性.削减各类杂波和非线性掉真干扰协调波干扰等均应用滤波器.对兵器体系来讲,应用滤波器的场所有:其一,除总配电体系和分派电系统上设置电源滤波器外,进入装备的电源均要安装滤波器,最好应用线至线滤波器,而不应用线至地滤波器.其二,对脉冲干扰和瞬变干扰迟钝的装备,应用隔离变压器供电时,应在负端加装滤波器.其三,对含电爆装配的兵器体系供电时,应加滤波器.必要时,电爆装配的引线也要加装滤波器.其四.各分体系或装备之间的接口处,应有滤波器克制干扰确保兼容.其五,装备和分体系的掌握旌旗灯号,其输入和输出端均应加滤波器或旁路电容器.。
如何在办公环境中有效抑制电磁干扰在当今数字化、信息化的办公环境中,电子设备的广泛应用带来了便利,但同时也带来了电磁干扰这一不容忽视的问题。
电磁干扰不仅可能影响设备的正常运行,还可能导致数据丢失、通信中断,甚至对人体健康产生潜在威胁。
因此,如何在办公环境中有效抑制电磁干扰成为了一个重要的课题。
首先,我们需要了解电磁干扰的来源。
办公环境中的电磁干扰源多种多样,常见的有电脑、打印机、复印机、扫描仪、无线设备(如WiFi 路由器、蓝牙设备)、照明设备以及电力线等。
这些设备在工作时会产生电磁辐射,如果它们的电磁兼容性不好,或者在空间布局上不合理,就容易相互干扰。
为了抑制电磁干扰,合理的布线是关键的一步。
电源线和信号线应尽量分开铺设,避免相互缠绕和交叉。
对于较长的线缆,可以采用屏蔽线来减少电磁辐射的泄漏。
在布线时,还应注意保持线缆的整齐和有序,避免形成混乱的线束,这样有助于减少电磁耦合。
电子设备的摆放位置也会对电磁干扰产生影响。
例如,将无线设备尽量远离敏感的电子设备,如电脑主机、显示器等。
打印机、复印机等大功率设备应与其他设备保持一定的距离,以减少其电磁辐射对周围设备的影响。
同时,避免将多个电子设备密集地堆放在一起,留出足够的空间有助于电磁能量的散发。
选择具有良好电磁兼容性的设备是从源头上减少电磁干扰的重要措施。
在购买办公设备时,应关注产品的电磁兼容性认证标志。
符合电磁兼容性标准的设备在设计和生产过程中已经采取了相应的措施来抑制电磁干扰,从而能够更好地在办公环境中稳定运行。
对于一些容易受到电磁干扰影响的设备,如精密测量仪器、音频设备等,可以使用电磁屏蔽装置。
电磁屏蔽罩、屏蔽室等可以有效地阻挡外部的电磁辐射,保护内部设备不受干扰。
此外,还可以在设备的接口处使用滤波器件,如电源滤波器、信号滤波器等,过滤掉不必要的电磁干扰信号。
接地也是抑制电磁干扰的有效手段之一。
良好的接地系统可以为电磁干扰提供一个低阻抗的通路,使其迅速流回大地,从而减少对设备的影响。
避免电磁干扰的方法电磁干扰是指电磁波的辐射或感应对电子设备的正常工作产生的干扰。
在现代社会中,电磁干扰已经成为不可避免的问题。
为了保证电子设备的正常运行,我们需要采取一些措施来避免电磁干扰的发生。
1. 尽量降低电磁辐射电磁辐射是产生电磁干扰的主要原因之一。
因此,我们需要尽量降低电磁辐射。
首先,我们应该减少电子设备的使用,尽量避免在同一时间使用多个电子设备。
其次,我们应该尽量减少电子设备的数量。
例如,在家庭中,我们可以将电子设备放在同一房间内,而不是将它们分别放在不同的房间中。
这样可以减少电磁辐射的干扰。
2. 使用屏蔽材料屏蔽材料可以阻止电磁波的辐射或感应。
因此,我们可以使用屏蔽材料来避免电磁干扰的发生。
例如,在设计电子设备时,我们可以使用金属外壳来作为屏蔽材料。
此外,我们也可以使用屏蔽材料来包裹电子设备的电缆和线路,以防止电磁辐射的干扰。
3. 使用干扰滤波器干扰滤波器可以过滤掉电子设备中的杂波信号,从而减少电磁干扰的发生。
在设计电子设备时,我们应该考虑使用干扰滤波器来保证设备的正常工作。
此外,在使用电子设备时,我们也可以使用干扰滤波器来减少电磁干扰的影响。
4. 将设备远离干扰源在使用电子设备时,我们应该尽量将设备远离干扰源。
例如,在使用手机时,我们应该尽量远离微波炉和电视机等电子设备。
这样可以减少电磁干扰的影响,保证手机的正常工作。
5. 使用合适的电源线和插头电源线和插头也是产生电磁干扰的主要因素之一。
因此,我们应该使用合适的电源线和插头来避免电磁干扰的发生。
例如,在选择电源线和插头时,我们应该选择符合国家标准的产品,以保证其质量和安全性。
为了避免电磁干扰的发生,我们需要采取一些措施。
这些措施包括降低电磁辐射、使用屏蔽材料、使用干扰滤波器、将设备远离干扰源和使用合适的电源线和插头。
通过这些措施,我们可以保证电子设备的正常工作,减少电磁干扰带来的影响。
如何应对通信技术中的电磁波干扰电磁波干扰在通信技术中是一个普遍存在的问题,它会导致信号质量下降、通信性能下降甚至通信中断。
因此,合理应对电磁波干扰是保证通信质量的重要措施。
本文将介绍一些方法来有效应对通信技术中的电磁波干扰。
了解干扰源是有效应对电磁波干扰的第一步。
电磁波干扰可以来自多种来源,例如电力设备、无线电设备、高压电线等。
在进行通信设备部署和规划时,应尽量避免信号受到这些干扰源的直接影响。
同时,通过对各种干扰源的特性进行分析和监测,可以有效地预测和识别干扰源,以便及时采取措施应对干扰。
合理的布局和设计也可以有效减少电磁波干扰。
在通信网络的规划和建设过程中,应合理选择天线和设备的安装位置,以减少干扰源对通信信号的影响。
例如,避免天线与高压电线或其他干扰源过近,合理调整天线方位和仰角等。
使用抗干扰性能较好的设备和材料,也能够降低电磁波的干扰程度。
第三,采用合适的调制解调技术和信号处理算法,可以在一定程度上减少电磁波干扰对通信信号的影响。
调制解调技术可以通过压缩信号带宽、提高信号的抗干扰性能等方式来减少干扰的影响。
信号处理算法可以对接收到的信号进行滤波、去噪等处理,以提高信号质量和抗干扰能力。
因此,在通信系统设计中,合理选择和应用调制解调技术和信号处理算法是有效抵御电磁波干扰的重要手段。
设置合理的屏蔽和隔离措施也是减轻电磁波干扰的一种重要措施。
通过合理设计和部署屏蔽结构,可以减少外界电磁波对通信设备和信号的影响,提高设备的抗干扰能力。
例如,在电力设备附近设置金属屏蔽罩、使用屏蔽电缆等措施,可以有效减轻电磁波干扰。
对通信设备进行适当的隔离和隔离设计也是减少干扰的有效手段。
例如,将通信设备远离其他干扰源和高强度电磁场,减少不必要的信号交叉和干扰。
定期维护和检测通信设备是抵御电磁波干扰的一项重要工作。
及时发现设备故障和性能下降的问题,并及时修复和升级设备,可以保证通信设备的正常运行。
定期进行电磁波干扰的监测和分析,可以快速发现潜在的干扰源和干扰问题,及时采取措施解决。
电子通信中常见干扰因素及控制措施电子通信在现代社会中起到了举足轻重的作用,它已经成为了人们生活中不可或缺的一部分。
在电子通信过程中,常常会遇到各种各样的干扰因素,这些干扰因素可能会影响通信质量甚至造成通信中断。
控制这些干扰因素是非常重要的。
本文将对电子通信中常见的干扰因素及其控制措施进行详细的介绍。
电子通信中常见的干扰因素包括电磁干扰、多径传播、天气条件、电源噪声等。
下面我们将分别对这些干扰因素及其控制措施进行详细介绍。
首先是电磁干扰。
电磁干扰是指电磁波对电子设备产生的影响,它可能会导致设备的误操作、甚至损坏。
电磁干扰的控制措施包括:1. 屏蔽措施:采用金属屏蔽罩、金属壳体等材料对设备进行屏蔽,阻止外部电磁波的干扰。
2. 地线设计:良好的接地系统也是控制电磁干扰的重要手段,在设计电子设备时应合理设计接地系统,确保设备的地线连接良好。
3. 滤波器:在电子设备的电源输入端加装滤波器,可以有效去除电源中的高频电磁干扰。
接下来是多径传播干扰。
多径传播是由于信号在传播过程中经历了多条路径,并在接收端叠加形成信号失真。
控制多径传播干扰的措施包括:1. 天线设计:合理设计天线的方向和高度,减少信号的多径传播情况。
2. 信号处理算法:采用复杂的信号处理算法,对接收到的信号进行解调和数据恢复,以减少多径传播造成的影响。
3. 多址接入技术:在移动通信中,采用多址接入技术可以有效地减少多径传播带来的干扰,提高通信质量。
接着是天气条件干扰。
天气条件对电子通信的影响主要体现在微波通信和卫星通信中,恶劣的天气条件会导致信号衰减、传输延迟等问题,从而影响通信质量。
控制天气条件干扰的措施包括:1. 天线选址:合理选择天线的位置,避免受到恶劣天气条件的影响。
2. 多路径传输:采用多路径传输技术,当一个路径受到天气条件的影响时,可以切换到其他路径进行通信,从而减少天气条件带来的干扰。
3. 天气预报:及时了解天气变化,提前做好调整和应对措施,减少天气条件对通信的影响。
解析几种有效的开关电源电磁干扰的抑制措施
有效的开关电源电磁干扰抑制措施包括:
1. 选择合适的滤波器:在开关电源输入端、输出端以及变压器绕组的附近安装滤波器,可以有效滤除高频噪声和突变噪声,减少电磁辐射。
2. 使用磁性材料:在开关电源变压器绕组的附近使用磁性材料,如铁氧体、铁氟龙等,可以有效吸收和屏蔽电磁干扰。
3. 地线布局:合理布置地线,减少电磁干扰。
不同元器件的地线要分开布局,避免共
用一个接地点。
4. 合理选择元器件:选择低电阻、低电感、低容值的元器件,减少电路中的谐振,降
低电磁干扰。
5. 优化电路设计:合理布局和连接元器件,减少信号回路,增加信号路径的隔离,减
少电磁干扰。
6. 使用屏蔽材料:在开关电源敏感部分使用屏蔽材料,如铝箔、铁氧网、铜网等,将
电磁辐射封锁在内部。
7. 设计良好的接地系统:确保良好的接地系统,包括减少接地回路的电阻,建立良好
的接地连接。
8. 符合电磁兼容性标准:在设计和生产过程中遵循电磁兼容性标准,如EMC(电磁兼容性)标准,确保产品符合相关电磁干扰限制。
以上是一些常见的有效的开关电源电磁干扰抑制措施,根据具体的应用场景和需求,还可以采取其它的措施来减少电磁干扰的影响。
防电磁干扰的措施引言在当今高科技发达的社会中,电子产品的普及已经无处不在。
然而,随之而来的电磁干扰问题也成为了一个严重的难题。
电磁干扰可以对电子设备的正常运行产生很大的影响,甚至导致设备故障。
因此,我们有必要采取一些措施来防止电磁干扰的发生。
本文将介绍一些常见的防电磁干扰的措施。
措施一:良好的电磁屏蔽电磁屏蔽是一种有效防止电磁干扰的手段,通过使用屏蔽材料来隔离电磁场的影响。
以下是一些常见的电磁屏蔽材料:•金属护罩:对于较小的设备,可以使用金属护罩来屏蔽电磁信号。
金属护罩可以将电磁信号导引到地面,从而防止其对设备的干扰。
•电磁屏蔽涂料:电磁屏蔽涂料可以在设备表面形成一层保护膜,阻止电磁信号的进入。
这种涂料通常使用铜或铝粉末作为主要成分。
•镀金屏蔽:将设备的外部表面镀上一层金属,可以有效地屏蔽电磁信号。
金属的良好导电性可以阻止电磁信号的进入。
良好的电磁屏蔽可以大大减少电磁干扰的发生,提高设备的可靠性和稳定性。
措施二:地线连接地线连接是防止电磁干扰的另一种重要手段。
良好的地线连接可以将电磁信号导引到地面,从而减少信号对设备的干扰。
以下是一些地线连接的重要注意事项:•地线长度:地线应尽可能短,以减少电流在地线上的阻抗。
长的地线会增加电流在地线上的损耗,降低地线的效果。
•地线材料:地线通常使用导电性能良好的材料,如铜或铝。
这些材料具有低电阻和良好的导电性能,有助于提高地线的效果。
•地线接地:地线应连接到地面的可靠的接地点。
接地点应选择在地下水位以下,以确保地线能够有效地导引电磁信号到地面。
良好的地线连接可以有效地减少电磁干扰的产生,提高设备的抗干扰能力。
措施三:滤波器的使用滤波器是另一种有效防止电磁干扰的措施。
它通过滤除电源线上的高频干扰信号,提供稳定的供电环境,从而减少电磁干扰的发生。
以下是一些常见的滤波器类型:•EMI滤波器:EMI滤波器主要用于滤除电磁干扰信号。
它可以安装在电源线入口处,提供良好的抗干扰能力。
控制系统抗干扰措施控制系统的抗干扰措施是为了保证系统在外界干扰的情况下能够正常运行和工作。
在实际应用中,干扰因素往往较多,包括电磁干扰、机械振动、温度波动等等。
因此,为确保系统的可靠性和稳定性,需要采取一系列的抗干扰措施来提高系统的抗干扰能力。
电磁干扰是控制系统中最常见的一种干扰方式,主要通过电磁波的传播而影响系统的正常运行。
为了有效抵御电磁干扰,可以采取以下措施:1.电磁屏蔽:采用具有良好屏蔽性能的金属外壳或屏蔽罩来阻挡电磁波的传播,减少干扰对系统的影响。
2.策略引入:在系统的设计中,通过良好的布线规划和装置安装方式,降低电路之间的串扰,避免电磁干扰的传导。
3.使用滤波器:在输入输出端口的信号传输线上安装适当的滤波器,滤除不需要的电磁波成分,提高系统的信噪比。
机械振动是指由于设备的震动、冲击或共振现象引起的机械振动干扰。
为了减少机械振动的干扰,可以采取以下措施:1.振动隔离:通过采用弹性材料、减振器等装置来减少机械振动对系统的干扰,有效地隔离振动波的传播。
2.调整装置布局:合理布置安装设备和传感器的位置,避免设备之间的机械振动相互传导,减少干扰的发生。
3.机械结构的改进:通过结构设计和材料的选择来提高装置的抗振能力,降低机械振动的传导和反馈。
温度波动是指环境温度的变化引起的干扰,对温度敏感的系统尤为重要。
为了减少温度波动对系统的干扰,可以采取以下措施:1.温度控制:通过采用恒温设备、温度传感器和温度反馈控制系统,控制系统的工作温度在一个较稳定的范围内,减少温度波动对系统的影响。
2.绝热设计:对系统进行合理的绝热设计,减少外部温度变化对系统内部温度的传导,降低干扰的发生。
3.温度补偿:对温度敏感的元件进行温度补偿,在设计中考虑和修正元件在不同温度下的工作特性,提高系统的稳定性和准确性。
综上所述,控制系统的抗干扰措施需要从多个方面进行考虑和实施。
只有通过合理的设计和有效的控制措施,才能提高系统的抗干扰能力,使系统在外界干扰的情况下依然能够正常工作和运行。
《抑制电磁干扰的六种常用方法》
电磁干扰是一种对计算机系统及其他电子设备造成的不可控的电磁脉冲,可以影响系统的性能,甚至导致系统故障。
因此,抑制电磁干扰是确保系统安全运行的重要措施。
下面介绍一下抑制电磁干扰的六种常用方法。
一、采用屏蔽技术。
屏蔽技术是将电磁干扰源和敏感设备之间的电磁波隔离开来,从而抑制电磁干扰的传播。
屏蔽技术可以用金属箔或金属铠装箔来实现,也可以采用特殊的电磁屏蔽材料,如铁钢箔和铝箔。
二、采用电磁屏蔽材料。
电磁屏蔽材料可以有效地吸收可能传播到被保护设备的电磁波,从而抑制电磁干扰的传播。
常用的电磁屏蔽材料包括铁钢箔、铜箔、铝箔和特殊电磁屏蔽材料等。
三、采用绝缘材料。
绝缘材料可以有效地阻止电磁波的传播,从而有效地抑制电磁干扰。
常用的绝缘材料包括橡胶、塑料、纸等,这些材料可以用于屏蔽线缆、电缆、连接器和电子元件等。
四、采用磁护屏。
磁护屏可以有效地抑制电磁脉冲,防止其影响被保护设备的性能。
磁护屏是一种带有磁吸铁片的箔,可以有效地吸收外界的电磁波,从而起到抑制电磁干扰的作用。
五、采用多层护屏。
多层护屏可以有效地增加电磁波吸收的隔离效果,从而抑制电磁干扰的传播。
多层护屏通常由金属箔、铝箔和电磁屏蔽材料组成,以确保电磁波的隔离效果。
六、采用电磁屏蔽结构。
电磁屏蔽结构是一种用于抑制电磁干扰的特殊结构,其特点是结构内部由金属箔、铝箔和电磁屏蔽材料组成,可以有效地抑制电磁波的传播。
以上就是抑制电磁干扰的六种常用方法,这些方法可以有效地抑制电磁干扰的传播,从而确保系统的安全运行。
如何进行电路的电磁干扰抑制电磁干扰是现代电子设备和电路中常见的问题,它会对电子设备的性能和稳定性产生负面影响。
为了有效抑制电路的电磁干扰,我们可以采取一系列的措施和技术手段。
本文将介绍几种常见的方法来进行电路的电磁干扰抑制。
一、电路布局设计电路布局设计是电磁干扰抑制的第一步。
合理的电路布局可以降低信号回路之间的相互干扰。
以下是一些电路布局设计的原则:1. 分离摆放敏感电路和干扰源:将敏感电路和干扰源放置在不同的电路板上,或者采用金属屏蔽隔离。
2. 最短线路原则:电路布线应尽量缩短,减小电流回路的面积。
3. 保持线路间距:避免线路之间的交叉和靠近。
4. 使用地面屏蔽:在电路板上使用地面屏蔽,形成屏蔽环境,减小电磁辐射。
5. 避免共模干扰:使用差分传输线、差分信号传输等方法,抑制共模信号的干扰。
二、滤波器的应用滤波器是电磁干扰抑制的重要手段之一。
通过选择合适的滤波器来滤除电磁干扰信号,可以有效提高电路的抗干扰能力。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
1. 低通滤波器:用于滤除高频电磁干扰信号,使得只有低频信号通过。
2. 高通滤波器:用于滤除低频电磁干扰信号,使得只有高频信号通过。
3. 带通滤波器:用于滤除指定的频率范围之外的电磁干扰信号。
4. 带阻滤波器:用于滤除指定的频率范围内的电磁干扰信号。
三、地线和屏蔽措施有效地布置地线和采取屏蔽措施对于电磁干扰抑制至关重要。
以下是几种常见的地线和屏蔽措施:1. 单点接地:将各个电路板的地点连接到一个地方,形成一个电位参考点,避免地线回流产生的共模干扰。
2. 地面屏蔽:在电路板或设备外壳上使用金属屏蔽材料,起到防护屏蔽的作用,减少电磁辐射和接收干扰。
3. 电磁屏蔽罩:对于一些特别敏感的电子设备,可以使用电磁屏蔽罩来包裹,减少外部干扰的影响。
四、接地技术良好的接地技术有助于降低电路的电磁干扰。
以下是几种常用的接地技术:1. 按照接地分区原则划分接地系统:将设备分为数字、模拟和电源等不同的接地分区,减少接地回流路径。
如何在工厂现场有效防范电磁干扰在当今的工业生产环境中,电磁干扰(Electromagnetic Interference,简称 EMI)已经成为一个不容忽视的问题。
电磁干扰可能会导致设备故障、生产中断、产品质量下降,甚至危及工人的安全。
因此,如何在工厂现场有效地防范电磁干扰,是每一个工厂管理者和技术人员都需要关注和解决的重要课题。
一、电磁干扰的来源要有效地防范电磁干扰,首先需要了解其来源。
在工厂现场,电磁干扰的来源主要有以下几个方面:1、电力系统工厂中的电力设备,如变压器、开关柜、电动机等,在运行过程中会产生电磁场。
这些电磁场可能会对附近的电子设备造成干扰。
2、电子设备工厂中的各种电子设备,如计算机、控制器、通信设备等,本身会发射电磁波。
同时,它们也容易受到外部电磁波的影响。
3、无线通信设备随着无线通信技术的广泛应用,工厂中的手机、对讲机、无线网络设备等也成为了电磁干扰的来源之一。
4、静电放电在一些生产过程中,如塑料加工、纺织等,容易产生静电。
静电放电时会产生瞬间的高电压和强电磁场,对电子设备造成干扰。
5、雷电在雷雨天气,雷电产生的电磁场可能会通过电力线路、通信线路等传入工厂内部,对设备造成损坏。
二、电磁干扰的传播途径电磁干扰的传播途径主要有以下几种:1、传导电磁干扰通过电源线、信号线、地线等导体传播。
例如,电源线上的干扰信号可以传入电子设备,影响其正常工作。
2、辐射电磁干扰以电磁波的形式向空间辐射,被其他电子设备接收。
例如,无线通信设备发射的电磁波可以对附近的敏感设备造成干扰。
3、感应当一个导体处于变化的电磁场中时,会在导体中产生感应电动势和感应电流。
这种感应现象也会导致电磁干扰的传播。
三、电磁干扰的影响电磁干扰对工厂现场的设备和生产过程可能会产生以下影响:1、设备故障电磁干扰可能会导致电子设备的误动作、死机、数据丢失等故障,影响设备的正常运行。
2、生产中断关键设备受到电磁干扰出现故障,可能会导致整个生产线的中断,造成生产延误和经济损失。
抗干扰措施方案导语:在当今数字化时代,我们越来越依赖互联网和各种电子设备。
然而,随之而来的干扰问题也日益严重。
本文将为您介绍一些抗干扰的措施,帮助您更好地应对干扰困扰。
一、保持网络环境稳定为了避免网络干扰,我们需要确保网络环境的稳定。
这包括使用高质量的路由器和网络设备,定期维护和升级硬件以及优化网络设置。
另外,避免与其他无线电设备共享频段,可以有效减少无线干扰。
二、使用屏蔽设备和滤波器我们可以使用屏蔽设备和滤波器来抵御外部干扰。
例如,在电脑、手机等设备的连接线上安装屏蔽罩,可以有效地阻隔外部电磁干扰。
此外,使用滤波器可以减少电源线和通信线路上的干扰信号,提高设备的工作稳定性。
三、合理布局设备和线缆在安装设备和布置线缆时,我们应该注意合理布局,避免线缆相互交叉和靠近高干扰设备。
同时,要尽量使用屏蔽线缆和金属屏蔽箱,以减少干扰的传播和扩散。
四、加强设备的电磁兼容性设计在设备的设计和制造过程中,应该充分考虑电磁兼容性。
通过合理的电路设计、良好的接地系统以及屏蔽措施,可以有效减少设备之间的干扰。
五、定期检测和维护设备定期检测和维护设备是保证设备正常工作和抵御干扰的重要步骤。
定期进行设备测试,及时修复和更换故障部件,可以保证设备的稳定性和可靠性。
六、人为干扰的防范除了外部干扰,人为干扰也是我们需要关注的问题。
我们应该加强员工的培训,提高对干扰的认识和防范意识。
此外,建立完善的安全管理制度,限制和监控对设备的访问,可以有效减少人为干扰的发生。
结语:通过以上抗干扰的措施,我们可以有效应对干扰问题,保证设备的正常工作和网络的稳定连接。
在今后的数字化时代,我们应该继续加强对干扰问题的研究和防范,为人类创造更好的数字化生活环境。
电磁兼容整改措施
电磁兼容整改措施是指针对电磁兼容性问题,采取的一系列措施来解决和预防电磁干扰和抗干扰能力不足的问题。
以下是一些常见的电磁兼容整改措施:
1. 设备屏蔽:通过在设备外壳内部添加金属屏蔽层,阻挡电磁波的传播,减少干扰源对周围环境的干扰。
2. 地线设计:合理设计和布置设备的地线,确保设备的接地电阻低,减少电磁波的回流和干扰。
3. 电源滤波器:在电源输入端添加滤波器,可以过滤电源中的高频噪声,减少电源对设备的干扰。
4. 信号线屏蔽:对于容易受到干扰的信号线,可以采用屏蔽线材或者在信号线上添加屏蔽层,减少外界电磁波的干扰。
5. 设备间隔离:对于容易相互干扰的设备,可以通过增加设备之间的间隔或者隔离屏蔽来减少干扰。
6. 接地和屏蔽检测:对设备的接地和屏蔽进行定期检测,确保其良好的接地和屏蔽性能。
7. 电磁兼容测试:在设备设计和制造过程中,进行电磁兼容测试,确保设备符合相关的电磁兼容性标准和要求。
8. 电磁兼容培训:对工作人员进行电磁兼容知识的培训,提高其对电磁兼容问题的认识和解决能力。
以上是一些常见的电磁兼容整改措施,具体的整改措施需要根据实际情况进行制定和实施。
如何解决电路中的电磁干扰问题电磁干扰是电路中常见的问题之一,它可能导致电路设备的正常工作受到干扰甚至损坏。
因此,解决电磁干扰问题对于保证电路设备的可靠性和稳定性至关重要。
本文将探讨一些有效的方法和技术,帮助解决电路中的电磁干扰问题。
一、电磁干扰的原因电磁干扰的产生原因较多,主要包括以下几个方面:1. 电力系统的扰动:来自电网的电磁干扰,如电磁辐射、瞬变和电磁波峰等。
2. 器件和设备的互相干扰:电路中的器件和设备电磁场的相互作用,会导致电磁干扰。
3. 外部电磁辐射:来自周围环境的电磁干扰,如雷电、电磁波和无线电等。
4. 敏感电路板本身的问题:设计不合理或者敏感度高的电路板,容易受到电磁干扰。
二、解决电磁干扰的方法1. 电路板设计在电路板设计上,应该采取一些措施来减少电磁干扰的影响,例如:(1)合理布局:将敏感电路和干扰源保持一定的距离,减少干扰信号的传播。
(2)地线设计:良好的地线设计可以有效减少地线上的电磁干扰。
(3)屏蔽措施:对于特别敏感的电路板,可以采用屏蔽罩或者屏蔽材料来降低电磁干扰。
2. 滤波技术滤波技术是解决电磁干扰问题的常用方法,可以通过添加滤波器来滤除干扰信号。
常见的滤波器包括低通滤波器、带通滤波器和陷波器等。
在设计电路时,根据具体需求选择合适的滤波器以确保电路的正常运行。
3. 屏蔽材料的使用屏蔽材料能够有效地吸收或反射电磁干扰信号,降低信号的传播和干扰强度。
在电路设计中,可以选择使用金属屏蔽罩、屏蔽垫或者屏蔽涂料等材料进行屏蔽,以减少电磁干扰的影响。
4. 接地和屏蔽合理的接地设计对于减少电磁干扰是至关重要的。
在电路设计中,应该注意以下几点:(1)单点接地:尽量将所有接地线连接到一个地点,防止接地线回路产生干扰。
(2)分离数字和模拟地:将数字和模拟电路的接地分开,减少互相干扰。
(3)合理布线:优化接地线的布线,减少回流电流的路径长度。
5. 合理的电路配线电路布线对于减少电磁干扰有重要作用。
防电磁干扰的重要措施•一滤波技术防电磁干扰主要有三项措施,即屏蔽、滤波和接地。
往往单纯采纳屏蔽不能供应完整的电磁干扰防护,由于设施或系统上的电缆是最有效的干扰接收与放射天线。
很多设施单台做电磁兼容试验时都没有问题,但当两台设施连接起来以后,就不满意电磁兼容的要求了,这就是电缆起了接收和辐射天线的作用。
唯一的措施就是加滤波器,切断电磁干扰沿信号线或电源线传播的路径,与屏蔽共同构成完善的电磁干扰防护,无论是抑制干扰源、消退耦合或提高接收电路的抗力量。
都可以采纳滤波技术。
2线上干扰的类型线上的干扰电流依据其流淌路径可以分为两类:一类是差模干扰电流,另一类是共模干扰电流。
差模干扰电流是在火线和零线之间流淌的干扰电流,共模干扰电流是在火线、零线与大地(或其它参考物体)之间流淌的干扰电流,由于这两种干扰的抑制方式不同,因此正确辨认干扰的类型是实施正确滤波方法的前提。
共模干扰一般是由来自外界或电路其它部分的干扰电磁波在电缆与“地”的回路中感应产生的,有时由于电缆两端的接“地”电位不同,也会产生共模干扰。
它对电磁兼容的危害很大,一方面,共模干扰会使电缆线向外放射出剧烈的电磁辐射,干扰电路的其它部分或周边电子设施; 另一方面,假如电路不平衡,在电缆中不同导线上的共模干扰电流的幅度、相位发生差异时,共模干扰则会转变成差模干扰,将严峻影响正常信号的质量,所以人们都在努力抑制共模干扰。
差模干扰主要是电路中其它部分产生的电磁干扰经过传导或耦合的途径进入信号线回路,如高次谐波、自激振荡、电网干扰等。
由于差模干扰电流与正常的信号电流同时、同方向在回路中流淌,所以它对信号的干扰是严峻的,必需设法抑制。
综上所述可知,为了达到电磁兼容的要求,对共模干扰和差模干扰都应设法抑制。
3滤波器的分类滤波器是由集中参数的电阻、电感和电容,或分布参数的电阻、电感和电容构成的一种网络。
这种网络允许一些频率通过,而对其它频率成份加以抑制。
依据要滤除的干扰信号的频率与工作频率的相对关系,干扰滤波器有低通滤波器、高通滤波器、带通滤波器、带阻滤波器等种类。
电磁防护的措施引言随着现代科技的发展,电磁波的应用越来越广泛。
然而,电磁波也带来了一些潜在的风险,如电磁辐射对人体健康的影响以及电磁干扰对设备运行的影响。
为了保护人们的健康和设备的正常运行,电磁防护措施变得越来越重要。
电磁辐射的影响和危害电磁辐射是指传播中的电磁波对周围环境和人体的作用。
高强度的电磁辐射可以对人体健康产生诸多影响,包括但不限于:肿瘤、白血病以及生殖系统的损伤。
此外,电磁辐射还可能与电子设备产生干扰,导致设备性能下降或者失灵。
电磁防护的措施为了减少电磁辐射的影响以及电磁干扰的发生,我们可以采取以下几个措施:1. 屏蔽屏蔽是一种常见的电磁防护措施,可以有效地减少电磁辐射的传播以及外界电磁干扰的影响。
屏蔽可以采用金属材料制成,如铝、铜等,这些金属具有良好的电磁屏蔽性能。
屏蔽的设计要考虑周到,确保屏蔽物与被屏蔽物之间没有漏洞,从而达到最佳的屏蔽效果。
2. 导电接地导电接地是一种常见的电磁防护措施,通过将设备的金属外壳连接到地线上,可以有效地减少电磁辐射的传播。
导电接地能够将电磁波引导到地面,从而降低辐射强度。
在设计和安装导电接地时,需要遵守相关的规范和标准,确保接地的良好性能。
3. 电磁波屏障电磁波屏障是一种专门设计的结构,用于限制电磁辐射的传播。
它可以由不同材料制成,如钢筋混凝土、金属板等。
电磁波屏障可以通过反射、吸收和散射等方式来减少电磁辐射的传播。
在建筑物和电子设备的设计中,可以使用电磁波屏障来提高电磁防护效果。
4. 环境调整环境调整是一种简单但有效的电磁防护措施,通过调整电磁辐射源附近的环境来减少电磁辐射的传播。
例如,可以合理安排电子设备的布局,降低辐射源与人体之间的距离。
此外,还可以通过使用吸波材料和应用电磁波衰减技术等手段来减少辐射的传播。
5. 控制电磁辐射源最有效的电磁防护措施是控制电磁辐射源的强度和频率。
通过降低电磁辐射源的功率或改变其工作频率,可以减少电磁辐射的强度。
此外,还可以采用屏蔽和隔离等技术,将电磁辐射源与周围环境隔离,从而减少辐射的传播范围。
针对无线屏蔽电磁干扰的措施无线屏蔽电磁干扰的措施。
电磁干扰是指电磁场对电子设备产生的干扰,它会导致无线通信系统的性能下降,甚至造成通信中断。
在现代社会中,无线通信系统已经成为人们生活中不可或缺的一部分,因此如何有效地屏蔽电磁干扰成为了无线通信系统设计中的重要问题。
本文将从几个方面探讨针对无线屏蔽电磁干扰的措施。
1. 设备屏蔽。
设备屏蔽是指在设备内部采取措施,以减少电磁干扰对设备内部电路的影响。
这种措施包括采用屏蔽罩、屏蔽壳等物理屏蔽结构,以及在电路设计中采用滤波器、隔离器等电路屏蔽措施。
通过这些措施,可以有效地减少电磁干扰对设备内部电路的影响,提高设备的抗干扰能力。
2. 环境屏蔽。
环境屏蔽是指在设备周围采取措施,以减少外部电磁干扰对设备的影响。
这种措施包括在设备周围设置屏蔽墙、屏蔽罩等物理屏蔽结构,以及在设备周围设置滤波器、隔离器等电路屏蔽措施。
通过这些措施,可以有效地减少外部电磁干扰对设备的影响,提高设备的抗干扰能力。
3. 地线屏蔽。
地线屏蔽是指在设备的地线系统中采取措施,以减少地线系统对电磁干扰的敏感度。
这种措施包括采用屏蔽地线、设置屏蔽地线环等物理屏蔽结构,以及在地线系统中设置滤波器、隔离器等电路屏蔽措施。
通过这些措施,可以有效地减少地线系统对电磁干扰的敏感度,提高设备的抗干扰能力。
4. 信号处理屏蔽。
信号处理屏蔽是指在信号处理过程中采取措施,以减少信号处理过程中电磁干扰的影响。
这种措施包括在信号处理过程中设置滤波器、隔离器等电路屏蔽措施,以及在信号处理过程中采用数字滤波、数字隔离等数字信号处理措施。
通过这些措施,可以有效地减少信号处理过程中电磁干扰的影响,提高设备的抗干扰能力。
5. 技术屏蔽。
技术屏蔽是指在无线通信技术中采取措施,以减少电磁干扰对无线通信系统的影响。
这种措施包括在无线通信系统中采用频谱扩展技术、自适应调制技术等技术屏蔽措施,以及在无线通信系统中采用多天线技术、多径传输技术等技术屏蔽措施。
什么是电磁干扰如何在电路中防止电磁干扰电磁干扰是指在电路中电磁能量的非预期传输或耦合引起的问题。
其影响包括信号变形、噪声干扰、设备故障等。
为了保证电路的正常运行,需要采取一系列措施来避免或减小电磁干扰的影响。
一、电磁干扰的类型与来源电磁干扰可以分为两种类型:传导干扰和辐射干扰。
1. 传导干扰:传导干扰是指电磁能量通过导线或其他传导介质的方式传递到受影响的设备或电路中。
传导干扰的主要来源包括电力线、传输线、接地回路等。
2. 辐射干扰:辐射干扰是指电磁能量以无线电波的形式从一个设备传播到其他设备或电路中,并产生干扰。
辐射干扰的主要来源包括无线电设备、电视、手机、微波炉等。
二、电磁干扰的危害与影响电磁干扰对电路和设备可能产生以下危害与影响:1. 信号变形:电磁干扰可以导致信号的失真、频率偏移、波形畸变等,从而影响电路的正常工作和信号的传输质量。
2. 数据传输错误:电磁干扰会引起数据传输错误,导致数据丢失或错误的解码,从而影响通信系统的可靠性和稳定性。
3. 设备故障:强电磁场干扰可能导致设备的异常工作或直接损坏,影响设备的寿命和性能。
三、电磁干扰防止的方法和措施为了避免或减小电磁干扰的影响,可以采取以下方法和措施:1. 设计合理布线:合理布置电路的走向和距离,减小信号线与电源线、传输线等之间的干扰。
2. 接地设计:良好的接地设计可以降低电磁干扰的传导和辐射,例如使用接地网和接地回路来消除地回路的干扰。
3. 屏蔽和隔离:在设计电路时,可以采用金属屏蔽罩、屏蔽线缆等措施来隔离电磁干扰。
4. 滤波器的使用:使用合适的滤波器可以消除电路中的高频噪声和杂散信号,提高系统的抗干扰能力。
5. 地线、电源线的分离:将地线和电源线分开布置,避免它们的相互干扰,减小电磁干扰。
6. 合适的屏蔽材料:在设计电路时选择合适的屏蔽材料,如铁氧体、磁性材料等,以降低电磁干扰的传导或辐射。
7. 源信号的优化:优化源信号的输出功率、波形等特性,减小电磁干扰的发生。
如何检测并消除家用电器中的电磁干扰在现代家庭中,各种家用电器给我们的生活带来了极大的便利,但与此同时,电磁干扰问题也可能会悄然出现。
电磁干扰不仅可能影响电器的正常运行,还可能对我们的健康产生潜在影响。
那么,如何检测家用电器中是否存在电磁干扰,又该如何消除呢?一、电磁干扰的来源和影响要了解如何检测和消除电磁干扰,首先得知道它从何而来以及会带来哪些影响。
电磁干扰的来源多种多样。
一些常见的家用电器,如微波炉、电磁炉、电吹风等,在工作时会产生较强的电磁场。
此外,家庭中的电线布线不合理、多个电器同时工作、老旧电器的部件老化等也可能导致电磁干扰。
电磁干扰对家用电器的影响主要表现为设备性能下降、工作不稳定,例如电视画面出现雪花、音响产生杂音、电脑死机等。
长期处于电磁干扰环境中,还可能缩短电器的使用寿命。
对于人体健康,虽然目前还没有确凿的科学证据表明一般家庭中的电磁干扰会直接导致严重疾病,但一些研究认为,长期暴露在高强度的电磁环境中可能会引起头痛、疲劳、失眠等不适症状。
二、检测电磁干扰的方法1、直观观察法这是最简单也是最初步的检测方法。
留意家用电器在工作时是否出现异常现象,如灯光闪烁、声音异常、图像失真等。
如果有这些情况,可能意味着存在电磁干扰。
2、使用电磁辐射检测仪电磁辐射检测仪可以较为准确地测量电器周围的电磁场强度。
在使用时,将检测仪靠近电器,按照说明书的操作步骤进行测量,并对比相关标准,判断电磁辐射是否超标。
3、借助收音机检测打开收音机,调到没有电台的频段(通常会听到杂音),然后将收音机靠近可能产生电磁干扰的电器。
如果杂音明显变大或出现特殊的声音变化,说明该电器可能存在电磁干扰。
4、观察其他无线设备的信号比如无线路由器、手机、蓝牙设备等,如果在某个电器附近这些设备的信号变弱或不稳定,也可能是电磁干扰所致。
三、消除电磁干扰的措施1、合理摆放电器避免将电器密集地摆放在一起,特别是大功率电器。
尽量保持一定的距离,以减少电磁场的相互影响。
防电磁干扰的重要措施•一滤波技术
防电磁干扰主要有三项措施,即屏蔽、滤波和接地。
往往单纯采纳屏蔽不能供应完整的电磁干扰防护,由于设施或系统上的电缆是最有效的干扰接收与放射天线。
很多设施单台做电磁兼容试验时都没有问题,但当两台设施连接起来以后,就不满意电磁兼容的要求了,这就是电缆起了接收和辐射天线的作用。
唯一的措施就是加滤波器,切断电磁干扰沿信号线或电源线传播的路径,与屏蔽共同构成完善的电磁干扰防护,无论是抑制干扰源、消退耦合或提高接收电路的抗力量。
都可以采纳滤波技术。
2线上干扰的类型
线上的干扰电流依据其流淌路径可以分为两类:一类是差模干扰电流,另一类是共模干扰电流。
差模干扰电流是在火线和零线之间流淌的干扰电流,共模干扰电流是在火线、零线与大地(或其它参考物体)之间流淌的干扰电流,由于这两种干扰的抑制方式不同,因此正确辨认干扰的类型是实施正确滤波方法的前提。
共模干扰一般是由来自外界或电路其它部分的干扰电磁波在电缆与“地”的回路中感应产生的,有时由于电缆两端的接“地”电位不同,也会产生共模干扰。
它对电磁兼容的危害很大,一方面,共模干扰会使电缆线向外放射出剧烈的电磁辐射,干扰电路的其它部分或周边电子设施;另一方面,假如电路不平衡,在电缆中不同导线上的共模干扰电流的幅度、相位发生差异时,共模干扰则会转变成差模干扰,将严峻影响正常信号的质量,所以人们都在努力抑制共模干扰。
差模干扰主要是电路中其它部分产生的电磁干扰经过传导或耦合的途径进入信号线回路,如高次谐波、自激振荡、电网干扰等。
由于差模干扰电流与正常的信号电流同时、同方向在回路中流淌,所以它对信号的干扰是严峻的,必需设法抑制。
综上所述可知,为了达到电磁兼容的要求,对共模干扰和差模干扰都应设法抑制。
3滤波器的分类
滤波器是由集中参数的电阻、电感和电容,或分布参数的电阻、电感和电容构成的一种网络。
这种网络允许一些频率通过,而对其它频率成份加以抑制。
依据要滤除的干扰信号的频率与工作频率的相对关系,干扰滤波器有低通滤波器、高通滤波器、带通滤波器、带阻滤波器等种类。
低通施波梏的尖型
低通滤波器是最常用的一种,主要用在干扰信号频率比工作信号频率高的场合。
如在数字设施中,脉冲信号有丰富的高次谐波,这些高次谐波并不是电路工作所必需的,但它们却是很强的干扰源。
因此在数字电路中,常用低通滤波器将脉冲信号中不必要的高次谐波滤除掉,而仅保留能够维持电路正常工作最低频率。
电源线滤波器也是低通滤波器,它仅允许50Hz的电流通过,对其它高频干扰信号有很大的衰减。
•常用的低通滤波器是用电感和电容组合而成的,电容并联在要滤波的信号线与信号地之间(滤除差模干扰电流)或信号线与机壳地或大地之间(滤除共模干扰电流)电感串联在要滤波的信号线上。
依
据电路结构分,有单电容型(C型),单电感型,L型和反「型,T型,π型。
•高通滤波器用于干扰频率比信号频率低的场合,如在一些靠近电源线的敏感信号线上滤除电源谐波造成的干扰。
•带通滤波器用于信号频率仅占较窄带宽的场合,如通信接收机的天线端口上要安装带通滤波器,仅允许通信信号通过。
•带阻滤波器用于干扰频率带宽较窄,而信号频率较宽的场合,如距离大功率电台很近的电缆端口处要安装带阻频率等于电台放射频率的带阻滤波器。
不同结构的滤波电路主要有两点不同:
1 .电路中的滤波器件越多,则滤波器阻带的衰减越大,滤波器通带与阻带之间的过渡带越短。
2 .不同结构的滤波电路适合于不同的源阻抗和负载阻抗,它们的关系应遵循阻抗失配原则。
但要留意的是,实际电路的阻抗很难估算,特殊是在高频时(电磁干扰问题往往发生在高频),由于电路寄生参数的影响,电路的阻抗变化很大,而且电路的阻抗往往还与电路的工作状态有关,再加上电路阻抗在不同的频率上也不一样。
因此,在实际中,哪一种滤波器有效主要靠试验的结果确定。
4滤波器的基本原理
滤波器是由电感和电容组成的低通滤波电路所构成,它允许有用信号的电流通过,对频率较高的干扰信号则有较大的衰减。
由于干扰信号有差模和共模两种,因此滤波器要对这两种干扰都具有衰减作用。
其基本原理有三种:
A)采用电容通高频隔低频的特性,将火线、零线高频干扰电流导入地线(共模),或将火线高频干扰电流导入零线(差模);
B)采用电感线圈的阻抗特性,将高频干扰电流反射回干扰源;
C)采用干扰抑制铁氧体可将肯定频段的干扰信号汲取转化为热量的特性,针对某干扰信号的频
段选择合适的干扰抑制铁氧体磁环、磁珠直接套在需要滤波的电缆上即可5电源滤波器高频插入损耗的重要性
尽管各种电磁兼容标准中关于传导放射的限制仅到30MHz(旧军标到50MHz,新军标到
10MHz),但是对传导放射的抑制绝不能忽视高频的影响。
由于,电源线上高频传导电流会导致辐射,使设施的辐射放射超标。
此外,瞬态脉冲敏感度试验中的试验波形往往包含了很高的频率成份,假如不滤除这些高频干扰,也会导致设施的敏感度试验失败。
电源线滤波器的高频特性差的主要缘由有两个,一个是内部寄生参数造成的空间耦合,另一个是
滤波器件的不抱负性。
因此,改善高频特性的方法也是从这两个方面着手。
内部结构:滤波器的连线要依据电路结构向一个方向布置,在空间允许的条件下,电感与电容之
间保持肯定的距离,必要时,可设置一些隔离板,减小空间耦合。
电感:依据前面所介绍的方法掌握电感的寄生电容。
必要时,使用多个电感串联的方式。
差模滤波电容:电容的引线要尽量短。
要理解这个要求的含义:电容与需要滤波的导线(火线和
零线)之间的连线尽量短。
假如滤波器安装在线路板上,线路板上的走线也会等效成电容的引线。
这时,要留意保证时机的电容引线最短。
共模电容:电容的引线要尽量短。
对这个要求的理解和留意事项同差模电容相同。
但是,滤波器
的共模高频滤波特性主要靠共模电容保证,并且共模干扰的频率一般较高,因此共模滤波电容的高频特性更加重要。
使用三端电容可以明显改善高频滤波效果。
但是要留意三端电容的正确使用方法。
即,要使接地线尽量短,而其它两根线的长短对效果几乎没有影响。
必要时可以使用穿心电容,这时,滤波器本身的性能可以维持到IGHZ以上。
特殊提示:当设施的辐射放射在某个频率上不满意标准的要求时,不要遗忘检查电源线在这个频
率上的共模传导放射,辐射放射很可能是由这个共模放射电流引起的。
6滤波器的选择
依据干扰源的特性、频率范围、电压和阻抗等参数及负载特性的要求,适当选择滤波器,一般考虑:其一,要求电磁干扰滤波器在相应工作频段范围内,能满意负载要求的衰减特性,若一种滤波器衰减量不能满意要求时,则可采纳多级联,可以获得比单级更高的衰减,不同的滤波器级联,可以获得在宽频带内良好衰减特性。
其二,要满意负载电路工作频率和需抑制频率的要求,假如要抑制的频率和有用信号频率特别接近时,则需要频率特性特别陡峭的滤波器,才能满意把抑制的干扰频率滤掉,只允许通过有
用频率信号的要求。
其三,在所要求的频率上,滤波器的阻抗必需与它连接干扰源阻抗和负载阻抗相失配,假如负载是高阻抗,则滤波器的输出阻抗应为低阻;假如电源或干扰源阻抗是低阻抗,则滤波器的输入阻抗应为高阻;假如电源阻抗或干扰源阻抗是未知的或者是在一个很大的范围内变化,很难得到稳定的滤波特性,为了获得滤波器具有良好的比较稳定的滤波特性,可以在滤波器输入和输出端,同时并接一个固定电阻。
其四,滤波器必需具有肯定耐压力量,要依据电源和干扰源的额定电压来选择滤波器,使它具有足够高的额定电压,以保证在全部预期工作的条件下都能牢靠地工作,能够经受输入瞬时高压的冲击。
其五,滤波器允许通过应与电路中连续运行的额定电流全都。
额定电流高了,会加大滤波器的体积和重量;额定电流低了,又会降低滤波器的牢靠性,其六,滤波器应具有足够的机械强度,结构简洁、重量轻、体积小、安装便利、平安牢靠。
7滤波器的使用
为了提高电源的品质、电路的线性、削减各种杂波和非线性失真干扰和谐波干扰等均使用滤波器。
对武器系统来讲,使用滤波器的场全部:其一,除总配电系统和安排电系统上设置电源滤波器外,进入设施的电源均要安装滤波器,最好使用线至线滤波器,而不使用线至地滤波器。
其二,对脉冲干扰和瞬变干扰敏感的设施,使用隔离变压器供电时,应在负端加装滤波器。
其三,对含电爆装置的武器系统供电时,应加滤波器。
必要时,电爆装置的引线也要加装滤波器。
其四、各分系统或设施之间的接口处,应有滤波器抑制干扰,确保兼容。
其五,设施和分系统的掌握信号,其输入和输出端均应加滤波器或旁路电容器。