安徽省毫州市利辛县2017届九年级数学下学期第一次联考试题 精品
- 格式:doc
- 大小:12.84 MB
- 文档页数:8
安徽省亳州市利辛县2016-2017学年九年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题4分,共40分.每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的答题框中)1.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有()A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣32.抛物线y=(x﹣1)2﹣3的对称轴是()A.y轴B.直线x=﹣1 C.直线x=1 D.直线x=﹣33.将抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是()A.y=(x﹣4)2﹣6 B.y=(x﹣4)2﹣2 C.y=(x﹣2)2﹣2 D.y=(x﹣1)2﹣3 4.不等式3(x﹣1)+4≥2x的解集在数轴上表示为()A.B.C.D.5.当b+c=0时,二次函数y=x2+bx+c的图象一定经过点()A.(﹣1,﹣1) B.(1,﹣1)C.(﹣1,1)D.(1,1)6.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×1087.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.若设商场3月份到5月份营业额的月平均增长率为x,则下面列出的方程中正确的是()A.633.6(1+x)2=400(1+10%)B.633.6(1+2x)2=400×(1010%)C.400×(1+10%)(1+2x)2=633.6 D.400×(1+10%)(1+x)2=633.68.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B.C.D.9.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是()A.①② B.①③④C.①②③⑤ D.①②③④⑤10.如图,坐标系的原点为O,点P是第一象限内抛物线y=x2﹣1上的任意一点,PA⊥x 轴于点A.则OP﹣PA值为()A.1 B.2 C.3 D.4二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)因式分解a﹣ab2= .12.(5分)已知二次函数y=x2+bx+c的图象过点A(1,0)且关于直线x=2对称,则这个二次函数关系式是.13.(5分)阅读理解:符号称为二阶行列式,规定它的运算法则为: =ad﹣bc,例如=3×4﹣2×5=12﹣10=2,请根据阅读理解化简下面的二阶行列式: = .14.(5分)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:x …﹣2 ﹣1 0 1 2 …y …0 4 6 6 4 …从表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=;④在对称轴左侧,y随x增大而增大.三、(本大题共2小题,每小题10分,满分20分)15.(10分)开口向下的抛物线y=(m2﹣2)x2+2mx+1的对称轴经过点(﹣1,3),求m的值.16.(10分)已知二次函数y=﹣x2+2x+3.(1)用配方法求抛物线的对称轴、顶点坐标,并指出它的开口方向.(2)在给定的直角坐标系中画出此函数的图象.(3)观察图象指出当y≥0时,x的取值范围.四、(本大题共2小题,每小题10分,满分20分)17.(10分)解方程:x2﹣2x=4.18.(10分)已知抛物线的顶点为(﹣1,2),且过点(2,1),求该抛物线的函数解析式.五、(本大题共2小题,每小题12分,满分24分)19.(12分)清明小长假期间,小明和小亮相约从学校出发,去距学校6千米的三国古城遗址公园游玩,小明步行但小亮骑自行车,在去公园的全过程中,骑自行车的小亮同学比步行的小明同学少用40分钟,已知骑自行车的速度是步行速度的3倍.(1)求小明同学每分钟走多少千米?(2)右图是两同学前往公园时的路程y(千米)与时间x(分钟)的函数图象.完成下列填空:①表示小亮同学的函数图象是线段;②已知A点坐标(30,0),则B点的坐标为().20.(12分)已知抛物线y=﹣x2+bx+c的部分图象如图所示.(1)求b、c的值.(2)若抛物线与x轴交于A、B两点(A在B的左侧),顶点为P点,求三角形ABP的面积.六、(本题满分12分)21.(12分)大陇初级中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.如图已知墙长为18米,设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边长为y米,直接写出y与x之间的函数关系式及自变量的取值范围.(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大?并求出这个最大值.七、(本题满分14分)22.(14分)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.2016-2017学年安徽省亳州市利辛县九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的答题框中)1.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有()A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣3【考点】二次函数的最值.【分析】由抛物线的开口向下和其顶点坐标为(2,﹣3),根据抛物线的性质可直接做出判断.【解答】解:因为抛物线开口向下和其顶点坐标为(2,﹣3),所以该抛物线有最大值是﹣3.故选D.【点评】本题主要考查了二次函数的最值的性质,求二次函数的最大(小)值有三种方法:第一种可由图象直接得出,第二种是配方法,第三种是公式法.2.抛物线y=(x﹣1)2﹣3的对称轴是()A.y轴B.直线x=﹣1 C.直线x=1 D.直线x=﹣3【考点】二次函数的性质.【分析】根据二次函数的顶点式y=(x﹣h)2+k,对称轴为直线x=h,得出即可.【解答】解:抛物线y=(x﹣1)2﹣3的对称轴是直线x=1.故选:C.【点评】本题考查了二次函数的性质,解答此题时要注意抛物线的对称轴是直线,这是此题易忽略的地方.3.将抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是()A.y=(x﹣4)2﹣6 B.y=(x﹣4)2﹣2 C.y=(x﹣2)2﹣2 D.y=(x﹣1)2﹣3 【考点】二次函数图象与几何变换.【分析】先把y=x2﹣6x+5配成顶点式,得到抛物线的顶点坐标为(3,﹣4),再把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),然后根据顶点式写出平移后的抛物线解析式.【解答】解:y=x2﹣6x+5=(x﹣3)2﹣4,即抛物线的顶点坐标为(3,﹣4),把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),所以平移后得到的抛物线解析式为y=(x﹣4)2﹣2.故选:B.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.不等式3(x﹣1)+4≥2x的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】先求出不等式的解集,再在数轴上表示出来.【解答】解:不等式3(x﹣1)+4≥2x的解集是x≥﹣1,大于应向右画,包括1时,应用实心的原点表示﹣1这一点.故选A.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.5.当b+c=0时,二次函数y=x2+bx+c的图象一定经过点()A.(﹣1,﹣1) B.(1,﹣1)C.(﹣1,1)D.(1,1)【考点】二次函数图象上点的坐标特征.【分析】令x=1代入则可求得y的值,可求得答案.【解答】解:当x=1时,代入可得y=1+b+c,∵b+c=0,∴y=1,∴当x=1时,可求得y=1,即二次函数图象一定过(1,1),故选D.【点评】本题主要考查二次函数图象上点的坐标特征,掌握图象上点的坐标满足函数解析式是解题的关键.6.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.若设商场3月份到5月份营业额的月平均增长率为x,则下面列出的方程中正确的是()A.633.6(1+x)2=400(1+10%)B.633.6(1+2x)2=400×(1010%)C.400×(1+10%)(1+2x)2=633.6 D.400×(1+10%)(1+x)2=633.6【考点】由实际问题抽象出一元二次方程.【分析】设平均增长率为x,由题意得出400×(1+10%)是3月份的营业额,633.6万元即5月份的营业额,根据三月份的营业额×(1+x)2=五月份的营业额列出方程即可.【解答】解:设3月份到5月份营业额的月平均增长率为x,根据题意得,400×(1+10%)(1+x)2=633.6.故选:D.【点评】本题考查从实际问题中抽象出一元二次方程,掌握求平均变化率的方法:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“﹣”).8.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx 来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴x=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.【点评】此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.9.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是()A.①② B.①③④C.①②③⑤ D.①②③④⑤【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线当x=1、x=﹣1和x=﹣2时的情况进行推理,进而对所得结论进行判断.【解答】解:①当x=1时,y=a+b+c<0,故①正确;②当x=﹣1时,y=a﹣b+c>1,故②正确;③由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,∴c>0,对称轴为x==﹣1,得2a=b,∴a、b同号,即b<0,∴abc>0,故③正确;④∵对称轴为x==﹣1,∴点(0,1)的对称点为(﹣2,1),∴当x=﹣2时,y=4a﹣2b+c=1,故④错误;⑤∵x=﹣1时,a﹣b+c>1,又﹣=﹣1,即b=2a,∴c﹣a>1,故⑤正确.故选:①②③⑤.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式10.如图,坐标系的原点为O,点P是第一象限内抛物线y=x2﹣1上的任意一点,PA⊥x 轴于点A.则OP﹣PA值为()A.1 B.2 C.3 D.4【考点】二次函数图象上点的坐标特征.【分析】先设P点坐标为(a, a2﹣1),再根据勾股定理计算出OP,然后计算OP﹣PA.【解答】解:设P点坐标为(a, a2﹣1),则OA=a,PA=a2﹣1,∴OP===a2+1,∴OP﹣PA=a2+1﹣(a2﹣1)=2.故选B.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了勾股定理.二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解a﹣ab2= a(1+b)(1﹣b).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(1﹣b2)=a(1+b)(1﹣b),故答案为:a(1+b)(1﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.已知二次函数y=x2+bx+c的图象过点A(1,0)且关于直线x=2对称,则这个二次函数关系式是y=x2﹣4x+3 .【考点】待定系数法求二次函数解析式;二次函数图象上点的坐标特征.【分析】因为对称轴是直线x=2,所以得到点(1,0)的对称点是(3,0),因此利用交点式y=a(x﹣x1)(x﹣x2),求出解析式.【解答】解:∵抛物线对称轴是直线x=2且经过点(1,0),由抛物线的对称性可知:抛物线还经过点(3,0),设抛物线的解析式为y=a(x﹣x1)(x﹣x2)(a≠0),∵a=1,∴抛物线的解析式为:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.故答案为:y=x2﹣4x+3.【点评】本题考查了用待定系数法求函数解析式的方法,注意选择若知道与x轴的交点坐标,采用交点式比较简单.13.阅读理解:符号称为二阶行列式,规定它的运算法则为: =ad﹣bc,例如=3×4﹣2×5=12﹣10=2,请根据阅读理解化简下面的二阶行列式: = 2a+1 .【考点】分式的混合运算.【分析】由于=ad﹣bc,根据这个规定可以所求二阶行列式的结果.【解答】解:∵ =ad﹣bc,∴=a﹣×(a2﹣1)=a+a+1=2a+1.故答案为:2a+1.【点评】此题主要考查了分式的混合运算,解题时首先正确理解题意,然后根据题意列出代数式,最后利用分式混合运算法则计算即可解决问题.14.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:x …﹣2 ﹣1 0 1 2 …y …0 4 6 6 4 …从表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=;④在对称轴左侧,y随x增大而增大.【考点】抛物线与x轴的交点;二次函数的性质;二次函数的最值.【分析】根据表中数据和抛物线的对称性,可得到抛物线的开口向下,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);因此可得抛物线的对称轴是直线x=3﹣=,再根据抛物线的性质即可进行判断.【解答】解:根据图表,当x=﹣2,y=0,根据抛物线的对称性,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);∴抛物线的对称轴是直线x=3﹣=,根据表中数据得到抛物线的开口向下,∴当x=时,函数有最大值,而不是x=0,或1对应的函数值6,并且在直线x=的左侧,y随x增大而增大.所以①③④正确,②错.故答案为:①③④.【点评】本题考查了抛物线y=ax2+bx+c的性质:抛物线是轴对称图形,它与x轴的两个交点是对称点,对称轴与抛物线的交点为抛物线的顶点;a<0时,函数有最大值,在对称轴左侧,y随x增大而增大.三、(本大题共2小题,每小题10分,满分20分)15.(10分)(2016秋•利辛县月考)开口向下的抛物线y=(m2﹣2)x2+2mx+1的对称轴经过点(﹣1,3),求m的值.【考点】二次函数的性质.【分析】根据题意得出﹣=﹣1,m2﹣2<0,进而求出m的值即可.【解答】解:∵开口向下的抛物线y=(m2﹣2)x2+2mx+1的对称轴经过点(﹣1,3),∴﹣=﹣1,m2﹣2<0,解得:m1=﹣1,m2=2(不合题意舍去),∴m=﹣1.【点评】此题主要考查了二次函数的性质,根据题意得出关于m的值是解题关键.16.(10分)(2016秋•利辛县月考)已知二次函数y=﹣x2+2x+3.(1)用配方法求抛物线的对称轴、顶点坐标,并指出它的开口方向.(2)在给定的直角坐标系中画出此函数的图象.(3)观察图象指出当y≥0时,x的取值范围.【考点】抛物线与x轴的交点;二次函数的三种形式.【分析】(1)把二次函数化为顶点式的形式,进而可得出结论;(2)根据(1)中,抛物线的对称轴、顶点坐标,并指出它的开口方向画出函数图象即可;(3)根据函数图象即可得出结论.【解答】解:(1)∵二次函数可化为y=﹣(x﹣1)2+4,∴抛物线的对称轴是x=1,顶点坐标为(1,4),它开口方向下;(2)二次函数的图象如图;(3)由函数图象可知,当y≥0时,﹣1≤x≤3.【点评】本题考查的是抛物线与x轴的交点,根据题意画出函数图象,利用数形结合求解是解答此题的关键.四、(本大题共2小题,每小题10分,满分20分)17.(10分)(2016•安徽)解方程:x2﹣2x=4.【考点】解一元二次方程-配方法;零指数幂.【分析】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解【解答】解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.【点评】在实数运算中要注意运算顺序,在解一元二次方程时要注意选择适宜的解题方法.18.(10分)(2016秋•利辛县月考)已知抛物线的顶点为(﹣1,2),且过点(2,1),求该抛物线的函数解析式.【考点】待定系数法求二次函数解析式;二次函数的性质.【分析】设抛物线的解析式为y=a(x+1)2+2,把点(1,4)代入得出1=a(1+2)2+2,求出a即可.【解答】解:∵抛物线的顶点为(﹣1,2),∴设抛物线的解析式为y=a(x+1)2+2,∵经过点(2,1),∴代入得:1=a(2+1)2+2,解得:a=﹣,即y=﹣(x+1)2+2.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.五、(本大题共2小题,每小题12分,满分24分)19.(12分)(2016•蒙城县校级模拟)清明小长假期间,小明和小亮相约从学校出发,去距学校6千米的三国古城遗址公园游玩,小明步行但小亮骑自行车,在去公园的全过程中,骑自行车的小亮同学比步行的小明同学少用40分钟,已知骑自行车的速度是步行速度的3倍.(1)求小明同学每分钟走多少千米?(2)右图是两同学前往公园时的路程y(千米)与时间x(分钟)的函数图象.完成下列填空:①表示小亮同学的函数图象是线段AM ;②已知A点坐标(30,0),则B点的坐标为(50,0 ).【考点】一次函数的应用.【分析】(1)关键描述语:“骑自行车的同学比步行的同学少用40分钟”;等量关系为:步行的同学所用的时间=骑自行车的同学所用的时间+40.(2)①函数图象的斜率为骑自行车和步行时的速率,骑自行车的速率快,故斜率大,故AM 线段为骑车同学的函数图象;②根据题中所的条件,可将线段AM的函数关系式表示出来,从而可将可将B点的坐标求出.【解答】解:(1)设小明同学每分钟走x千米,则小亮同学每分钟走3x千米.根据题意,得: =+40,解得:x=0.1,经检验x=0.1是原方程的解.答:小明同学每分钟走0.1千米.(2)①骑车同学的速度快,即斜率大,故为线段AM.②由(1)知,线段AM的斜率为:3x=.设一次函数关系式为:y=x+b将点A的坐标(30,0)代入可得:b=﹣9.则y=x﹣9.当y=6时,x=50.故点B的坐标为(50,0).【点评】本题考查一次函数的实际运用,分式方程的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.20.(12分)(2016秋•利辛县月考)已知抛物线y=﹣x2+bx+c的部分图象如图所示.(1)求b、c的值.(2)若抛物线与x轴交于A、B两点(A在B的左侧),顶点为P点,求三角形ABP的面积.【考点】抛物线与x轴的交点.【分析】(1)观察函数图象找出点(0,3)、(1,0)在抛物线上,由点的坐标利用待定系数法即可得出结论;(2)由(1)可得出抛物线解析式,将其变形为顶点式,即可得出点P的坐标,再令y=0即可得出关于x的一元二次方程,解方程即可得出点A、B的坐标,根据三角形的面积公式即可得出结论.【解答】解:(1)观察函数图象可知:点(0,3)、(1,0)在抛物线上,将点(0,3)、(1,0)代入y=﹣x2+bx+c中,得:,解得:,∴b的值为﹣2,c的值为3.(2)由(1)可知,抛物线的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的顶点P的坐标为(﹣1,4).令y=0,则有﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,∵A在B的左侧,∴A(﹣3,0),B(1,0).∴S△ABP=•(x2﹣x1)•y p=×[1﹣(﹣3)]×4=8.【点评】本题考查了抛物线与x轴的交点以及待定系数法求出函数解析式,观察函数图象找出点的坐标再利用待定系数法求出函数解析式是解题的关键.六、(本题满分12分)21.(12分)(2014•淮北模拟)大陇初级中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.如图已知墙长为18米,设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边长为y米,直接写出y与x之间的函数关系式及自变量的取值范围.(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大?并求出这个最大值.【考点】二次函数的应用.【分析】(1)根据题意即可求得y与x的函数关系式为y=30﹣2x与自变量x的取值范围为6≤x<15;(2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.【解答】解:(1)y=30﹣2x(6≤x<15).(2)设矩形苗圃园的面积为S则S=xy=x(30﹣2x)=﹣2x2+30x,=﹣2(x﹣7.5)2+112.5,由(1)知,6≤x<15,∴当x=7.5时,S最大值=112.5,即当矩形苗圃园垂直于墙的一边的长为7.5米时,这个苗圃园的面积最大,这个最大值为112.5.【点评】此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.七、(本题满分14分)22.(14分)(2016秋•利辛县月考)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)因为抛物线经过点B(1,0),C(5,0),可以假设抛物解析式为y=a(x ﹣1)(x﹣5),把A(0,4)代入即可解决问题,对称轴根据图象即可解决.(2)连接AC与对称轴的交点即为点P,此时△PAB周长最小.求出直线AC的解析式即可解决问题.【解答】解:(1)∵抛物线经过点B(1,0),C(5,0),∴可以假设抛物解析式为y=a(x﹣1)(x﹣5),把A(0,4)代入得4=5a,∴a=,∴抛物线解析式为y=(x﹣1)(x﹣5)=x2﹣x+4.由图象可知抛物线对称轴x=3.(2)连接AC与对称轴的交点即为点P,此时△PAB周长最小.设直线AC的解析式为y=kx+b,则,解得,∴直线AC解析式为y=﹣x+4,和对称轴的交点P为(3,).【点评】本题考查二次函数综合题、两点之间线段最短、一次函数、待定系数法等知识,解题的关键是灵活应用这些知识解决问题,学会利用对称解决最短问题,属于中考常考题型.。
安徽省宣城市2017届九年级数学下学期第一次联考试题提示:请将答案填写在答题卡上,只交答题卡一、选择题:(本大题共10小题,每小题4分,满分40分) 1、计算-6sin30°的相反数等于(A )3(B )33(C )32(D )232、△ABC 与△DEF 的相似比为1:4,则△ABC 与△DEF 的周长比为( )A .1:2B .1:3C .1:4D .1:163、抛物线y =2x 2﹣2x +1与坐标轴的交点个数是( ) A .0B .1C .2D .3.4、如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点. 已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是.A.23 B. 33 C. 43 D.635、将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y6、.平面直角坐标系xOy 中,已知)0,3(-A 、)0,9(B 、)3,0(-C 三点,),3(m D 是一个动点,当ACD ∆周长最小时,ABD ∆的面积为A .6B .9C .12D .15 7、宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形。
我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( ) A .矩形ABFE B .矩形DCGH C .矩形EFGH D .矩形EFCD8、如图,在⊙O中, =,∠ADC=20°,则∠AOB的度数是()A. 40°B.30° C.20°D.10°9、在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为13,把△ABO缩小,则点A的对应点A′的坐标是( )A.(―1,2) B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)10、定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2,)在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是()A.命题(1)与命题(2)都是真命题B.命题(1)与命题(2)都是假命题C.命题(1)是假命题,命题(2)是真命题D.命题(1)是真命题,命题(2)是假命题二、填空题:(本大题共4小题,每小题5分,满分20分)11、如图,⊙O 的半径为6,△ABC 是⊙O 的内接三角形,连接OB 、O C .若∠BAC 与∠BOC 互补,则弦BC 的长为12、已知点(m-1,),(m-3,)是反比例函数)0(<=m xmy 图象上的两点,则(填“>”或“=”或“<”)13、能完全覆盖边长为12的等边三角形的最小圆的半径为_______________.14、二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =2,下列结论:(1)4a +b =0;(2)9a +c >3b ;(3)8a +7b +2c >0;(4)若点A (﹣3,y 1)、点B (﹣,y 2)、点C (,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确结论的序号是_______________.(在横线上填上你认为所有正确结论的序号)三、(本大题共2小题,每小题8分,满分16分) 15、计算:2cos 30°+(﹣1)2﹣|2﹣|.16、先化简,再求值:)2()1)(3(-+-+a a a a ,其中045tan =a四、(本大题共2小题,每小题8分,满分16分)17、如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比为2.、18、如图,在△ABC中,AB=5,AC=7,∠B=60º,求BC的长.五、(本大题共2小题,每小题10分,满分20分)19、如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1.2,AC=3时,求BF的长.20、如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.六、(本题满分12分)21、如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)七、(本题满分12分)22、九年级某班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.八、(本题满分14分)23、如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标;(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.数学参考答案一、选择题:1、A2、C3、C4、A5、D6、C7、B8、A9、D 10、 C 二、填空题:11、36 12、> 13、3414、()()()531 三、解答题: 15、解:原式=221232+-+⨯………4分 =+-………8分16、解:原式=222+33+223a a a a a a ---=-………4分 ∵145tan 0==a1323123222-=-=-⨯=-∴a ………………8分17、解:解:(1)如图所示:△A 1B 1C 1即为所求;………………3分(2)如图所示:△A 2B 2C 2即为所求.………………8分18、解: 过A 点作AD ⊥BC 于D , 在Rt △ABD 中,AD =AB ·sin60°=5×23=325. ……(2分) BD =AB ·cos60°=5×2521=……(5分)在Rt △ADC 中,DC =22223257⎪⎭⎫⎝⎛-=-AD AC =211. ……(7分) 所以,BC =DC +BD =25211+=8. ……(8分)19、(1)证明:∵AD ⊥BC ,BE ⊥AC , ∴∠BDF=∠ADC=∠BEC=90°, ∴∠C+∠DBF=90°,∠C+∠DAC=90°, ∴∠DBF=∠DAC ,∴△ACD ∽△BFD .…………………5分(2)∵tan ∠ABD=1,∠ADB=90°∴=1.2,∵△ACD∽△BFD,∴==1.2,∵AC=3∴BF=2.5.…………………10分20、(1)过点A作AE⊥x轴于点E,如图所示.设反比例函数解析式为y=.∵AE⊥x轴,∴∠AEO=90°.在Rt△AEO中,AO=5,sin∠AOC=,∠AEO=90°,∴AE=AO•sin∠AOC=3,OE==4,∴点A的坐标为(﹣4,3).∵点A(﹣4,3)在反比例函数y=的图象上,∴3=,解得:k=﹣12.∴反比例函数解析式为y=﹣.……………5分(2)∵点B(m,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B的坐标为(3,﹣4).设直线AB的解析式为y=ax+b,将点A(﹣4,3)、点B(3,﹣4)代入y=ax+b中得:,解得:,∴一次函数解析式为y=﹣x﹣1.令一次函数y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣1,即点C的坐标为(﹣1,0).S△AOB=OC•(y A﹣y B)=×1×[3﹣(﹣4)]=.……………10分21、(1)由A(﹣1,0),对称轴为x=2,可得,解得,∴抛物线解析式为y=x2﹣4x﹣5;……………5分(2)B点坐标为(5,0),C点坐标为(0,﹣5);……………7分(3)如图,连接BC,则△OBC是直角三角形,∴过O、B、C三点的圆的直径是线段BC的长度,在Rt△OBC中,OB=OC=5,∴BC=5,∴圆的半径为,∴圆的面积为π()2=π.……………12分22、(1)当0≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b ∵y=kx+b经过点(0,40)、(50,90),∴,解得:,∴售价y与时间x的函数关系式为y=x+40;当50<x≤90时,y=90.∴售价y与时间x的函数关系式为y=.由数据信息可知每天的销售量p与时间x成一次函数关系,设每天的销售量p与时间x的函数关系式为p=mx+n∵p=mx+n过点(60,80)、(30,140),∴,解得:,∴p=﹣2x+200(0≤x≤90,且x为整数),当0≤x≤50时,w=(y﹣30)•p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;当50<x≤90时,w=(90﹣30)(﹣2x+200)=﹣120x+12000.综上所示,每天的销售利润w与时间x的函数关系式是w=.……………6分(2)当0≤x≤50时,w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,∵a=﹣2<0且0≤x≤50,∴当x=45时,w取最大值,最大值为6050元.当50<x≤90时,w=﹣120x+12000,∵k=﹣120<0,w随x增大而减小,∴当x=50时,w取最大值,最大值为6000元.∵6050>6000,∴当x=45时,w最大,最大值为6050元.即销售第45天时,当天获得的销售利润最大,最大利润是6050元.……………10分(3)该商品在销售过程中,共有24天每天的销售利润不低于5600元.……………12分23、解:(1)∵x2﹣2x﹣3=0,∴x=3或x=﹣1,∴B(0,3),C(0,﹣1),∴BC=4,……………2分(2)证明方法不唯一,以下供参考∵A(﹣,0),B(0,3),C(0,﹣1),∴OA=,OB=3,OC=1,∴OA2=OB•OC,∵∠AOC=∠BOA=90°,∴△AOC∽△BOA,∴∠CAO=∠ABO,∴∠CAO+∠BAO=∠ABO+∠BAO=90°,∴∠BAC=90°,∴AC⊥AB;……………6分(3)设直线AC的解析式为y=kx+b,把A(﹣,0)和C(0,﹣1)代入y=kx+b,∴,解得:,∴直线AC的解析式为:y=﹣x﹣1,∵DB=DC,∴点D在线段BC的垂直平分线上,∴D的纵坐标为1,∴把y=1代入y=﹣x﹣1,∴x=﹣2,∴D的坐标为(﹣2,1),……………10分(4)点P的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).…14分。
2017年安徽省亳州市利辛县中考数学一模试卷一、选择题(本题共10个小题,每小题4分,共分40)1.(4分)﹣2017的相反数是()A.2017 B.﹣2017 C.D.﹣2.(4分)下列运算正确的是()A. B.(m2)3=m5C.a2•a3=a5 D.(x+y)2=x2+y23.(4分)据合肥市旅游局统计显示,2017年春节7天长假,合肥的景区、景点以及农家乐接待游客数目共达到265万人次,旅游总收入达到14.3亿元,其中14.3亿元用科学记数法表示是()A.14.3×108元 B.1.43×108元 C.1.43×109元 D.14.3×109元4.(4分)下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(4分)如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.6.(4分)下列调查适合普查的是()A.调查2017年2月份利辛市场上某品牌饮料的质量B.调查某月份长江安徽段水域的水质量情况C.光明节能厂检测一批新型节能灯的使用寿命D.了解某班50名学生的年龄情况7.(4分)将一副直角三角板按如图方式放置,使直角顶点C重合,当DE∥BC 时,∠α的度数是()度.A.90 B.120 C.105 D.1008.(4分)某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2017年起到2019年累计投入4250万元,已知2017年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是()A.1500(1+x)2=4250B.1500(1+2x)=4250C.1500+1500x+1500x2=4250D.1500(1+x)+1500(1+x)2=4250﹣15009.(4分)如图,D、E、F分别是等腰三角形ABC边BC、CA、AB上的点,如果AB=AC,BD=2,CD=3,CE=4,AE=,∠FDE=∠B,那么AF的长为()A.5.5 B.4 C.4.5 D.3.510.(4分)如图,Rt△ABC中,∠C=90°,AC=BC=2,正方形CDEF的顶点D、F 分别在AC、BC上,C、D两点不重合,设CD的长度为x,Rt△ABC与正方形CDEF 重叠部分的面积为y,则下列中能表示y与x之间的关系的是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)因式分解:ab2﹣6ab+9a=.12.(5分)函数y=的自变量x的取值范围是.13.(5分)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.14.(5分)在矩形ABCD中有一个菱形BEDF(点E、F分别在线段AB、CD上)记它们的面积分别为S矩形ABCD 和S菱形BEDF,若S矩形ABCD:S菱形BFDE=(2+):2,给出如下结论:①AB:BE=(2+):2;②AE=BE;③tan∠EDF=;④∠FBC=60°.其中正确的结论的序号是(把所有正确结论的序号都填在横线上)三、解答题(本大题共2小题,共16分)15.(8分)计算:4cos45°﹣+(π﹣2017)0+(﹣1)3.16.(8分)观察下列式子(1)根据上述规律,请猜想,若n为正整数,则n=(2)证明你猜想的结论.四、解答题(共2小题,满分16分)17.(8分)如图,已知A(﹣3,﹣3),B(﹣2,﹣1),C(﹣1,﹣2)是平面直角坐标系上三点.(1)请画出△ABC关于x轴对称的△A1B1C1;(2)请画出△ABC绕点O逆时针旋转90°得到△A2B2C2;(3)在(1)中,若△ABC上有一点P(m,n),请直接写出对应点P1的坐标.18.(8分)已知,某一次函数与反比例函数相交于A(1,3),B(m,1),求:(1)m的值与一次函数的解析式;(2)△ABO的面积.五、解答题(共2小题,满分20分)19.(10分)如图,AB是⊙O的切线,B为切点,圆心O在AC上,∠A=30°,D为的中点.(1)求证:AB=BC.(2)试判断四边形BOCD的形状,并说明理由.20.(10分)如图,电线杆CD上的C处引拉线CE,CF固定电线杆,在离电线杆6米的B处安置测角仪(点B,E,D在同一直线上),在A处测得电线杆上C处的仰角为30°,已知测角仪的高AB=米,BE=3米,求拉线CE的长.六、(本题满分12分)21.(12分)某数学兴趣小组将我校九年级某班学生一分钟跳绳的测试成绩进行了整理,分成5个小组(x表成绩,单位:次,且100≤x<200),根据测试成绩绘制出部分频数分布表和部分频数分布直方图,其中B、E两组测试成绩人数直方图的高度比为4:1,请结合下列图标中相关数据回答下列问题:测试成绩频数分布表(1)填空:a=,b=,本次跳绳测试成绩的中位数落在组(请填写字母);(2)补全频数分布直方图;(3)已知本班中甲、乙两位同学的测试成绩分别为185次、195次,现要从E 组中随机选取2人介绍经验,请用列表法或画树状图的方法,求出甲、乙两人中至少1人被选中的概率.七、本题(满分12分)22.(12分)某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.(1)试确定函数关系式y=a(x﹣h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?八、本题(满分14分)23.(14分)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)若点P是等边三角形三条中线的交点,点P(填是或不是)该三角形的费马点.(2)如果点P为锐角△ABC的费马点,且∠ABC=60°.求证:△ABP∽△BCP;(3)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.2017年安徽省亳州市利辛县中考数学一模试卷参考答案与试题解析一、选择题(本题共10个小题,每小题4分,共分40)1.(4分)(2017•利辛县一模)﹣2017的相反数是()A.2017 B.﹣2017 C.D.﹣【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2017的相反数是2017,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2017•新宾县模拟)下列运算正确的是()A. B.(m2)3=m5C.a2•a3=a5 D.(x+y)2=x2+y2【分析】A、利用平方根定义化简得到结果,即可做出判断;B、利用幂的乘方运算法则计算得到结果,即可做出判断;C、利用同底数幂的乘法法则计算得到结果,即可做出判断;D、利用完全平方公式展开得到结果,即可做出判断.【解答】解:A、=3,本选项错误;B、(m2)3=m6,本选项错误;C、a2•a3=a5,本选项正确;D、(x+y)2=x2+y2+2xy,本选项错误,故选C【点评】此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及平方差公式,熟练掌握公式及法则是解本题的关键.3.(4分)(2017•利辛县一模)据合肥市旅游局统计显示,2017年春节7天长假,合肥的景区、景点以及农家乐接待游客数目共达到265万人次,旅游总收入达到14.3亿元,其中14.3亿元用科学记数法表示是()A.14.3×108元 B.1.43×108元 C.1.43×109元 D.14.3×109元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将14.3亿元用科学记数法表示为1.43×109元.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2016•内江)下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念判断即可.【解答】解:A、是轴对称图形,是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(4分)(2017•潮南区模拟)如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.(4分)(2017•利辛县一模)下列调查适合普查的是()A.调查2017年2月份利辛市场上某品牌饮料的质量B.调查某月份长江安徽段水域的水质量情况C.光明节能厂检测一批新型节能灯的使用寿命D.了解某班50名学生的年龄情况【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、调查2017年2月份利辛市场上某品牌饮料的质量适合抽样调查;B、调查某月份长江安徽段水域的水质量情况适合抽样调查;C、光明节能厂检测一批新型节能灯的使用寿命适合抽样调查;D、了解某班50名学生的年龄情况适合普查,故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.(4分)(2017•利辛县一模)将一副直角三角板按如图方式放置,使直角顶点C重合,当DE∥BC时,∠α的度数是()度.A.90 B.120 C.105 D.100【分析】根据平行线的性质可得∠DCB=∠D=45°,再利用三角形外角的性质可得∠α=45°+60°=105°.【解答】解:∵DE∥BC,∴∠DCB=∠D=45°,∵∠B=60°,∴∠α=45°+60°=105°,故选:C.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.8.(4分)(2017•利辛县一模)某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2017年起到2019年累计投入4250万元,已知2017年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是()A.1500(1+x)2=4250B.1500(1+2x)=4250C.1500+1500x+1500x2=4250D.1500(1+x)+1500(1+x)2=4250﹣1500【分析】如果设投入经费的年平均增长率为x,根据2017年投入1500万元,得出2018年投入1500(1+x)万元,2019年投入1500(1+x)2万元,然后根据三年共投入4250万元可得出方程.【解答】解:设2017﹣2019年投入经费的年平均增长率为x,则2018年投入1500(1+x)万元,2019年投入1500(1+x)2万元,根据题意得1500(1+x)+1500(1+x)2=4250﹣1500.故选D.【点评】本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9.(4分)(2017•利辛县一模)如图,D、E、F分别是等腰三角形ABC边BC、CA、AB上的点,如果AB=AC,BD=2,CD=3,CE=4,AE=,∠FDE=∠B,那么AF的长为()A.5.5 B.4 C.4.5 D.3.5【分析】注意到△BDF与△CED相似,利用相似比求出BF,然后得出AF的长度.【解答】解:∵AB=AC,∴∠B=∠C,∵∠FDE=∠B,∴∠BDF+∠BFD=∠BDF+∠EDC,∴∠BFD=∠CDE,∴△BDF∽△CED,∴,∴,∴BF=1.5,∴AF=AB﹣BF=AC﹣BF=AE+CE﹣BF=4.故选B.【点评】本题主要考查了相似三角形的判定与性质、等腰三角形的性质,属于基础题.识别出图形中的“一线三等角”模型从而得出三角形相似是解本题的关键.10.(4分)(2017•利辛县一模)如图,Rt△ABC中,∠C=90°,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC上,C、D两点不重合,设CD的长度为x,Rt△ABC与正方形CDEF重叠部分的面积为y,则下列中能表示y与x之间的关系的是()A.B.C.D.【分析】分类讨论:当0<x≤1时,根据正方形的面积公式得到y=x2;当1<x ≤2时,ED交AB于M,EF交AB于N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面积得到y=x2﹣2(x﹣1)2,配方得到y=﹣(x﹣2)2+2,然后根据二次函数的性质对各选项进行判断.【解答】解:当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2﹣x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2﹣x,∴EM=x﹣(2﹣x)=2x﹣2,=(2x﹣2)2=2(x﹣1)2,∴S△ENM∴y=x2﹣2(x﹣1)2=﹣x2+4x﹣2=﹣(x﹣2)2+2,∴y=.故选:B.【点评】本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.也考查了等腰直角三角形的性质.二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)(2009•攀枝花)因式分解:ab2﹣6ab+9a=a(b﹣3)2.【分析】先提公因式a,再利用完全平方公式分解因式即可.【解答】解:ab2﹣6ab+9a,=a(b2﹣6b+9),=a(b﹣3)2.【点评】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,本题要进行二次分解因式,分解因式要彻底.12.(5分)(2011•苏州)函数y=的自变量x的取值范围是x>1.【分析】一般地从两个角度考虑:分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:根据题意得到:x﹣1>0,解得x>1.故答案为:x>1.【点评】本题考查了函数式有意义的x的取值范围.判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.13.(5分)(2015•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是3.【分析】根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.【解答】解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3故答案为:3.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN 的值最大,难度不大.14.(5分)(2017•利辛县一模)在矩形ABCD 中有一个菱形BEDF (点E 、F 分别在线段AB 、CD 上)记它们的面积分别为S矩形ABCD 和S 菱形BEDF ,若S 矩形ABCD :S 菱形BFDE =(2+):2,给出如下结论:①AB :BE=(2+):2;②AE=BE ;③tan ∠EDF=;④∠FBC=60°.其中正确的结论的序号是 ①③④ (把所有正确结论的序号都填在横线上)【分析】由图可得矩形的宽和菱形的高相等,根据它们的面积关系即可得出AB :BE 的值;根据AE :BE=(2+):2,可得AE=BE 错误;由菱形的性质得出DE ∥BF ,DE=BE ,得出∠BFC=∠EDF ,由三角函数求出∠ADE=60°,得出∠ADC=∠C=90°,求出∠EDF=30°,即可得到tan ∠EDF 的值;根据∠BFC=30°,即可得出∠FBC=60°;最后得出正确的结论.【解答】解:如图所示,∵S 矩形ABCD :S 菱形BFDE ==(2+):2, ∴AB :BE=(2+):2, 故①正确;∵AB :BE=(2+):2,∴AE :BE=:2,故②错误;∵四边形BFDE 是菱形,∴DE ∥BF ,DE=BE ,∴∠BFC=∠EDF ,∵sin ∠ADE===, ∴∠ADE=60°,∵∠ADC=∠C=90°,∴∠EDF=90°﹣60°=30°,∴tan∠EDF=,故③正确;∵DE∥BF,∴∠BFC=30°,∴∠FBC=90°﹣30°=60°,故④正确;综上所述,正确的结论为①③④.故答案为:①③④.【点评】本题属于四边形综合题,主要考查了矩形的性质、菱形的性质、三角函数等知识的综合应用,熟练掌握矩形和菱形的性质,由矩形和菱形的性质得出AB:BE的值是解决问题的关键.三、解答题(本大题共2小题,共16分)15.(8分)(2017•利辛县一模)计算:4cos45°﹣+(π﹣2017)0+(﹣1)3.【分析】原式利用特殊角的三角函数值,二次根式性质,零指数幂,以及乘方的意义计算即可得到结果.【解答】解:原式=4×﹣2+1﹣1=0.【点评】此题考查了实数的运算,零指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.(8分)(2017•利辛县一模)观察下列式子(1)根据上述规律,请猜想,若n为正整数,则n=(n+1)+(2)证明你猜想的结论.【分析】(1)根据所给的4个算式,可得:若n为正整数,则n=(n+1)+.(2)用数学归纳法证明猜想的结论即可.【解答】(1)解:若n为正整数,则n=(n+1)+.(2)证明:∵右边=(n+1)+=+==n=左边,∴原等式成立.故答案为:(n+1)+.【点评】此题主要考查了探寻规律问题,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.四、解答题(共2小题,满分16分)17.(8分)(2017•利辛县一模)如图,已知A(﹣3,﹣3),B(﹣2,﹣1),C (﹣1,﹣2)是平面直角坐标系上三点.(1)请画出△ABC关于x轴对称的△A1B1C1;(2)请画出△ABC绕点O逆时针旋转90°得到△A2B2C2;(3)在(1)中,若△ABC上有一点P(m,n),请直接写出对应点P1的坐标.【分析】(1)分别作出各点关于x轴的对称点,再顺次连接各点即可;(2)根据图形旋转的性质画出△A2B2C2即可;(3)根据关于x轴对称的点的坐标特点即可得出结论.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)∵△ABC与△A1B1C1关于x轴对称,P(m,n),∴P1(m,﹣n).【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.18.(8分)(2017•利辛县一模)已知,某一次函数与反比例函数相交于A(1,3),B(m,1),求:(1)m的值与一次函数的解析式;(2)△ABO的面积.【分析】(1)设一次函数与反比例函数的解析式分别为y=ax+b(k≠0),y=(k ≠0),将A坐标代入反比例解析式中求出k的值,确定出反比例解析式,再将B 坐标代入反比例解析式中求出m的值,确定出B坐标,将A与B坐标代入一次函数解析式中求出a与b的值,即可确定出一次函数解析式;(2)设一次函数与x轴交于C点,求出C坐标,三角形AOB的面积=三角形AOC ﹣三角形BOC的面积,求出即可.【解答】解:(1)设一次函数与反比例函数的解析式分别为y=ax+b(k≠0),y=(k≠0),∵反比例函数y=(k≠0)的图象经过点A(1,3),∴k=1×3=3,∴反比例函数的解析式为y=,∵点B(m,1)在反比例函数的图象上,∴1=∴m=3,∴点B的坐标为(3,1),∵一次函数的图象经过点A,B,将这两个点的坐标代入y=kx+b,得,解得:,则所求一次函数的解析式为y=﹣x+4;(2)设一次函数y=﹣x+4的图象交x轴于点C,∴C点坐标为(4,0),即OC=4,∵A点的纵坐标为3,B点的纵坐标为1,=S△AOC﹣S△BOC=OC•3﹣OC•1=×4×2=4.∴S△AOB【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定函数解析式,一次函数与x轴的交点,坐标与图形性质,以及三角形的面积求法,熟练掌握待定系数法是解本题的关键.五、解答题(共2小题,满分20分)19.(10分)(2017•利辛县一模)如图,AB是⊙O的切线,B为切点,圆心O在AC上,∠A=30°,D为的中点.(1)求证:AB=BC.(2)试判断四边形BOCD的形状,并说明理由.【分析】(1)由AB是⊙O的切线,∠A=30°,易求得∠OCB的度数,继而可得∠A=∠OCB=30°,又由等角对等边,证得AB=BC;(2)首先连接OD,易证得△BOD与△COD是等边三角形,可得OB=BD=OC=CD,即可证得四边形BOCD是菱形.【解答】解:(1)∵AB是⊙O的切线,∴∠OBA=90°,∠AOB=90°﹣30°=60°.∵OB=OC,∴∠OBC=∠OCB,∠OCB=30°=∠A,∴AB=BC.(2)四边形BOCD为菱形,理由如下:连接OD交BC于点M,∵D是的中点,∴OD垂直平分BC.在Rt△OMC中,∵∠OCM=30°,∴OC=2OM=OD∴OM=MD,∴四边形BOCD为菱形.【点评】此题考查了切线的性质、等腰三角形的性质、菱形的判定以及等边三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.20.(10分)(2017•利辛县一模)如图,电线杆CD上的C处引拉线CE,CF固定电线杆,在离电线杆6米的B处安置测角仪(点B,E,D在同一直线上),在A 处测得电线杆上C处的仰角为30°,已知测角仪的高AB=米,BE=3米,求拉线CE的长.【分析】过A作AM垂直于CD,垂足为M,根据正切的定义出去CM,得到DE 的长,根据勾股定理计算即可.【解答】解:过A作AM垂直于CD,垂足为M,则AM=BD=6,∴CM=AM×tan∠ACM=2,∴CD=CM+MD=3,又DE=3利用勾股定理得CE==6米答:拉线CE的长6米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.六、(本题满分12分)21.(12分)(2017•利辛县一模)某数学兴趣小组将我校九年级某班学生一分钟跳绳的测试成绩进行了整理,分成5个小组(x表成绩,单位:次,且100≤x <200),根据测试成绩绘制出部分频数分布表和部分频数分布直方图,其中B、E两组测试成绩人数直方图的高度比为4:1,请结合下列图标中相关数据回答下列问题:测试成绩频数分布表(1)填空:a=4,b=32%,本次跳绳测试成绩的中位数落在C组(请填写字母);(2)补全频数分布直方图;(3)已知本班中甲、乙两位同学的测试成绩分别为185次、195次,现要从E 组中随机选取2人介绍经验,请用列表法或画树状图的方法,求出甲、乙两人中至少1人被选中的概率.【分析】(1)根据C的人数除以C所占的百分比,可得总人数,进而可求出A,D的所占百分比,则a,b的值可求;根据中位线的定义解答即可;(2)由(1)中的数据即可补全频数分布直方图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙两人中至少1人被选中的情况,再利用概率公式即可求得答案.【解答】解:(1)由题意可知总人数=15÷30%=50(人),所以D所占百分比=10÷50×100%=20%,A所占百分比=5÷50×100%=10%,因为B、E两组测试成绩人数直方图的高度比为4:1,所以5a=50﹣5﹣15﹣10,解得a=4,所以b=16÷50×100%=32%,因为B的人数是16人,所以中位线落在C组,故答案为4,32%,C;(2)由(1)可知补全频数分布直方图如图所示:(3)设甲为A,乙为B,画树状图为:由树状图可知从E组中随机选取2人介绍经验,则甲、乙两人中至少1人被选中的概率==.【点评】此题考查了列表法或树状图法求概率以及条形统计图.用到的知识点为:概率=所求情况数与总情况数之比.七、本题(满分12分)22.(12分)(2017•利辛县一模)某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.(1)试确定函数关系式y=a(x﹣h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?【分析】(1)根据题意此抛物线的顶点坐标为(4,﹣16),设出抛物线的顶点式,把(10,20)代入即可求出a的值,把a的值代入抛物线的顶点式中即可确定出抛物线的解析式;(2)相邻两个月份的总利润的差即为某月利润.(3)根据前x个月内所获得的利润减去前x﹣1个月内所获得的利润,再减去16即可表示出第x个月内所获得的利润,为关于x的一次函数,且为增函数,得到x取最大为12时,把x=12代入即可求出最多的利润.【解答】解:(1)根据题意可设:y=a(x﹣4)2﹣16,当x=10时,y=20,所以a(10﹣4)2﹣16=20,解得a=1,所求函数关系式为:y=(x﹣4)2﹣16.﹣﹣﹣﹣﹣﹣﹣(4分)(2)当x=9时,y=(9﹣4)2﹣16=9,所以前9个月公司累计获得的利润为9万元,又由题意可知,当x=10时,y=20,而20﹣9=11,所以10月份一个月内所获得的利润11万元.﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(3)设在前12个月中,第n个月该公司一个月内所获得的利润为s(万元)则有:s=(n﹣4)2﹣16﹣[(n﹣1﹣4)2﹣16]=2n﹣9,因为s是关于n的一次函数,且2>0,s随着n的增大而增大,而n的最大值为12,所以当n=12时,s=15,所以第12月份该公司一个月内所获得的利润最多,最多利润是15万元.﹣﹣(4分)【点评】本题考查了二次函数的应用,主要考查学生会利用待定系数法求函数的解析式,灵活运用二次函数的图象与性质解决实际问题,是一道综合题.八、本题(满分14分)23.(14分)(2017•利辛县一模)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)若点P是等边三角形三条中线的交点,点P是(填是或不是)该三角形的费马点.(2)如果点P为锐角△ABC的费马点,且∠ABC=60°.求证:△ABP∽△BCP;(3)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.【分析】(1)依据等腰三角形三线合一的性质可知:MB平分∠ABC,则∠ABP=30°,同理∠BAP=30°,则∠APB=120°,同理可求得∠APC,∠BPC的度数,然后可作出判断;(2)由费马点的定义可知∠PAB=∠PBC,然后再证明∠PAB=∠PBC即可;(3)如图2所示:①首先证明△ACE≌△ABD,则∠1=∠2,由∠3=∠4可得到∠CPD=∠5;②由∠CPD=60°可证明∠BPC=120°,然后证明△ADF∽△CFP,由相似三角形的性质和判定定理再证明△AFP∽△CDF,故此可得到∠APF=∠ACD=60°,然后可求得∠APC=120°,接下来可求得∠APB=120°.【解答】解:(1)如图1所示:∵AB=BC,BM是AC的中线,∴MB平分∠ABC.同理:AN平分∠BAC,PC平分∠BCA.∵△ABC为等边三角形,∴∠ABP=30°,∠BAP=30°.∴∠APB=120°.同理:∠APC=120°,∠BPC=120°.∴P是△ABC的费马点.故答案为:是.(2)∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP.(3)如图2所示:①∵△ABE与△ACD都为等边三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②证明:∵△ADF∽△CFP,∴AF•PF=DF•CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P点为△ABC的费马点.【点评】本题主要考查的是相似三角形的综合应用,解答本题主要应用了等边三角形的性质、等腰三角形的性质、全等三角形的性质和判定、相似三角形的性质和判定等知识,证得∠5=∠6、△AFP∽△CDF是解答本题的关键.。
安徽省2017-2018学年度九年级第一次联考人教版数学试卷(含详细答案和评分标准)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.一、选择题(本题共10小题,每小题4 分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的. 1.下列关于x 的方程是一元二次方程的是A .22215x x x -+=+B .20ax bx c ++=C .218x +=-D .2210x y --=2.若一元二次方程220170ax bx --=有一根为1x =-,则a +b 的值为A . 2017B . -2017C . -2016D . 2016 3.用配方法解方程2250x x --=时,原方程应变形为A .2(1)6x +=B . 2(1)6x -=C . 2(2)9x +=D . 2(2)9x -=4.关于x 的方程2(1)410k x x ---=有两个实数根,则k 的取值范围是A .3k >-B . 3k -≥C . 3k -≥且0k ≠D . 3k -≥且1k ≠5.若点1(,5)x 和点2(,5)x 12()x x ≠均在抛物线2y ax = 上,当x =12x x +时,函数的值为A . 0B . 10C . 5D . -56.已知抛物线2y ax k =-是由抛物线2y x =-向下平移2个单位得到的,则a 、k 的值分别是A . -1,2B . -1,-2C . 1,2D . 1,-27.在一幅长为80 cm ,宽为50 cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400 cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是A. x 2+130x -1400=0B. x 2+65x -350=0C. x 2-130x -1400=0D. x 2-65x -350=08.已知二次函数23(1)y x k =-+的图象上有三点Ay 1)、B (2,y 2)、C(,y 3),则的y 1、y 2、y 3的大小关系为A .1y >2y >3yB .2y >1y >3yC .3y >1y >2yD .3y >2y >1y 9.若实数x 满足方程22(2)(22)80x x x x +⋅+--=,那么22x x +的值为第7题图A .﹣2或4B .4C .﹣2D .2或﹣410.在同一平面直角坐标系中,二次函数y =ax 2+bx 与一次函数y =bx +a 的图象可能是二、填空题(本大题共4小题,每小题5分,满分20分)11.方程2122x x -=+的根是 ; 12.2利用二次函数的图象可知,当函数值y >0时,x 的取值范围是 ;13.我县为了响应习总书记“足球进校园”的号召,举行青少年足球联赛,小组赛采用单循环赛制(每两个球队比赛一场),已知小组赛阶段共进行了21场比赛,则参赛的球队数是 ;14.如图,已知抛物线y 1=-x 2+4x 和直线y 2=2x .我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M =y 1=y 2.下列判断: ①当x >2时,M =y 2;②当x <0时,x 值越大,M 值越大; ③使得M 大于4的x 值不存在;④若M =2,则x =1. 其中正确的是 . 三、(本大题共 2 小题,每小题 8 分,满分 16 分) 15.解方程:22410x x --=.16.已知抛物线与y 轴的正半轴相交,且交点到坐标原点的距离为3,若其顶点坐标为(2,﹣1),求该抛物线的解析式. 四、(本大题共2小题,每小题8分,满分16分)17.为了提倡低碳出行,某市引进共享单车,2017年第一季度投放了20万辆,第三季度投放了第14题图24.2万辆.求该市第二、三季度投放共享单车的平均增长率,按照这样的增长速度,预计到2017年底共投放共享单车多少辆?18.已知二次函数25y x kx k =-+-.(1)求证:无论k 取何实数,此二次函数的图象与x 轴都有两个交点; (2)若此二次函数图象的对称轴为x =1,求它的解析式.五、(本大题共2小题,每小题10分,满分20分)19.观察下列一组方程:①20x x -=;②2320x x -+=;③2560x x -+=;④27120x x -+=;…它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.(1)若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; (2)请写出第n 个方程和它的根.20.试用配方法求抛物线215322y x x =-+-的对称轴、顶点坐标和最值,并画出抛物线的草图(无需列表,要求标出抛物线与坐标轴的交点坐标).六、(本题满分12分)21.已知抛物线L :y=ax 2+bx+c (其中a 、b 、c 都不等于0),它的顶点P 的坐标是24,24b ac b aa ⎛⎫-- ⎪⎝⎭,与y 轴的交点是M (0,c ) 我们称以M 为顶点,对称轴是y 轴且过点P 的抛物线为抛物线L 的伴随抛物线,直线PM 为L 的伴随直线.(1) 请直接写出抛物线y=2x 2﹣4x+1的伴随抛物线和伴随直线的解析式: 伴随抛物线的解析式 ; 伴随直线的解析式 ;(2) 若一条抛物线的伴随抛物线和伴随直线分别是y1=﹣x2﹣3和y2=﹣x﹣3, 求这条抛物线的解析式.七、(本题满分12分)22.已知△ABC的两边AB、AC的长恰好是关于x的方程x2+(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5(1)求证:AB≠AC;(2)如果△ABC是以BC为斜边的直角三角形,求k的值(提示:本题可用一元二次方程根与系数的关系);(3)填空:当k=________时,△ABC是等腰三角形,△ABC的周长为.八、(本题满分14分)23.在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(﹣1,0),如图所示:抛物线y=ax2+ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外)三角形?若存在,求所有点P安徽省2017-2018学年度九年级第一次联考数学试题参考答案及评分标准一、选择题(本大题共10小题,每小题4分,满分40分)二、填空题(本大题共4小题,每小题5分,满分20分)11.121,3x x =-=; 12.x <-1或x >3; 13.7; 14.②③(只填一个正确序号得2分,填了错误序号不得分).三、(本大题共2小题,每小题8分,满分16分) 15.解:22410x x --=241a ,b ,c ==-=-,∴2(4)42(1)=24>0∆=--⨯⨯-………………………………………………2分4=4x ±∴=…………………………………………………6分12x ∴==8分 说明:解法不唯一,正确均得分.16.由题意可知,抛物线经过点(0,3)且顶点坐标为(2,-1),……………………2分 故可设抛物线的解析式为2(2)1y a x =--,将点(0,3)代入得,a =1 ∴抛物线的解析式为22(2)143y x y x x =--=-+或…………………………8分 说明:方法不唯一,解对即得分.四、(本大题共2小题,每小题8分,满分16分)17.设该市第二、三季度投放共享单车的平均增长率为x ,由题意得:220(1)24.2x +=………………………………………2分解得x 1=0.1,或x 2=﹣2.1(不合题意舍去)∴x =10%……………………4分24.2×(1+10%)=26.62(万辆) 20+22+24.2+26.62=92.82(万辆)答:该市第二、三季度投放共享单车的平均增长率为10%,按照这样的增长速度,预计到2017年底共投放共享单车92.82万辆………………………………………………8分18.解:(1)当y =0时,即250x kx k -+-=,∵222()4(5)420(2)160k k k k k ∆=---=-+=-+>,方程有两个不相等的实数根, ∴无论k 取何实数,此二次函数的图象与x 轴都有两个交点. …………………………4分 (2)由题意得,122b k a --=-=,解得k =2,…………………………6分 ∴抛物线的解析式为223y x x =--……………………………………………8分 五、(本大题共2小题,每小题10分,满分20分)19.解:(1)由题意可知,k =-15, ……………………………2分 ∴原方程为215560x x -+=,则(7)(8)0x x --=,解得127,8x x ==……………………………………5分(2)第n 个方程为2(21)(1)0x n x n n --+-=…………………………………8分它的解是121x n ,x n =-=……………………………………………………10分20.解:由配方法得221165(3)222y (x x )x =--+=--+…………………………2分 ∴ 对称轴是=3x ………………………………………………4分顶点坐标是(3, 2)……………………………………………6分∵102a =-<∴当=3x 时,2y =最大值………………………………………8分 抛物线草图如图:………………………………………10分 说明:解法正确均得分.六、(本题满分12分)21.解:(1)伴随抛物线的解析式 y=-2x 2+1 ;…………………………伴随直线的解析式 y=-2x+1 ;…………………………(2)由题意可知点M (0,-3), 当y 1=y 2时,233x x --=--,解得,120,1x x ==,把x=1,代入y=-x-3,得y=-4∴点P 的坐标为(1,-4)…………………………………8分设这条抛物线的解析式为2(1)4y a x =--,将点M (0,-3)代入得a =1,∴抛物线的解析式为2(1)4y x =--,化简为223y x x =--(不化简也可以)…………12分 七、(本题满分12分)22.解:(1) ∵∆=(2k +3)2-4(k 2+3k +2)=1>0∴方程有两个不相等的实数根∴AB ≠AC …………………………………4分 (2) 依题意得,AB 2+AC 2=BC 2=25 ∵AB +AC =-(2k +3),AB ·AC =k 2+3k +2 ∴AB 2+AC 2=(AB +AC )2-2AB ·AC =2k 2+6k +5=25 解得k 1=-5或k 2=2 ∵AB +AC =-(2k +3)>0 ∴k <23-∴k =-5…………………………………8分 (3) 依题意得,BC 为等腰三角形的腰将x =5代入方程中,得25+5(2k +3)+k 2+3k +2=0 解得k 1=-6,k 2=-7把k 1=-6代入原方程得,29200x x -+=,解得,125,4x x ==此时周长为14………………………………………10分把k 1=-7代入原方程得,211300x x -+=,解得,125,6x x == 此时周长为16所以,三角形的周长为14或16. ………………………………………12分八、(本题满分14分)23.解:(1)过点B 作BD ⊥x 轴,垂足为D ,∵∠BCD +∠ACO =90°,∠ACO +∠CAO =90°, ∴∠BCD =∠CAO ,又∵∠BDC =∠COA =90°,CB =AC ,∴△BCD ≌△CAO , ∴BD =OC =1,CD =OA =2,∴点B 的坐标为(﹣3,1)…………………………5分 (2)抛物线y =ax 2+ax ﹣2经过点B (﹣3,1), 则得到1=9a ﹣3a ﹣2,解得a =12,所以抛物线的解析式为211222y x x =+-…………………………9分(3)假设存在点P ,使得△ACP 仍然是以AC 为直角边的等腰直角三角形: ①若以点C 为直角顶点;则延长BC 至点P 1,使得P 1C =BC ,得到等腰直角三角形△ACP 1, 过点P 1作P 1M ⊥x 轴,∵CP 1=BC ,∠MCP 1=∠BCD ,∠P 1MC =∠BDC =90°,∴△MP1C≌△DBC.∴CM=CD=2,P1M=BD=1,可求得点P1(1,﹣1)…………………………11分②若以点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,∴NP2=OA=2,AN=OC=1,可求得点P2(2,1),经检验,点P1(1,﹣1)与点P2(2,1)都在抛物线y=x2+x﹣2上………………14分说明:方法不唯一,解对即得分。
2017年安徽省中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确答案的代号天下下表中1.若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2 B.2 C.﹣D.2.二次函数y=x2﹣2x的顶点为()A.(1,1)B.(2,﹣4)C.(﹣1,1)D.(1,﹣1)3.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.B.C.D.14.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A. B.C.D.5.从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝大于﹣2的概率是()A.B.C.D.6.某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米B.米C.2米D.米7.已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥3 B.k<3 C.k≤3且k≠2 D.k<28.如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC于点F,则CF等于()A.2 B.3 C.4 D.59.如图,在扇形AOB 中,∠AOB=90°,=,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2时,则阴影部分的面积为( )A .2π﹣4B .4π﹣8C .2π﹣8D .4π﹣410.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,其对称轴为x=1,则下列结论中错误的是( )A .abc <0B .a ﹣b +c <0C .b 2﹣4ac >0D .3a +c >0二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)二次函数y=x 2+1的最小值是 .12.(5分)如图,点A 、B 、C 在⊙O 上,∠A=36°,则∠O= .13.(5分)如图,△ABC 与△A ′B ′C ′都是等腰三角形,且AB=AC=5,A ′B ′=A ′C ′=3,若∠B +∠B ′=90°,则△ABC 与△A ′B ′C ′的面积比为 .14.(5分)如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后,折痕DE 分别交AB ,AC 于点E 、G ,连接GF ,有下列结论:①∠AGD=112.5°;②tan ∠AED=+1;③四边形AEFG 是菱形;④S △ACD =S △OCD .其中正确结论的序号是 .(把所有正确结论的序号都填在横线上)三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)计算:2cos60°﹣|﹣4sin45°|16.(8分)如图,在△ABC中,∠BAC=45°,AB=AC,D为△ABC内一点,AD=4,如果把△ABD绕点A按逆时针方向旋转,使AB与AC重合,求点D运动的路径长.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.18.(8分)某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)20.(10分)如图,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=.(1)求A、B、C三点的坐标;(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.六、解答题(本题满分12分)21.(12分)如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.七、解答题(本题满分12分)22.(12分)如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.(1)求直线AB的解析式.(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).(3)求△ABE面积的最大值.八、解答题(本题满分14分)23.(14分)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B 的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是,当α=90°时,的值是.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.2017年安徽省滁州市全椒县中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确答案的代号天下下表中1.若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2 B.2 C.﹣D.【考点】反比例函数图象上点的坐标特征.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(2,﹣1)代入解析式得﹣1=,解得k=﹣2.故选A.【点评】此题主要考查了反比例函数图象上点的坐标特征.把已知点的坐标代入可求出k值,即得到反比例函数的解析式.2.二次函数y=x2﹣2x的顶点为()A.(1,1)B.(2,﹣4)C.(﹣1,1)D.(1,﹣1)【考点】二次函数的性质.【分析】把二次函数化成顶点式,可得出二次函数的顶点坐标.【解答】解:∵y=x2﹣2x=(x﹣1)2﹣1,∴其顶点坐标为(1,﹣1),故选D.【点评】本题主要考查二次函数的顶点坐标,掌握二次函数的顶点式y=a(x﹣h)2+k的顶点坐标为(h,k)是解题的关键.3.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.B.C.D.1【考点】特殊角的三角函数值.【分析】根据AB=2BC直接求sinB的值即可.【解答】解:∵Rt△ABC中,∠C=90°,AB=2BC,∴sinA===;∴∠A=30°∴∠B=60°∴sinB=故选C.【点评】本题考查了锐角三角函数的定义,解决本题时,直接利用正弦的定义求解即可.4.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看是一个实线的同心圆,故选:C.【点评】本题考查了简单组合体的三视图,俯视图是从上边看得到的图形.5.从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝大于﹣2的概率是()A.B.C.D.【考点】概率公式.【分析】根据概率公式可得答案.【解答】解:∵﹣3,﹣2,﹣1,1,2,3的六张卡片中,大于﹣2的有﹣1,1,2,3这4张,∴所抽卡片上的数大于﹣2的概率是=,故选:D.【点评】本题主要考查概率公式,掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数是解题的关键.6.某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米B.米C.2米D.米【考点】解直角三角形的应用﹣坡度坡角问题.【分析】由坡度定义可得位置升高的高度即为坡角所对的直角边.根据题意可得tan∠A=,AB=10m,可解出直角边BC,即得到位置升高的高度.【解答】解:由题意得,BC:AC=1:2.∴BC:AB=1:.∵AB=6m,∴BC=m.故选B.【点评】本题主要考查坡度的定义和解直角三角形的应用,注意画出示意图会使问题具体化.7.已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥3 B.k<3 C.k≤3且k≠2 D.k<2【考点】抛物线与x轴的交点.【分析】根据二次函数图象与x轴有交点可得出关于x的一元二次方程有解,根据根的判别式结合二次项系数非零即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,∴一元二次方程(k﹣2)x2+2x+1=0有解,∴,解得:k≤3且k≠2.故选:C.【点评】本题考查了抛物线与x轴的交点、根的判别式以及解一元一次不等式组,根据根的判别式△≥0结合二次项系数非零找出关于k的一元一次不等式组是解题的关键.8.如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC于点F,则CF等于()A.2 B.3 C.4 D.5【考点】相似三角形的判定与性质;矩形的性质.【分析】根据勾股定理求出BD,得到DE的长,根据相似三角形的性质得到比例式,代入计算即可求出DF的长,求出CF的长度.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,又AB=CD=6,BC=AD=8,∴BD==10,∵BE=6,∴DE=10﹣6=4,∵AB∥CD,∴=,即=,解得,DF=4,则CF=CD﹣DF=6﹣4=2,故选:A.【点评】本题考查的是矩形的性质、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.9.如图,在扇形AOB中,∠AOB=90°,=,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4 B.4π﹣8 C.2π﹣8 D.4π﹣4【考点】扇形面积的计算;正方形的性质.【分析】连接OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积﹣△ODC的面积,依此列式计算即可求解.【解答】解:连接OC,如图所示:∵在扇形AOB中∠AOB=90°,=,∴∠COD=45°,∴OD=CD,∴OC==4,∴阴影部分的面积=扇形BOC的面积﹣△ODC的面积=﹣×(2)2=2π﹣4.故选:A.【点评】此题考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,则下列结论中错误的是()A.abc<0 B.a﹣b+c<0 C.b2﹣4ac>0 D.3a+c>0【考点】二次函数图象与系数的关系.【分析】A.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,由a与0的关系并结合抛物线的对称轴判断b与0的关系,即可得出abc与0的关系;B.由二次函数的图象可知当x=﹣1时y<0,据此分析即可;C.利用抛物线与x轴的交点的个数进行分析即可;D.由对称轴x=﹣=1,可得b=﹣2a,又由B知a﹣b+c<0,可得3a+c<0,可判断.【解答】解:A、由抛物线开口向下,可得a<0,由抛物线与y轴的交点在x轴的上方,可得c>0,由抛物线的对称轴为x=1,可得﹣>0,则b>0,∴abc<0,故A正确,不符合题意;B.当x=﹣1时,y<0,则a﹣b+c<0,故B正确,不符合题意;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故C正确,不符合题意;D.∵对称轴x=﹣=1,∴b=﹣2a,∵a﹣b+c<0,∴3a+c<0,故D错误,符合题意;故选D.【点评】本题考查了二次函数图象与系数的关系.关键是熟记二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.二、填空题(本大题共4小题,每小题5分,满分20分)11.二次函数y=x2+1的最小值是1.【考点】二次函数的最值.【分析】根据二次函数解析式得特点可知,当x=0时取得最小值1.【解答】解:由二次函数y=x2+1得到:该抛物线的开口方向向上,且顶点坐标是(0,1).所以二次函数y=x2+1的最小值是1.故答案是:1.【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.12.如图,点A、B、C在⊙O上,∠A=36°,则∠O=72°.【考点】圆周角定理.【分析】根据同弧所对的圆心角是圆周角的2倍得出结论.【解答】解:由图形得:∠O=2∠A=2×36°=72°;故答案为:72°,【点评】本题考查了圆周角与圆心角的关系,属于基础题,比较简单,明确在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.13.如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为25:9.【考点】解直角三角形;等腰三角形的性质.【分析】先根据等腰三角形的性质得到∠B=∠C,∠B′=∠C′,根据三角函数的定义得到AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,然后根据三角形面积公式即可得到结论.【解答】解:过A作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,∵△ABC与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,∴AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,∵∠B+∠B′=90°,∴sinB=cosB′,sinB′=cosB,∵S△BAC=AD•BC=AB•sinB•2AB•cosB=25sinB•cosB,S△A′B′C′=A′D′•B′C′=A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′,∴S△BAC :S△A′B′C′=25:9,故答案为:25:9.【点评】本题考查了互余两角的关系,解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和三角形面积公式.14.如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD 落在BD上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E、G,连接GF,有下列结论:①∠AGD=112.5°;②tan∠AED=+1;③四边形AEFG是菱形;④S△ACD=S△OCD.其中正确结论的序号是①②③.(把所有正确结论的序号都填在横线上)【考点】翻折变换(折叠问题);菱形的性质;解直角三角形.【分析】根据翻转变换的性质、正方形的性质进行计算,判断即可.【解答】解:∵四边形ABCD是正方形,∴∠ADB=45°,由折叠的性质可知,∠ADE=∠BDE=22.5°,∴∠AGD=180°﹣90°﹣22.5°=112.5°,①正确;设AE=x,∵△BEF是等腰直角三角形,∴BE=EF=AE=x,∴x+x=1,解得,x=﹣1,∴tan∠AED==+1,②正确;由同位角相等可知,GF∥AB,EF∥AC,∴四边形AEFG是平行四边形,由折叠的性质可知,EA=EF,∴四边形AEFG是菱形,③正确;=2S△OCD,④错误,由正方形的性质可知,S△ACD故答案为:①②③.【点评】本题考查的是翻转变换的性质、菱形的性质、解直角三角形的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.三、解答题(本大题共2小题,每小题8分,满分16分)15.计算:2cos60°﹣|﹣4sin45°|【考点】实数的运算;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简即可得到结果.【解答】解:原式=2×﹣=1﹣.【点评】此题考查了实数的运算,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.如图,在△ABC中,∠BAC=45°,AB=AC,D为△ABC内一点,AD=4,如果把△ABD绕点A 按逆时针方向旋转,使AB与AC重合,求点D运动的路径长.【考点】轨迹;等腰三角形的性质;旋转的性质.【分析】由△ABD绕点A按逆时针方向旋转,AB与AC重合知旋转角为45°,根据弧长公式可得答案.【解答】解:∵△ABD绕点A按逆时针方向旋转,AB与AC重合,∴旋转角为45°,∴的长为=π.【点评】本题主要考查旋转的性质、弧长公式,熟练掌握旋转的性质得出旋转角度数是解题的关键.四、解答题(本大题共2小题,每小题8分,满分16分)17.如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.【考点】垂径定理;勾股定理.【分析】作OH⊥AB于H,根据垂径定理得AH=BH=AB=,再在Rt△BOH中,根据勾股定理得OH=1,由AC=AB得AC=,则CH=AH﹣AC=,然后根据勾股定理可计算出OC的长.【解答】解:作OH⊥AB于H,如图,∵OH⊥AB,∴AH=BH,∴AH=BH=AB=×2=,在Rt△BOH中,OB=2,BH=,∴OH==1,∵AC=AB=×2=,∴CH=AH﹣AC=﹣=,在Rt△OHC中,OC==.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.18.某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.【考点】列表法与树状图法.【分析】(1)由已确定A打第一场,再从其余三队中随机选取一队,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中B、C两队进行比赛的情况,再利用概率公式即可求得答案.【解答】解:(1)∵已确定A打第一场,再从其余三队中随机选取一队,∴恰好选中D队的概率;(2)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴P(B、C两队进行比赛)==.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)(2017•全椒县一模)要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)【考点】解直角三角形的应用.【分析】延长BA,CD交于点P,解直角三角形得到AP=PD•cos30°和BC的长,通过△PAD∽△PCB,得出=,代入数据即可得到结论.【解答】解:如图,延长BA,CD交于点P,∵∠PAD=∠PCB=90°,∠ADC=120°,∴∠P=30°,∵AD=3,∴PD=6,AP=PD•cos30°=3,BC=(18﹣2)÷2+2=10.∵∠P=∠P,∠PAD=∠PCB=90°,∴△PAD∽△PCB,∴=,∴PC==10m,∴CD=PC﹣PD=10﹣6≈11.32m.则应设计11.32m高的灯柱,才能取得最理想的照明效果.【点评】本题考查了相似三角形的性质,直角三角形的性质,锐角三角函数的概念,正确的作出辅助线构造相似三角形是解题的关键.20.(10分)(2017•全椒县一模)如图,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=.(1)求A、B、C三点的坐标;(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.【考点】待定系数法求反比例函数解析式;菱形的性质;坐标与图形变化﹣平移;解直角三角形.【分析】(1)根据菱形性质得出AC⊥OB,OD=BD,AD=CD,解直角三角形即可得出答案;(2)设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),得出k=2(6﹣x)=6(4﹣x),求出x,即可得出矩形平移后A的坐标,代入反比例函数的解析式求出即可.【解答】解:(1)连接AC,交y轴于D,∵四边形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD,∵OB=4,tan∠BOC=.∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2);(2)B、C落在反比例函数的图象上,设菱形平移后B的坐标是(x,4),C的坐标是(1+x,2),∵B、C落在反比例函数的图象上,∴k=4x=2(1+x),解得x=1,即菱形平移后B的坐标是(1,4),代入反比例函数的解析式得:k=1×4=4,即B、C落在反比例函数的图象上,菱形的平移距离是1,反比例函数的解析式是y=.【点评】本题考查了矩形性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.六、解答题(本题满分12分)21.(12分)(2017•全椒县一模)如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M 于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.【考点】切线的判定;坐标与图形性质.【分析】(1)由点A的坐标可知OA的长度,根据∠ABO的度数可知,AB的长度为4,利用勾股定理即可求出OB的长度,从而求出B的坐标.(2)连接OC、MC、证明∠OCB为直角,根据D为OB的中点,可知∠DCO=∠DOC,易知∠OCM=∠COM,所以∠MCO+∠DCO=∠MCD=90°,即可求证MC⊥CD.【解答】解:(1)∵A的坐标为(0,2)∴OA=2,∵∠ABO=30°,∠AOB=90°,∴AB=2OA=4,∴由勾股定理可知:OB=2,∴B(2,0)(2)连接OC,MC∵OA是⊙M的直径,∴∠ACO=90°,∴∠OCB=90°,在Rt△OCB中,D为OB的中点,∴CD=OB=OD,∴∠DCO=∠DOC,∵MC=MO,∴∠OCM=∠COM∵∠MOC+∠DOC=∠AOB=90°,∴∠MCO+∠DCO=∠MCD=90°即MC⊥CD∴直线CD是⊙M的切线.【点评】本题考查切线的判定,解题的关键是连接MC、OC、根据直角三角形斜边上中线的性质,圆周角定理,等腰三角形的性质求出MC⊥CD,本题属于中等题型.七、解答题(本题满分12分)22.(12分)(2017•全椒县一模)如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.(1)求直线AB的解析式.(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).(3)求△ABE面积的最大值.【考点】二次函数综合题.【分析】(1)由条件可先求得抛物线解析式,则可求得B点坐标,再利用待定系数法可求得直线AB解析式;(2)由条件可知P、E的横坐标相同,又点E在抛物线上,则可表示出E点坐标;(3)由(2)可用x表示出PE的长,则可用x表示出△ABE的面积,再利用二次函数的性质可求得其最大值.【解答】解:(1)∵抛物线顶点坐标为(1,﹣2),∴可设抛物线解析式为y=a(x﹣1)2﹣2,∵OA=3,且点A在x轴的正半轴上,∴A(3,0),∴0=a(3﹣1)2﹣2,解得a=,∴抛物线解析式为y=(x﹣1)2﹣2=x2﹣x﹣,当x=0时可得y=﹣,∴B(0,﹣),设直线AB解析式为y=kx+b,把A、B坐标代入可得,解得,∴y=x﹣;(2)∵点P为线段AB上的一个动点,且PE⊥x轴,∴点E的横坐标为x,∵点E在抛物线上,∴E点的坐标为(x, x2﹣x﹣);(3)∵点P为线段AB上的一点,∴P(x, x﹣),则E(x, x2﹣x﹣),∴PE=x﹣﹣(x2﹣x﹣)=﹣x2+x,由(2)可知点B到PE的距离x,点A以PE的距离为3﹣x,=PE•x+PE•(3﹣x)=PE•(x+3﹣x)=PE=(﹣x2+x)=﹣x2+x=﹣(x﹣∴S△ABE)2+,∵﹣<0,∴当x=时,S有最大值,最大值为,△ABE∴△ABE面积的最大值为.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积及方程思想等知识.在(1)中求得B点坐标是解题的关键,在(2)中注意E点横坐标与P点横坐标相同是解题的关键,在(3)中用P点坐标表示出△ABE的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.八、解答题(本题满分14分)23.(14分)(2017•全椒县一模)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC 绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是矩形,当α=90°时,的值是.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)根据有一个角是直角的平行四边形进行判断当α=90°时,就是长与宽的比;(2)①利用相似三角形求得CP的比,就可求得BP,PQ的值;②根据勾股定理求得PB′的长,再根据三角形的面积公式进行计算.(3)构造全等三角形和直角三角形,运用勾股定理求得PC的长,进一步求得坐标【解答】解:(1)图1,四边形OA′B′C′的形状是矩形;∵点A的坐标为(﹣8,0),点B(﹣8,6),∴AB∥OC,∵BC∥x轴,∴四边形OABC是平行四边形.又OC⊥OA,∴平行四边形OABC的形状是矩形;当α=90°时,P与C重合,如图1,BP=8,BQ=BP+OC=8+6=14,∴,即是矩形的长与宽的比,则.故答案为矩形,;(2)①图2,∵∠POC=∠B′OA′,∠PCO=∠OA′B′=90°,∴△COP∽△A′OB′.∴,即,∴CP=,BP=BC﹣CP=.同理△B′CQ∽△B′C′O,∴,∴∴CQ=3,BQ=BC+CQ=11.∴,∴;②图3,在△OCP和△B′A′P中,,∴△OCP≌△B′A′P(AAS).∴OP=B′P.设B′P=x,在Rt△OCP中,(8﹣x)2+62=x2,解得x=.=××6=.∴S△OPB′(3)存在这样的点P和点Q,使BP=BQ.点P的坐标是P1(﹣9﹣,6),P2(﹣,6).理由:过点Q作QH⊥OA′于H,连接OQ,则QH=OC′=OC,∵S △POQ =PQ •OC ,S △POQ =OP •QH ,∴PQ=OP .设BP=x ,∵BP=BQ ,∴BQ=2x ,如图4,当点P 在点B 左侧时,OP=PQ=BQ +BP=3x ,在Rt △PCO 中,(8+x )2+62=(3x )2,解得x 1=1+,x 2=1﹣(不符实际,舍去). ∴PC=BC +BP=9+,∴P (﹣9﹣,6).如图5,当点P 在点B 右侧时,∴OP=PQ=BQ ﹣BP=x ,PC=8﹣x .在Rt △PCO 中,(8﹣x )2+62=x 2,解得x=.∴PC=BC ﹣BP=8﹣=, ∴P (﹣,6),综上可知,存在点P (﹣9﹣,6)或(﹣,6),使BP=BQ .。
安徽省毫州市利辛县2017届九年级历史下学期第一次联考试题历史参考答案及评分标准一、单项选择(本大题共10分二、组合列举(本大题共3小题;每空1分,共10分。
)11.(1)西域都护(2)文成公主(3)孝文帝12. ⑴北伐战争⑵渡江⑶对外开放13.(1)尼布楚条约(2)亚历山大二世(3)辛丑条约(4)多极化趋势三、辨析改错(共8分。
)14.(1)【×】“曹汝霖”改为“张作霖”(2)【×】“正式”改为“初步”(3)【√】(4)【×】“世界贸易组织”改为“欧洲联盟”四、材料解析题(本大题共2小题,每小题10分,共20分。
)15.(1)所占比重在不断上升;(2分)第二次工业革命的兴起(2分)(2)第三次科技革命;(2分)互联网购物(2分,意思相近亦可给分。
)(3)科学技术的进步推动了经济全球化的发展,经济全球化更有利于科学技术的交流与传播。
(2分)16. (1) 蒸汽时代;瓦特发明改良蒸汽机。
(2分)(2)殖民掠夺;英国发动鸦片战争中国开始沦为半殖民地半封建社会;八国联军侵华,中国完全沦为半殖民地半封建社会。
(2分)(只需答出1个)。
(3)原因:美国利用资本主义世界霸主的有利地位,大力开拓市场,赚取高额利润;利用第三次科技革命的最新成果,革新生产技术,调整产业结构,大力发展高新技术产业;积极发展国家垄断资本主义,加强国家对经济的宏观管理。
(4分)(答出两点,即可满分;言之有理,可酌情赋分)(4)科技进步,促进了人类社会发展;不同文明间应增进对话,求同存异,合作共赢,才能有效降低战争风险,维护世界和平和人类的福祉等。
(2分)(言之有理,可酌情赋分)五、活动与探究题(12分)17.(1)《独立宣言》;(1分)《解放黑人奴隶宣言》;(1分)《国家工业复兴法》。
(1分)(2)华盛顿:实行国家独立;林肯:维护国家统一;罗斯福:要不断改革和创新等。
(答三条即可,3分)(3)违背了经济全球化的发展潮流,不利于世界的和平与发展。
安徽省亳州市九年级下学期数学第一次调研试卷姓名:________ 班级:________ 成绩:________一、选择题 (共7题;共13分)1. (2分) (2020八下·铁东期中) 如图,,则数轴上点C所表示的数为().A .B .C .D .2. (2分) (2018七上·港南期中) 据统计,2016年中国粮食总产量达到546400000吨,用科学记数法表示为()A .B .C .D .3. (2分)(2017·天水) 如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A .B .C .D .4. (2分)(2020·连山模拟) 如图,多边形ABCDEFG中,,则的值为()A .B .C .D .5. (2分)对于数据2,2,3,2,5,2,5,2,5,2,3,下列说法正确的有()①众数是3;②众数与中位数的数值相等;③中位数与平均数的数值相等;④平均数与众数的数值相等。
A . 1个B . 2个C . 3个D . 4个6. (2分)把抛物线y=x2+bx+c向左平移2个单位,再向上平移3个单位,得到抛物线y=x2-2x+1,则b,c 的值分别是()A .b=2,c=-2B . b=-2,c=-2C .b=-6,c=-6D . b=-6,c=67. (1分) (2017七下·金山期中) 若x+y+z=2,x2﹣(y+z)2=8时,x﹣y﹣z=________.二、填空题 (共9题;共14分)8. (1分)(2017·潍坊模拟) 计算﹣|2 ﹣2cos30°|+()﹣1﹣(1﹣π)0的结果是________.9. (1分) (2019八上·简阳期末) 下列各数:3.1416,,0.010010001,3- ,.其中,无理数有________个.10. (1分) (2019九上·靖远月考) 已知x=-1是关于x的方程的一个根,则a=________.11. (1分)(2017·广水模拟) 如图,若△ACD的周长为7cm,DE为AB边的垂直平分线,则AC+BC=________cm.12. (1分)(2019·桥东模拟) 正方形的边长为a,它的面积与长为4cm、宽为12cm的长方形的面积相等,则a=________cm.13. (2分) (2017九上·东莞开学考) 如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD 交AD于E,则△ABE的周长为________cm.14. (1分)如果恰好只有一个实m数是关于x的方程的根,则k=________.15. (5分)(2019·镇海模拟) 如图,已知四边形ABCD是平行四边形,BC=3AB,A、B两点的坐标分别是(1,0),(0,2),C、D两点在反比例函数y=(k>0,x>0)的图象上,则k的值等于________.16. (1分)(2017·平顶山模拟) 若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为,现已知x1=﹣,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则 x2017=________.三、解答题 (共11题;共72分)17. (5分) (2019八上·龙湖期末) 计算:18. (5分)先化简,再求值: +(﹣),其中a= ﹣1,b= +1.19. (5分)如图.在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,BE=CF,AB∥ED.求证:∠F=∠ACB.20. (11分)(2019·长沙模拟) 九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”只是竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:60,90,63,99,67,99,99,68.请解答下列问题:(1)完成频数分布表,a=________,b=________.(2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩90⩽x<100范围内的学生有多少人?21. (10分) (2019八上·宜兴期中) 如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=40°,求∠BDE的度数.22. (2分)(2019·昌图模拟) 小强和小明同学在学习了“平面镜反射原理后,”自己用一个小平面镜MN 做实验.他们先将平面镜放在平面上,如图,用一束与平面成30°角的光线照射平面镜上的A处,使光影正好落在对面墙面上一幅画的底边C点,他们不改变光线的角度,原地将平面镜转动了7.5°角,即∠MAM′=7.5°,使光影落在C点正上方的D点,测得CD=10cm,求平面镜放置点与墙面的距离AB.(≈1.73,结果精确到0.1).23. (10分)(2017·和平模拟) 小明和小亮用6张背面完全相同的纸牌进行摸牌游戏,游戏规则如下:将牌面分别标有数字1、3、6的三张纸牌给小明,将牌面分别标有数字2、4、5的三张纸牌给小亮,小明小亮分别将纸牌背面朝上,从各自的三张纸牌中随机抽出一张,并将抽出的两张卡片上的数字相加,如果和为偶数,则小明获胜;如果和为奇数,则小亮获胜.(1)小明抽到标有数字6的纸牌的概率为________;(2)请用树状图或列表的方法求小亮获胜的概率.24. (10分)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问甲、乙两人何时相距360米?25. (2分)(2018·株洲) 如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH,①△CBH∽△OBC②求OH+HC的最大值26. (10分) (2017九上·武汉期中) 如图1,抛物线y=ax2-4ax+b交x轴正半轴于A,B两点,交y轴正半轴于C,且OB=OC=3.(1)求抛物线的解析式;(2)点D为抛物线的顶点,点G在直线BC上,若,直接写出点G的坐标;(3)将抛物线向上平移m个单位,交BC于点M,N(如图2),若∠MON=45°,求m的值.27. (2分) (2018八上·江北期末) 已知中,,,点、分别是轴和轴上的一动点.(1)如图,若点的横坐标为,求点的坐标;(2)如图,交轴于,平分,若点的纵坐标为,,求点的坐标.(3)如图,分别以、为直角边在第三、四象限作等腰直角和等腰直角,交轴于,若,求 .参考答案一、选择题 (共7题;共13分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、二、填空题 (共9题;共14分)8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共72分)17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、。
安徽省毫州市利辛县2017届九年级数学下学期第一次联考试题
数学答案
一.选择题 答题卡
二.填空题
11. a(b-3)2
12. x >1 13. 3. 14. ④
三解答题 15、0。
16、 (1)n
n n n n 1
1-)
1(++= (2)证明 (略) 四
17.(1)、(2)图略 ......(6分) (3)()n m P -,1
......(8分)
18.解:(1)设一次函数与反比例函数的解析式分别为y=ax+b (a≠0),
x
k y =
(k≠0),
∵反比例函数
x
k y =
(k≠0)的图象经过点A (1,3), ∴k=1×3=3,
∴反比例函数的解析式为y=, ......(2分) ∵点B (m ,1)在反比例函数的图象上, ∴
m
31=
∴m=3,
∴点B 的坐标为(3,1), ∵一次函数的图象经过点A ,B ,
将这两个点的坐标代入y=ax+b ,得
,
解得:,
则所求一次函数的解析式为y=﹣x+4; ......(4分)
(2)设一次函数y=﹣x+4的图象交x轴于点C,
∴C点坐标为(4,0),即O C=4,
∵A点的纵坐标为3,B点的纵坐标为1,
∴S△AOB=S△AOC﹣S△BOC=OC×3﹣OC×1=×4×2=4. ......(8分) 五
19.解:(1)∵AB是⊙O的切线,
∴∠OBA=90°,∠AOB=90°﹣30°=60°.
∵OB=OC,
∴∠OBC=∠OCB,∠OCB=30°=∠A,
∴AB=BC.
(2)四边形BOCD为菱形,
理由如下:连接OD交BC于点M,
∵D是的中点,
∴OD垂直平分BC.
在Rt△OMC中,
∵∠OCM=30°,
∴OC=2OM=OD
∴OM=MD,
∴四边形BOCD为菱形.
20.
过A作AM垂直于CD垂足为M
AM=BD=6 C M=23 CD=33(5分) DE=3
利用勾股定理得 CE=6米
所以拉线CE 的长6米.(10分)
21(1).a=4, ......(2分) b=0.32, ......(4分) C; ......(6分) (2) 略; ......(8分) (3)
6
5
. ......(12分) 七(12分)
解:(1)根据题意可设:y=a (x ﹣4)2
﹣16, 当x=10时,y=20,
所以a (10﹣4)2
﹣16=20,解得a=1,
所求函数关系式为:y=(x ﹣4)2﹣16.﹣﹣﹣﹣﹣﹣﹣
(2)当x=9时,y=(9﹣4)2
﹣16=9,所以前9个月公司累计获得的利润为9万元, 又由题意可知,当x=10时,y=20,而20﹣9=11,
所以10月份一个月内所获得的利润11万元.﹣﹣﹣﹣﹣﹣﹣﹣﹣
(3)设在前12个月中,第n 个月该公司一个月内所获得的利润为s (万元) 则有:s=(n ﹣4)2
﹣16﹣[(n ﹣1﹣4)2
﹣16]=2n ﹣9, 因为s 是关于n 的一次函数,且2>0,s 随着n 的增大而增大, 而n 的最大值为12,所以当n=12时,s=15,
所以第12月份该公司一个月内所获得的利润最多,最多利润是15万元.﹣﹣
八、(本题满分14分)
(1)是 (2分)
(2)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,
∴∠PAB=∠PBC,
又∵∠APB=∠BPC=120°,
∴△ABP∽△BCP,(6分)
(3)解:①∵△ABE与△ACD都为等边三角形,
∴∠BAE=∠CAD=60°,AE=AB,AC=AD,
∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,
在△AC E和△ABD中,
,
∴△ACE≌△ABD(SAS),
∴∠1=∠2,
∵∠3=∠4,
∴∠CPD=∠6=∠5=60°;(10分)
②证明:∵△ADF∽△CFP,
∴AF•PF=DF•CF,
∵∠AFP=∠CFD,
∴△AFP∽△CDF.
∴∠APF=∠ACD=60°,
∴∠APC=∠CPD+∠APF=120°,
∴∠BPC=120°,
∴∠APB=360°﹣∠BPC﹣∠APC=120°,
∴P点为△ABC的费马点.(14分)。