山东省德州市初中学业水平考试数学说明(Word版)
- 格式:doc
- 大小:1.26 MB
- 文档页数:26
2022-2023学年山东省德州市夏津县七年级(上)期中数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)2022的相反数是()A.B.﹣C.2022D.﹣20222.(4分)同学们,在我们的周围存在很多数字,比如我们德州的区号是0534,我们夏津的邮政编码是253200,253200用科学记数法表示为()A.2.523×105B.25.32×104C.0.2532×106D.2.532×106 3.(4分)2022年夏津的冬天来得比以往早了一些,据天气预报,11月25日,最高气温是13℃,最低气温是﹣3℃,则这一天的温差是()A.10℃B.16℃C.﹣16℃D.﹣10℃4.(4分)下列四个数中,最小数的是()A.0B.﹣1C.D.25.(4分)如果盈利100元记为+100元,那么﹣90元表示()A.亏损10元B.盈利90元C.亏损90元D.盈利10元6.(4分)当a为任意有理数时,下列代数式的值一定为正数的是()A.a B.a+2C.2a D.a2+27.(4分)在数轴上与原点距离为8的点表示的数是()A.8B.﹣8C.±8D.0.88.(4分)下列式子中成立的是()A.﹣|﹣5|>4B.﹣(﹣5.5)<5C.﹣|﹣4|=4D.﹣3<|﹣3| 9.(4分)用四舍五入按要求对0.05019分别取近似值,其中错误的是()A.0.1精确到0.1B.0.05精确到百分位C.0.05精确到千分位D.0.0502精确到0.000110.(4分)某校开展了丰富多彩的社团活动,每位学生可以选择自己最感兴趣的一个社团参加.已知参加体育类社团的有m人,参加文艺类社团的人数比参加体育类社团的人数多6人,参加科技类社团的人数比参加文艺类社团人数的多2人,则参加三类社团的总人数为()A.m+6B.C.D.11.(4分)下列去括号正确的是()A.a+(﹣2b+c)=a+2b+c B.a﹣(﹣2b+c)=a+2b﹣cC.a﹣2(﹣2b+c)=a+4b+2c D.a﹣2(﹣2b+c)=a+4b﹣c12.(4分)将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形,…,如此下去,则第2020个图中共有正方形的个数为()A.2021B.2020C.6058D.6061二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)在|﹣44|,+0.002,π,0,﹣110这五个数中,整数共有个.14.(4分)单项式的次数是.15.(4分)若|m﹣2|+(2n+4)2=0,则m+n=.16.(4分)如果与2x2y n+1是同类项,则mn的值.17.(4分)用“☆”定义新运算:对于任意有理数a、b,都有a☆b=b2﹣2a,例7☆4=42﹣2×7=2,那么(﹣5)☆(﹣3)=.18.(4分)一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4…,已知小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是3.若小球按以上规律跳了2n次时,它落在数轴上的点P2n,所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是.三、解答题(本大题共78分)19.(20分)计算:(1)﹣23+32﹣67+48;(2);(3);(4).20.(8分)化简:(1)3x2y﹣2x2y+x2y;(2)3a2﹣2a+2(a2﹣a).21.(8分)有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.(1)用“>”“<”或“=”填空:b0,a+b0,a﹣c0,b﹣c0;(2)化简:|a﹣b|+|b+c|﹣|a|.22.(8分)先化简,后求值:2(5ab﹣4b2)﹣3(3ab﹣2b2)+2b2,其中a=2,b=﹣.23.(10分)已知A=3a2b﹣2ab2+abc,小明错将“2A﹣B“看成“2A+B”,算得结果C=4a2b ﹣3ab2+4abc.(1)计算B的表达式;(2)小强说正确结果的大小与c的取值无关,对吗?请说明理由;(3)若a=,b=,求正确结果的代数式的值.24.(12分)中国少年先锋队建队72周年之际,我校组织初一年级学生前往西山国家森林公园“无名英雄纪念广场”举行少先队建队仪式.通过庄严的仪式,激发全体少先队员的爱国热情,增强少先队员的荣誉感和集体主义精神.建队仪式的同时,学校安排了“定向越野”活动,引导学生在活动中强健体魄,挑战自我,磨练意志,增强团队合作意识和班集体凝聚力.活动中,各班分成8个小组,每个小组途经13个点位,其中5个游戏点,达标成绩为60分钟.下面是某班8个小组学生的时间记录如下:(其中“+”表示成绩大于60分钟,“﹣”表示成绩小于60分钟)﹣13,+5,﹣8,﹣4,+10,﹣5,﹣3,﹣6.阅读上述材料,回答问题:(1)这个班最快的一组比最慢的一组少用多少分钟?(2)这个班8个小组的达标率为多少?(3)这个班8个小组的平均成绩为多少分钟?25.(12分)已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x 的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.2022-2023学年山东省德州市夏津县七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)2022的相反数是()A.B.﹣C.2022D.﹣2022【分析】直接根据相反数的概念解答即可.【解答】解:2022的相反数等于﹣2022,故选:D.2.(4分)同学们,在我们的周围存在很多数字,比如我们德州的区号是0534,我们夏津的邮政编码是253200,253200用科学记数法表示为()A.2.523×105B.25.32×104C.0.2532×106D.2.532×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数.【解答】解:253200=2.532×105.故选:A.3.(4分)2022年夏津的冬天来得比以往早了一些,据天气预报,11月25日,最高气温是13℃,最低气温是﹣3℃,则这一天的温差是()A.10℃B.16℃C.﹣16℃D.﹣10℃【分析】根据温差=等于最高气温﹣最低气温,列式求解即可.【解答】解:这一天的温差是13﹣(﹣3)=13+3=16℃.故选:B.4.(4分)下列四个数中,最小数的是()A.0B.﹣1C.D.2【分析】根据有理数的相关概念直接作答.【解答】解:易得,故选:B.5.(4分)如果盈利100元记为+100元,那么﹣90元表示()A.亏损10元B.盈利90元C.亏损90元D.盈利10元【分析】“正”和“负”是表示互为相反意义的量,如果向北走记作正数,那么向北的反方向,向南走应记为负数;如果盈利记为正数,那么亏损表示负数.【解答】解:把盈利100元记为+100元,那么﹣90元表示亏损90元,故选:C.6.(4分)当a为任意有理数时,下列代数式的值一定为正数的是()A.a B.a+2C.2a D.a2+2【分析】根据非负数的性质举特例判断即可.【解答】解:A.a=0时,|a|=0,0既不是正数也不是负数,故本选项不合题意;B.a=﹣2时,a+2=0,0既不是正数也不是负数,故本选项不合题意;C.a<0时,2a<0,是负数,故本选项不合题意;D.∵a2≥0,∴a2+2>0,是正数,故本选项符合题意.故选:D.7.(4分)在数轴上与原点距离为8的点表示的数是()A.8B.﹣8C.±8D.0.8【分析】根据数轴的性质即可求解【解答】解:在数轴上与原点距离为8的点表示的数是±8,故选:C.8.(4分)下列式子中成立的是()A.﹣|﹣5|>4B.﹣(﹣5.5)<5C.﹣|﹣4|=4D.﹣3<|﹣3|【分析】利用绝对值的代数意义,即可求解.【解答】解:A.因为﹣5<0,绝对值化简时负数的绝对值是它的相反数,所以原式等于﹣5<4,不符合题意;B.去括号后原式=5.5>5,不符合题意;C.因为﹣4<0,绝对值化简时负数的绝对值是它的相反数,所以原式等于﹣4<4,不符合题意;D.因为﹣3<0,绝对值化简时负数的绝对值是它的相反数,所以原式等于﹣3<3,符合题意;故选:D.9.(4分)用四舍五入按要求对0.05019分别取近似值,其中错误的是()A.0.1精确到0.1B.0.05精确到百分位C.0.05精确到千分位D.0.0502精确到0.0001【分析】根据近似数的精确度的定义逐一判断即可得.【解答】解:A、0.1精确到0.1,正确;B、0.05精确到百分位,正确;C、0.05精确到百分位,此选项错误;D、0.0502精确到0.0001,正确;故选:C.10.(4分)某校开展了丰富多彩的社团活动,每位学生可以选择自己最感兴趣的一个社团参加.已知参加体育类社团的有m人,参加文艺类社团的人数比参加体育类社团的人数多6人,参加科技类社团的人数比参加文艺类社团人数的多2人,则参加三类社团的总人数为()A.m+6B.C.D.【分析】利用题干中的数量关系分别表示出参加文艺类社团的人数和参加科技类社团的人数,将参加三类社团的人数相加即可得出结论.【解答】解:∵参加文艺类社团的人数比参加体育类社团的人数多6人,∴参加文艺类社团的人数为:(m+6)人.∵参加科技类社团的人数比参加文艺类社团人数的多2人,∴参加科技类社团的人数为:(m+6)+2=(m+5)人.∴参加三类社团的总人数为:m+(m+6)+(m+5)=(m+11)人.故选:D.11.(4分)下列去括号正确的是()A.a+(﹣2b+c)=a+2b+c B.a﹣(﹣2b+c)=a+2b﹣cC.a﹣2(﹣2b+c)=a+4b+2c D.a﹣2(﹣2b+c)=a+4b﹣c【分析】A、B直接利用去括号法则,C、D注意利用乘法分配律.【解答】解:A、根据去括号法则可知,a+(﹣2b+c)=a﹣2b+c,故此选项错误;B、根据去括号法则可知,a﹣(﹣2b+c)=a+2b﹣c,故此选项正确;C、根据去括号法则可知,a﹣2(﹣2b+c)=a+4b﹣2c,故此选项错误;D、根据去括号法则可知,a﹣2(﹣2b+c)=a+4b﹣2c,故此选项错误.故选:B.12.(4分)将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形,…,如此下去,则第2020个图中共有正方形的个数为()A.2021B.2020C.6058D.6061【分析】根据图形的变化发现规律即可求解.【解答】解:图①中的正方形剪开得到图②,图②中共有3×1+1=4个正方形;将图②中一个正方形剪开得到图③,图③中共有3×2+1=7个正方形;将图③中一个正方形剪开得到图④,图④中共有3×3+1=10个正方形……发现规律:第n个图中共有正方形的个数为:3(n﹣1)+1=3n﹣2则第2020个图中共有正方形的个数为3×2020﹣2=6058.故选:C.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)在|﹣44|,+0.002,π,0,﹣110这五个数中,整数共有3个.【分析】根据有理数的分类即可求出答案.整数包括正整数、0和负整数.【解答】解:|﹣44|=44,∴在|﹣44|,+0.002,π,0,﹣110这五个数中,整数有|﹣44|,0,﹣110,共3个.故答案为:3.14.(4分)单项式的次数是5.【分析】根据单项式中所有字母的指数之和是单项式的次数进行作答即可【解答】解:单项式的次数是2+3=5,故答案为:5.15.(4分)若|m﹣2|+(2n+4)2=0,则m+n=0.【分析】根据非负数的性质列出方程求出m、n的值,代入所求代数式计算即可.【解答】解:根据题意得:m﹣2=0,2n+4=0,解得:m=2,n=﹣2,则m+n=2﹣2=0.故答案为:0.16.(4分)如果与2x2y n+1是同类项,则mn的值0.【分析】根据同类项的定义,列方程求解即可.【解答】解:∵与2x2y n+1是同类项,∴m=2,n+1=1,∴m=2,n=0,∴mn=0,故答案为:0.17.(4分)用“☆”定义新运算:对于任意有理数a、b,都有a☆b=b2﹣2a,例7☆4=42﹣2×7=2,那么(﹣5)☆(﹣3)=19.【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:(﹣5)☆(﹣3)=(﹣3)2﹣2×(﹣5)=9﹣(﹣10)=9+10=19.故答案为:19.18.(4分)一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4…,已知小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是3.若小球按以上规律跳了2n次时,它落在数轴上的点P2n,所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是2.【分析】数轴上点的运动位置问题,可以转化为“有理数”的加法问题来处理.即p0﹣1+2﹣3+4﹣5+…=n+2.【解答】解:根据题意,可以得到方程p0﹣1+2﹣3+4﹣5+…+2n=n+2.得p0+1×n=n+2,解得p0=2.故答案为:2.三、解答题(本大题共78分)19.(20分)计算:(1)﹣23+32﹣67+48;(2);(3);(4).【分析】(1)根据有理数加减混合运算法则进行计算即可;(2)根据有理数四则混合运算法则进行计算即可;(3)根据乘法分配律进行计算即可;(4)根据含乘方的有理数混合运算法则进行计算即可.【解答】解:(1)原式=﹣23+32﹣67+48=﹣90+80=﹣10;(2)原式=﹣12+(﹣12)=﹣24;(3)原式==﹣3+6﹣9+12=6;(4)原式==﹣9﹣(﹣2)=﹣7.20.(8分)化简:(1)3x2y﹣2x2y+x2y;(2)3a2﹣2a+2(a2﹣a).【分析】(1)直接合并同类项即可得答案;(2)先去括号,再合并同类项即可.【解答】解:(1)3x2y﹣2x2y+x2y=(3﹣2+1)x2y=2x2y;(2)3a2﹣2a+2(a2﹣a)=3a2﹣2a+2a2﹣2a=5a2﹣4a.21.(8分)有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.(1)用“>”“<”或“=”填空:b<0,a+b=0,a﹣c>0,b﹣c<0;(2)化简:|a﹣b|+|b+c|﹣|a|.【分析】(1)根据数轴得出b<c<0<a,|a|=|b|>|c|,求出b<0,a+b=0,a﹣c>0,b ﹣c<0即可;(2)先去掉绝对值符号,再合并即可.【解答】解:(1)∵从数轴可知:b<c<0<a,|a|=|b|>|c|,∴b<0,a+b=0,a﹣c>0,b﹣c<0,故答案为:<,=,>,<;(2)|a﹣b|+|b+c|﹣|a|=a﹣b﹣b﹣c﹣a=﹣2b﹣c.22.(8分)先化简,后求值:2(5ab﹣4b2)﹣3(3ab﹣2b2)+2b2,其中a=2,b=﹣.【分析】根据整式的加减进行化简后,代入值计算即可.【解答】解:原式=10ab﹣8b2﹣9ab+6b2+2b2=ab,当a=2,b=﹣时,原式=2×(﹣)=﹣1.23.(10分)已知A=3a2b﹣2ab2+abc,小明错将“2A﹣B“看成“2A+B”,算得结果C=4a2b ﹣3ab2+4abc.(1)计算B的表达式;(2)小强说正确结果的大小与c的取值无关,对吗?请说明理由;(3)若a=,b=,求正确结果的代数式的值.【分析】(1)由2A+B=C,可求出B所表示的代数式;(2)求出B所表示的代数式,再计算2A﹣B的结果即可;(3)代入求值即可.【解答】解:(1)∵2A+B=C,∴B=C﹣2A=4a2b﹣3ab2+4abc﹣2(3a2b﹣2ab2+abc)=4a2b﹣3ab2+4abc﹣6a2b+4ab2﹣2abc=﹣2a2b+ab2+2abc;(2)2A﹣B=2(3a2b﹣2ab2+abc)﹣(﹣2a2b+ab2+2abc)=6a2b﹣4ab2+2abc+2a2b﹣ab2﹣2abc=8a2b﹣5ab2;因正确结果中不含c,所以小强的说法对,正确结果的取值与c无关;(3)将a=,b=,代入(2)中的代数式,得:8a2b﹣5ab2=8×()2×﹣5××()2=﹣=0.24.(12分)中国少年先锋队建队72周年之际,我校组织初一年级学生前往西山国家森林公园“无名英雄纪念广场”举行少先队建队仪式.通过庄严的仪式,激发全体少先队员的爱国热情,增强少先队员的荣誉感和集体主义精神.建队仪式的同时,学校安排了“定向越野”活动,引导学生在活动中强健体魄,挑战自我,磨练意志,增强团队合作意识和班集体凝聚力.活动中,各班分成8个小组,每个小组途经13个点位,其中5个游戏点,达标成绩为60分钟.下面是某班8个小组学生的时间记录如下:(其中“+”表示成绩大于60分钟,“﹣”表示成绩小于60分钟)﹣13,+5,﹣8,﹣4,+10,﹣5,﹣3,﹣6.阅读上述材料,回答问题:(1)这个班最快的一组比最慢的一组少用多少分钟?(2)这个班8个小组的达标率为多少?(3)这个班8个小组的平均成绩为多少分钟?【分析】(1)用记录中最大的数减去最小的数即可;(2)根据非正数是达标成绩,根据达标人数除以总人数,可得达标率;(3)根据平均数的意义,可得答案.【解答】解:(1)10﹣(﹣13)=10+13=23(分钟),故这个班最快的一组比最慢的一组少用23分钟;(2)﹣13,﹣8,﹣4,﹣5,﹣3,﹣6是达标成绩,达标率为=75%;(3)60+(﹣13+5﹣8﹣4+10﹣5﹣3﹣6)÷8=60﹣3=57(分钟),答:这个班8个小组的平均成绩为57分钟.25.(12分)已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为4;(2)如果点P到点M、点N的距离相等,那么x的值是1;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x 的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.【分析】(1)MN的长为3﹣(﹣1)=4,即可解答;(2)根据题意列出关于x的方程,求出方程的解即可得到x的值;(3)可分为点P在点M的左侧和点P在点N的右侧,点P在点M和点N之间三种情况计算;(4)分别根据①当点M和点N在点P同侧时;②当点M和点N在点P异侧时,进行解答即可.【解答】解:(1)MN的长为3﹣(﹣1)=4;(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,则x﹣(﹣1)+3﹣x=8,方程无解,即点P不可能在点M 和点N之间.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5;(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.。
山东省德州市2021年中考数学试卷(word解析版)2021年山东省德州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2021?衢州)2的倒数是()a.b.c.2d.2【分析】根据倒数的定义即可求解.【解答】解:2的倒数是.故选:a.【评测】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积就是1,我们就表示这两个数互为倒数.2.(3分)(2021?德州)下列图形中,既是轴对称图形又是中心对称图形的是()【分析】根据轴对称图形和中心对称图形对各选项分析判断即可暂解.【答疑】求解:a、不是轴对称图形,就是中心对称图形,故本选项错误;b、不是轴对称图形,也不是中心对称图形,故本选项错误;c、就是轴对称图形,不是中心对称图形,故本选项错误;d、既就是轴对称图形又就是中心对称图形,故本选项恰当.故挑选d.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分后)(2021?德州)2021年,我市“全面改为厚”和化解大班额工程成绩突出,两项工程总计动工面积超过477万平方米,各项指标均居全省前茅,477万用科学记数法则表示恰当的就是()a.4.77×105b.47.7×105c.4.77×1061/22d.0.477×106【分析】科学记数法的则表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确认n的值时,必须看看把原数变为a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n就是正数;当原数的绝对值<1时,n就是负数.【解答】解:477万用科学记数法表示4.77×106.故选:c.【评测】此题考查科学记数法的则表示方法.科学记数法的则表示形式为a×10n的形式,其中1≤|a|<10,n为整数,则表示时关键必须恰当确认a的值以及n的值.4.(3分)(2021?德州)如图,两个等直径圆柱构成如图所示的t型管道,则其俯视图正确的是()【分析】俯视图从物体的上面看看,所获得的图形.【解答】解:两个等直径圆柱构成如图所示的t型管道的俯视图是矩形和圆的组合图,且圆位于矩形的中心位置,故选:b.【评测】本题考查了学生的思索能力和对几何体三种视图的空间想象能力.5.(3分)(2021?德州)下列运算正确的是()a.(a2)m=a2mb.(2a)3=2a3c.a3?a5=a15d.a3÷a5=a2【分析】根据整式的运算法则即可求出答案.【解答】解:(b)原式=8a3,故b不正确;(c)原式=a2,故c不正确;(d)原式=a8,故d不正确;故选(a)2/22【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.(3分后)(2021?德州)某专卖店专营某品牌的衬衫,店主对上一周中相同尺码的衬衫销售情况统计数据如下:尺码平均每天销售数量/件39104012412042124312该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()a.平均数b.方差c.众数d.中位数【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:c.【评测】此题主要考查统计数据的有关科学知识,主要包含平均数、中位数、众数、方差的意义.7.(3分)(2021?德州)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()a.y=3x+2b.y=2x+1c.y=2x2+1d.y=【分析】a、由k=3可以获知y随x值的减小而增大;b、由k=2可以获知y随x值的减小而减小;c、由a=2可以获知:当x<0时,y随x值的减小而减小,当x>0时,y随x值的减小而增大;d、由k=1可以获知:当x<0时,y随x值的减小而减小,当x>0时,y随x值的减小而减小.此宋废求解.【答疑】求解:a、y=3x+2中k=3,∴y随x值的减小而增大,∴a选项合乎题意;b、y=2x+1中k=2,3/22∴y随x值的减小而减小,∴b选项不合乎题意;c、y=2x2+1中a=2,∴当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而减小,∴c选项不符合题意;d、y=中k=1,∴当x<0时,y随x值的减小而减小,当x>0时,y随x值的减小而减小,∴d选项不合乎题意.故挑选a.【点评】本题考查了一次函数的性质、二次函数的性质以及反比例函数的性质,根据一次(二次、反比例)函数的性质,逐一分析四个选项中y与x之间的增减性是解题的关键.8.(3分后)(2021?德州)不等式组与a.x≥3b.3≤x<4的边值问题就是()c.3≤x<2d.x>4【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+9≥3,得:x≥3,解不等式>x1,得:x<4,∴不等式组的解集为3≤x<4,故选:b.【评测】本题考查的就是求解一元一次不等式组,恰当算出每一个不等式边值问题就是基础,津津乐道“同大取大;同小取小;大小小大中间打听;大大小小打听没”的原则就是答疑此题的关键.9.(3分)(2021?德州)公式l=l0+kp表示当重力为p时的物体作用在弹簧上时弹簧的长度,l0代表弹簧的初始长度,用厘米(cm)表示,k表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公4/22式中,表明这是一个短而硬的弹簧的是()a.l=10+0.5pb.l=10+5pc.l=80+0.5pd.l=80+5p【分析】a和b中,l0=10,表示弹簧短;a和c中,k=0.5,表示弹簧硬,由此即可得出结论.【答疑】求解:∵10<80,0.5<5,∴a和b中,l0=10,表示弹簧短;a和c中,k=0.5,表示弹簧硬,∴a选项表示这是一个短而硬的弹簧.故选a.【评测】本题考查了一次函数的应用领域,比较l0和k的值,找到长而软的弹簧就是解题的关键.10.(3分)(2021?德州)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()a.c.=4=4b.d.=4=4【分析】由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.【答疑】求解:设立他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:故挑选d.【点评】此题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.(3分后)(2021?德州)例如图置放的两个正方形,小正方形abcd边长为a,大正方形cefg边长为b(a>b),m在bc边上,且bm=b,相连接am,mf,mf交cg于点p,将△abm绕点a转动至△adn,将△mef绕点f转动至△5/22=4.。
2019年德州市初中学业水平考试数学说明2019年德州市初中学业水平考试数学说明数学学科的考试内容是指《义务教育数学课程标准(2019年版)》中所规定的课程内容。
(一)考查目标与要求数学学科考试按照“注重基础,能力立意”的原则,考查初中数学的基础知识、基本技能、基本思想和基本活动经验,考查抽象概括能力、运算能力、推理能力、分析和解决问题的能力、空间观念、几何直观、数据分析能力、模型思想、应用意识和创新意识等。
1.四项基本要求注重对基础知识的考查。
全面考查基础知识,突出对支撑学科体系的重点知识的考查,注重知识的整体性和知识之间的内在联系。
注重对基本技能的考查。
考查技能操作的程序与步骤及其中蕴含的原理。
注重对基本思想的考查。
以基础知识为载体,考查对知识本质及规律的理性认识。
注重对基本活动经验的考查。
考查在阅读、观察、实验、计算、推理、验证等活动过程中所积累的学习与应用基础知识、基本技能、基本思想方法的经验和思维的经验。
2.能力要求要求对数学能力的考查,以考查思维为核心,包括对数学知识、数学知识形成与发展过程、数学知识灵活应用的考查,注重全面,突出重点,适度综合,体现应用。
将对抽象概括能力、运算能力、推理能力、分析和解决问题的能力的考查贯穿于全卷。
对抽象概括能力主要是指在不同问题的情境下,能够通过对具体对象的抽象概括,发现所研究对象的本质特征;从给定信息中概括出结论,将其应用于所研究的问题中。
运算能力主要是指理解运算的算理;根据法则和运算律进行正确的运算;根据特定的问题,分析运算条件,探究、设计和选择合理、简洁的运算途径,解决问题;根据需要进行估算。
推理能力包括合情推理能力和演绎推理能力。
合情推理能力是指根据问题的已知,结合已有的事实,凭借所积累的经验,利用归纳与类比等方法,推断出问题的某一特定结论;演绎推理能力是指根据问题的已知、已有的事实和确定的规则,进行逻辑思考,推导出未知命题的正确性。
一般地,运用合情推理进行探索,运用演绎推理进行证明。
绝密★ 启用前试卷种类:A德州市初中学业考试数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ 卷2页为选择题,24 分;第Ⅱ卷 8 页为非选择题,96 分;全卷共 10 页,满分120 分,考试时间为120 分钟.2.答第Ⅰ卷前,考生务势必自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并回收.3.第Ⅰ卷每题选出答案后,一定用2B 铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦洁净,再改涂其余答案.第Ⅰ卷(选择题共 24分)一、选择题:本大题共8 小题,在每题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来.每题选对得 3 分,选错、不选或选出的答案超出一个均记零分.1.以下计算正确的选项是(A) 20 0 (B)31 3 (C)93 (D) 2 352.如图,直线AB∥CD,∠A=70 ,∠ C=40 ,则∠ E 等于E(A) 30°(B) 40°D C( C) 60°(D) 70°AB3.德州市2009 年实现生产总值(第 2 题图3 个有效数字)GDP)1545.35 亿元,用科学记数法表示应是(结果保存(A) 1.54 108 元(B) 1.545 1011元(C) 1.55 1010 元(D) 1.55 1011 元4.下边的图形中,既是轴对称图形又是中心对称图形的是(A)(B)(C)(D)5.某游泳池的横截面以下图,用一水管向池内连续灌水,若单位时间内注入的水量保持不变,则在注水过程中,以下图象能反应深水区水深h 与灌水时间t 关系的是h h h h 深浅水区水区第 5题图(A)(B)(C)(D)6.为了认识某校九年级学生的体能状况,随机抽查了此中50 名学生,测试 1 分钟仰卧起坐的成绩(次数),进行整理后绘制成以下图的频数散布直方图(注: 15~20 包含 15,不包含 20,以下同),请依据统计图计算成绩在20~30 次的频次是( A )0.4 人数20(B )0.515( C)0.6105(D )0.7015 20 25 30 35 次数7.如图是某几何体的三视图及有关数据,则该几何体的侧面积是第6题图b c a主视图( B)1ac左视图俯视图( A )1ab ( C)ab ( D)ac2 28.已知三角形的三边长分别为3,4,5 ,则它的边与半径为 1 的圆的公共点个数所有可能的情况是(A)0 , 1,2, 3 (B)0 , 1, 2,4 (C)0,1, 2, 3, 4 (D)0, 1, 2, 4, 5绝密★启用前试卷种类:A德州市二○一○年初中学业考试数学试题第Ⅱ 卷(非选择题共 96分)注意事项:1.第Ⅱ卷共 8 页,用钢笔或圆珠笔挺接写在试卷上.2.答卷前将密封线内的项目填写清楚.三题号二总分17 18 19 20 21 22 23得分得分 评卷人二、填空题 :本大题共 8 小题,共 32 分,只需求填写最后结果,每题填对得 4分.9. -3 的倒数是 _________.x 1 0的解集为 _____________ .10. 不等式组2 4xx 111. 袋子中装有 3 个红球和 5 个白球,这些球除颜色外均同样.在看不到球的条件下,随机从袋中摸出一个球,则摸出白球的概率是 _____________.12. 方程2 1的解为 x =___________ .x3 x13. 在四边形 ABCD 中,点 E , F , G ,H 分别是边 AB , BC , CD ,DA 的中点,假如四边形EFGH 为菱形,那么四边形 ABCD 是(只需写出一种即可) .14. 如图,小明在 A 时测得某树的影长为 2m , B 时又测得该树的影长为8m ,若两第二天照的光芒相互垂直,则树的高度为 _____m.AB 时A 时P 2P 1第14题图15. 电子跳蚤游戏盘是以下图的蚤第一步从 P 0 跳到 AC 边的BP 0 P 3 C第 15题图边的 P 0 处, BP 0=2.跳△ ABC , AB =AC=BC=6.假如跳蚤开始时在 BC P 1(第 1 次落点)处,且 CP 1= CP 0;第二步从 P 1 跳到 AB 边的 P 2(第 2次落点)处,且 AP 2= AP 1;第三步从 P 2 跳到 BC 边的 P 3(第 3 次落点)处,且 BP 3= BP 2; ;跳蚤依据上述规则向来跳下去, 第 n 次落点为 P ( n 为正整数),则点 P2009与点 P2010之间的距离为 _________.n16.粉笔是校园中最常有的必备品.图 1 是一盒刚翻开的六角形粉笔,总支数为 50 支.图 2 是它的横截面(矩形 ABCD ),已知每支粉笔的直径为 12mm ,由此估量矩形 ABCD 的周长约为 _______ mm .( 3 1.73 ,结果精准到 1 mm)A D第 16题图 1第16题图2三、解答题:本大题共7 小题,共64 分.解答要写出必需的文字说明、证明过程或演算步骤.得分评卷人17. (此题满分 6 分 )x 2 2x 2 1先化简,再求值:x 21 x22x 1,此中x2 1.x 1得分评卷人18.(此题满分8 分)如图,点 E,F 在 BC 上, BE= CF,∠ A=∠ D,∠ B=∠ C, AF 与 DE 交于点 O.(1) 求证: AB= DC ; A D(2) 试判断△ OEF 的形状,并说明原因.OB E F C第18题图得分评卷人19.(此题满分8 分 )某工厂甲、乙两名工人参加操作技术培训.现分别从他们在培训时期参加的若干次测试成绩中随机抽取8 次,记录以下:甲95 82 88 81 93 79 84 78乙83 92 80 95 90 80 85 75(1)请你计算这两组数据的均匀数、中位数;(2)现要从中选派一人参加操作技术竞赛,从统计学的角度考虑,你以为选派哪名工人参加适合?请说明原因.得分评卷人20. (此题满分10 分 )如图,在△ ABC 中, AB=AC, D 是 BC 中点, AE 均分∠ BAD 交 BC 于点 E,点 O 是 AB 上一点,⊙ O过 A、E两点, 交AD 于点 G,交 AB 于点 F.( 1)求证: BC 与⊙ O 相切; C( 2)当∠ BAC=120°时,求∠ EFG 的度数.DG EA O F B第20题图得分评卷人21. (此题满分10 分 )为迎接第四届世界太阳城大会,德州市把主要路段路灯改换为太阳能路灯.已知太阳能路灯售价为5000 元 /个,当前两个商家有此产品.甲商家用以下方法促销:若购置路灯不超出100 个,按原价付款;若一次购置 100 个以上,且购置的个数每增添一个,其价钱减少10 元,但太阳能路灯的售价不得低于3500 元 / 个.乙店一律按原价的80℅销售.现购置太阳能路灯x 个,假如所有在甲商家购置,则所需金额为y1元;假如所有在乙商家购置,则所需金额为y2元 .(1)分别求出 y1、 y2与 x 之间的函数关系式;(2)若市政府投资 140 万元,最多能购置多少个太阳能路灯?得分评卷人22. (此题满分 10 分 ) ●研究(1) 在图 1 中,已知线段AB ①若 A (-1, 0), B (3, 0),则 E 点坐标为 __________; ②若 C (-2, 2), D (-2, -1),则 F 点坐标为 __________;(2) 在图 2 中,已知线段 AB 的端点坐标为 A(a , b) , B(c , d),求出图中 AB 中点 D 的坐标(用含 a , b , c , d 的, CD ,此中点分别为 yCABE ,F .代数式表示),并给出求解过程.DOx●概括 不论线段 AB 处于直角坐标系中的哪个地点,第 22题图 1y当其端点坐标为 A(a , b), B(c , d), AB 中点为 D(x , y) 时,BD x=_________ , y=___________ .(不用证明)●运用 在图 2 中,一次函数y x 2 与反比率函数3 y的图象交点为 A , B .x①求出交点 A , B 的坐标;AOx第 22题图 23y=y xBO xAy=x-2第22题图3②若以 A, O,B, P 为极点的四边形是平行四边形,请利用上边的结论求出极点P 的坐标.得分评卷人23. (此题满分11 分 )已知二次函数 y ax2 bx c 的图象经过点A(3,0),B(2,-3),C(0,-3).(1)求此函数的分析式及图象的对称轴;(2)点 P 从 B 点出发以每秒0.1 个单位的速度沿线段 BC 向 C 点运动,点 Q 从 O 点出发以同样的速度沿线段 OA 向 A 点运动,此中一个动点抵达端点时,另一个也随之停止运动.设运动时间为t 秒.①当 t 为什么值时,四边形ABPQ 为等腰梯形;②设 PQ 与对称轴的交点为M,过 M 点作 x 轴的平行线交AB 于点 N,设四边形 ANPQ 的面积为 S,求面积 S 对于时间 t 的函数分析式,并指出 t 的取值范围;当t 为什么值时, S 有最大值或最小值.yQOA xM NC P B第 23题图德州市初中学业考试数学试题参照解答及评分建议评卷说明:1.选择题和填空题中的每题,只有满分和零分两个评分档,不给中间分.2.解答题每题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每题只给出一种或两种解法,对考生的其余解法,请参照评分建议进行评分.3.假如考生在解答的中间过程出现计算错误,但并无改变试题的本质和难度,后来续部分酌情给分,但最多不超出正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题: (本大题共 8 小题,每题 3 分,共 24 分 )题号 1 2 3 4 5 6 7 8答案 C A D B A D B C二、填空题: (本大题共8 小题,每题 4 分,共32 分)9. 1 ;10.1 x 1;11.5 ;12.-3 ;13.答案不独一:只假如对角线相等的四边形均切合要求.如:3 8正方形、矩形、等腰梯形等.14.4 15.2; 16.300.三、解答题:(本大题共7 小题 , 共 64 分 )17. (本小题满分7 分 )=x 2 2(x 1) 1( x 1)2 2( x 1)( x 1) x 1=x 2 (x 1) 2 11)( x 1) 2( x 1) x 1( xx 2 14 =1) x 12( xx5=2( x 1)x 21=2 27 A D418(8 )O BE CFBE EF CF EF 1 BE FC BF CE 2 ADBCABFDCE AAS 4AB DC 5OEF 6ABFDCEAFB= DECOE=OFOEF 819 ( 8 )__ 1(1) x甲 = (82+81+79+78+95+88+93+84)=858__ 1x乙= (92+95+80+75+83+80+90+85)=85885 283 84 4__ __(2) (1) x甲 = x乙s甲21[( 78 85)2 (79 85) 2 (81 85)2 (82 85) 2 (84 85)2 8(88 85)2 (93 85) 2 (95 85)2 ] 35.5s乙2 1[( 75 85) 2 (80 85) 2 (80 85)2 (83 85) 2 (85 85)2 8(90 85)2 (92 85) 2 (95 85)2 ] 41__ __∵ x甲= x乙,s甲2 s乙2,∴甲的成绩较稳固,派甲参赛比较适合.8 分注:本小题的结论及原因均不独一,假如考生能从统计学的角度剖析,给出其余合理回答,酌情给分.如派乙参赛比较适合.原因以下:从统计的角度看,甲获取85 分以上(含85 分)的概率 P1 3 ,8乙获取 85 分以上(含85 分)的概率P2 4 1 .8 2∵ P2 P1,∴派乙参赛比较适合.20. (此题满分 10 分 ) C( 1)证明:连结 OE,------------------------------ 1 分∵AB=AC 且 D 是 BC 中点,∴ AD⊥ BC.∵AE 均分∠ BAD,∴∠ BAE=∠DAE . ------------------------------ 3 分∵OA=OE,∴∠ OAE=∠OEA.∴∠ OEA=∠DAE .∴OE∥ AD .∴OE⊥ BC.∴ BC 是⊙ O 的切线. --------------------------- 6 分( 2)∵ AB=AC,∠ BAC =120°,DGEA O F B∴∠ B=∠C=30°. ---------------------------- 7 分∴∠ EOB =60 °.------------------------------ 8 分∴∠ EAO =∠EAG =30 °. ------------------- 9 分∴∠ EFG =30 °.------------------------------ 10分21.(此题满分 10 分)解:( 1)由题意可知,当 x ≤100时,购置一个需 5000 元,故 y 1 5000x ;------------------- 1 分当 x ≥100 时,由于购置个数每增添一个,其价钱减少10 元,但售价不得低于3500 元 / 个,因此x ≤5000 3500 +100=250 .------------------------2分10即 100≤x ≤250时,购置一个需 5000-10(x-100) 元,故 y 1=6000x-10x 2; ---------- 4 分 当 x>250 时,购置一个需3500 元,故 y 13500x ; ---------------- 5 分5000 x(0,x 100)因此, y 16000 x 10 x 2 (100 x 250),3500 x(x250).y 2 5000 80%x 4000x.------------------------------- 7 分(2) 当 0<x ≤100 时, y 1=5000x ≤ 500000<1400000;当 100<x ≤250时, y 1=6000x-10x 2=-10( x-300) 2+900000<1400000 ;因此,由 3500x 1400000 ,得 x 400 ; -------------------------------8 分 由 4000x 1400000,得 x 350 .-------------------------------9 分应选择甲商家,最多能购置400 个路灯. -----------------------------10 分22.(此题满分 10 分)解: 研究(1)① (1, 0);② (-2,1); ------------------------------- 2 分2(2) 过点 A , D , B 三点分别作 x 轴的垂线,垂足分别为A , D ,B ,则 AA ∥ BB ∥ CC . -------------------------------3分 ∵ D 为 AB 中点,由平行线分线段成比率定理得yB AD =DB .Dc aa cAO A ′ D ′ B ′x∴ O D = a2 .2即 D 点的横坐标是 ac. ------------------4 分2y 3 同理可得 D 点的纵坐标是 b d .y=x2B ∴ AB 中点 D 的坐标为 (ac , b d). --------5分 x2 2O A Py=x-2概括:ac , bd. -------------------------------6 分2 2运用①由题意得y x 2 ,3. yxx 3 ,x 1,解得或y .y 1 .3.∴即交点的坐标为A(-1, -3), B(3, 1) . -------------8 分②以 AB 为对角线时,由上边的结论知AB 中点 M 的坐标为 (1, -1) .∵平行四边形对角线相互均分,∴OM=OP,即 M 为 OP 的中点.∴ P 点坐标为 (2,-2). --------------------------------- 9分同理可得分别以OA , OB 为对角线时,点 P 坐标分别为 (4, 4) , (-4, -4) .∴知足条件的点P 有三个,坐标分别是(2, -2) , (4, 4) , (-4, -4) .------10 分23.(此题满分 11 分)解: (1) ∵二次函数y ax 2 bx c 的图象经过点C(0, -3),∴ c =-3 .y将点 A(3, 0), B(2, -3) 代入y ax2 bx c 得0 9a 3b 3,QE Dx O G A3 4a 2b 3.M N 解得: a=1, b=-2 .∴ y x2 2 x 3 . -------------------2C F P B 分配方得:y ( x 1 2 4,因此对称轴为x=1. -------------------3 分)(2)由题意可知: BP= OQ=0.1t.∵点 B,点 C 的纵坐标相等,∴ BC∥OA.过点 B,点 P 作 BD ⊥OA, PE⊥OA,垂足分别为 D, E.要使四边形 ABPQ 为等腰梯形,只需PQ=AB .即 QE=AD=1.又 QE=OE -OQ=(2-0.1 t)-0.1t=2-0.2 t , ∴ 2-0.2t=1.解得 t=5.即 t=5 秒时,四边形 ABPQ 为等腰梯形. -------------------6 分②设对称轴与 BC , x 轴的交点分别为 F , G .∵对称轴 x=1 是线段 BC 的垂直均分线,∴ BF=CF=OG=1 .又∵ BP=OQ ,∴ PF=QG .又∵∠ PMF =∠QMG ,∴ △MFP ≌△ MGQ .∴ MF =MG .∴点 M 为 FG 的中点-------------------8 分∴ S= S 四边形 ABPQ - S BPN ,=S四边形 ABFG- SBPN.由S 四边形 ABFG1(BF AG)FG = 9 .22 SBPN1 BP 1 FG 3 t .22 40∴S=9 3t . -------------------10 分 2 40又 BC=2,OA=3,∴点 P 运动到点 C 时停止运动,需要20 秒.∴ 0<t ≤20.∴当 t=20 秒时,面积 S 有最小值 3. ------------------ 11 分。
山东省德州市2020年初中学业水平考试数学试题(全卷满分150分,考试时间为120分钟)第Ⅰ卷(选择题共48分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.1.|﹣2020|的结果是()A.B.2020 C.﹣D.﹣20202.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.3.下列运算正确的是()A.6a﹣5a=1 B.a2•a3=a5C.(﹣2a)2=﹣4a2D.a6÷a2=a34.如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图5.为提升学生的自理和自立能力,李老师调查了全班学生在一周内的做饭次数情况,调查结果如下表:一周做饭次数 4 5 6 7 8 人数7 6 12 10 5 那么一周内该班学生的平均做饭次数为()A.4 B.5 C.6 D.76.如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°…照这样走下去,他第一次回到出发点A时,共走路程为()A.80米B.96米C.64米D.48米7.函数y=和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.8.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相垂直且平分的四边形是菱形;③一个角为90°且一组邻边相等的四边形是正方形;④对角线相等的平行四边形是矩形.其中真命题的个数是()A.1 B.2 C.3 D.49.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2 B.a<﹣2 C.a>2 D.a≤210.如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为()A.24﹣4π B.12+4π C.24+8π D.24+4π11.二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是()A.若(﹣2,y1),(5,y2)是图象上的两点,则y1>y2B.3a+c=0C.方程ax2+bx+c=﹣2有两个不相等的实数根D.当x≥0时,y随x的增大而减小12.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148 B.152 C.174 D.202第Ⅱ卷(非选择题共102分)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.﹣=.14.若一个圆锥的底面半径是2cm,母线长是6cm,则该圆锥侧面展开图的圆心角是度.15.在平面直角坐标系中,点A的坐标是(﹣2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′.若点A'恰在某一反比例函数图象上,则该反比例函数解析式为.16.菱形的一条对角线长为8,其边长是方程x2﹣9x+20=0的一个根,则该菱形的周长为.17.如图,在4×4的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是.18.如图,在矩形ABCD中,AB=+2,AD=.把AD沿AE折叠,使点D恰好落在AB边上的D′处,再将△AED′绕点E顺时针旋转α,得到△A'ED″,使得EA′恰好经过BD′的中点F.A′D″交AB于点G,连接AA′.有如下结论:①A′F的长度是﹣2;②弧D'D″的长度是π;③△A′AF≌△A′EG;④△AA′F∽△EGF.上述结论中,所有正确的序号是.三、解答题:本大题共7小题,共78分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)先化简:(),然后选择一个合适的x值代入求值.20.(10分)某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为;(2)补全图2频数直方图;(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;(4)成绩前四名是2名男生和2名女生,若从他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.21.(10分)如图,无人机在离地面60米的C处,观测楼房顶部B的俯角为30°,观测楼房底部A 的俯角为60°,求楼房的高度.22.(12分)如图,点C在以AB为直径的⊙O上,点D是半圆AB的中点,连接AC,BC,AD,BD.过点D作DH∥AB交CB的延长线于点H.(1)求证:直线DH是⊙O的切线;(2)若AB=10,BC=6,求AD,BH的长.23.(12分)小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x支,购买费用为y元,请写出y 关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?24.(12分)问题探究:小红遇到这样一个问题:如图1,△ABC中,AB=6,AC=4,AD是中线,求AD的取值范围.她的做法是:延长AD到E,使DE=AD,连接BE,证明△BED≌△CAD,经过推理和计算使问题得到解决.请回答:(1)小红证明△BED≌△CAD的判定定理是:;(2)AD的取值范围是;方法运用:(3)如图2,AD是△ABC的中线,在AD上取一点F,连结BF并延长交AC于点E,使AE=EF,求证:BF=AC.(4)如图3,在矩形ABCD中,=,在BD上取一点F,以BF为斜边作Rt△BEF,且=,点G是DF的中点,连接EG,CG,求证:EG=CG.25.(14分)如图1,在平面直角坐标系中,点A的坐标是(0,﹣2),在x轴上任取一点M,连接AM,分别以点A和点M为圆心,大于AM的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.探究:(1)线段PA与PM的数量关系为,其理由为:.(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:M的坐标…(﹣2,0)(0,0)(2,0)(4,0)…P的坐标…(0,﹣1)(2,﹣2)…猜想:(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是.验证:(4)设点P的坐标是(x,y),根据图1中线段PA与PM的关系,求出y关于x的函数解析式.应用:(5)如图3,点B(﹣1,),C(1,),点D为曲线L上任意一点,且∠BDC<30°,求点D的纵坐标y D的取值范围.答案与解析第Ⅰ卷(选择题共48分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.1.|﹣2020|的结果是()A.B.2020 C.﹣D.﹣2020【知识考点】绝对值.【思路分析】根据绝对值的性质直接解答即可.【解题过程】解:|﹣2020|=2020;故选:B.【总结归纳】此题考查了绝对值,掌握绝对值的性质是解题的关键,是一道基础题.2.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【知识考点】轴对称图形;中心对称图形.【思路分析】根据轴对称图形与中心对称图形的概念求解.【解题过程】解:A、不是轴对称图形,也不是中心对称图形.故此选项不合题意;B、是中心对称图形但不是轴对称图形.故此选项符合题意;C、既是轴对称图形,又是中心对称图形.故此选项不合题意;D、是轴对称图形,不是中心对称图形.故此选项不合题意.故选:B.【总结归纳】此题主要中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列运算正确的是()A.6a﹣5a=1 B.a2•a3=a5C.(﹣2a)2=﹣4a2D.a6÷a2=a3【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】利用整式的四则运算法则分别计算,可得出答案.【解题过程】解:6a﹣5a=a,因此选项A不符合题意;a2•a3=a5,因此选项B符合题意;(﹣2a)2=4a2,因此选项C不符合题意;a6÷a2=a6﹣2=a4,因此选项D不符合题意;故选:B.【总结归纳】考查整式的意义和运算,掌握运算法则是正确计算的前提.4.如图1是用5个相同的正方体搭成的立体图形.若由图1变化至图2,则三视图中没有发生变化的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图【知识考点】简单组合体的三视图.【思路分析】根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.【解题过程】解:图1主视图第一层三个正方形,第二层左边一个正方形;图2主视图第一层三个正方形,第二层右边一个正方形;故主视图发生变化;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图都是底层左边是一个正方形,上层是三个正方形,故俯视图不变.∴不改变的是左视图和俯视图.故选:D.【总结归纳】本题考查了简单组合体的三视图,利用三视图的意义是解题关键.5.为提升学生的自理和自立能力,李老师调查了全班学生在一周内的做饭次数情况,调查结果如下表:一周做饭次数 4 5 6 7 8 人数7 6 12 10 5 那么一周内该班学生的平均做饭次数为()A.4 B.5 C.6 D.7【知识考点】加权平均数.【思路分析】利用加权平均数的计算方法进行计算即可.【解题过程】解:==6(次),故选:C.【总结归纳】本题考查加权平均数的意义和计算方法,理解加权平均数的意义是正确解答的前提.6.如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°…照这样走下去,他第一次回到出发点A时,共走路程为()A.80米B.96米C.64米D.48米【知识考点】多边形内角与外角.【思路分析】根据多边形的外角和即可求出答案.【解题过程】解:根据题意可知,他需要转360÷45=8次才会回到原点,所以一共走了8×8=64(米).故选:C.【总结归纳】本题主要考查了利用多边形的外角和定理求多边形的边数.任何一个多边形的外角和都是360°.7.函数y=和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.【知识考点】一次函数的图象;反比例函数的图象.【思路分析】根据题目中函数的解析式,利用一次函数和反比例函数图象的特点解答本题.【解题过程】解:在函数y=和y=﹣kx+2(k≠0)中,当k>0时,函数y=的图象在第一、三象限,函数y=﹣kx+2的图象在第一、二、四象限,故选项A、B错误,选项D正确,当k<0时,函数y=的图象在第二、四象限,函数y=﹣kx+2的图象在第一、二、三象限,故选项C错误,故选:D.【总结归纳】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用分类讨论的数学思想解答.8.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相垂直且平分的四边形是菱形;③一个角为90°且一组邻边相等的四边形是正方形;④对角线相等的平行四边形是矩形.其中真命题的个数是()A.1 B.2 C.3 D.4【知识考点】命题与定理.【思路分析】根据平行四边形的判定、菱形的判定、正方形和矩形的判定判断即可.【解题过程】解:①一组对边平行且这组对边相等的四边形是平行四边形,原命题是假命题;②对角线互相垂直且平分的四边形是菱形,是真命题;③一个角为90°且一组邻边相等的平行四边形是正方形,原命题是假命题;④对角线相等的平行四边形是矩形,是真命题;故选:B.【总结归纳】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2 B.a<﹣2 C.a>2 D.a≤2【知识考点】解一元一次不等式组.【思路分析】分别求出每个不等式的解集,根据不等式组的解集为x≤2可得关于a的不等式,解之可得.【解题过程】解:解不等式组,由①可得:x<2,由②可得:x<a,因为关于x的不等式组的解集是x<2,所以,a≥2,故选:A.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为()A.24﹣4πB.12+4πC.24+8πD.24+4π【知识考点】正多边形和圆;扇形面积的计算.【思路分析】设正六边形的中心为O,连接OA,OB首先求出弓形AmB的面积,再根据S阴=6•(S半圆﹣S弓形AmB)求解即可.【解题过程】解:设正六边形的中心为O,连接OA,OB.由题意,OA=OB=AB=4,∴S弓形AmB=S扇形OAB﹣S△AOB=﹣×42=π﹣4,∴S阴=6•(S半圆﹣S弓形AmB)=6•(•π•22﹣π+4)=24﹣4π,故选:A.【总结归纳】本题考查正多边形和圆,扇形的面积,弓形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.11.二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是()A.若(﹣2,y1),(5,y2)是图象上的两点,则y1>y2B.3a+c=0C.方程ax2+bx+c=﹣2有两个不相等的实数根D.当x≥0时,y随x的增大而减小【知识考点】根的判别式;二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【思路分析】根据二次函数的图象和性质分别对各个选项进行判断即可.【解题过程】解:∵抛物线的对称轴为直线x=1,a<0,∴点(﹣1,0)关于直线x=1的对称点为(3,0),则抛物线与x轴的另一个交点坐标为(3,0),点(﹣2,y1)与(4,y1)是对称点,∵当x>1时,函数y随x增大而减小,故A选项不符合题意;把点(﹣1,0),(3,0)代入y=ax2+bx+c得:a﹣b+c=0①,9a+3b+c=0②,①×3+②得:12a+4c=0,∴3a+c=0,故B选项不符合题意;当y=﹣2时,y=ax2+bx+c=﹣2,由图象得:纵坐标为﹣2的点有2个,∴方程ax2+bx+c=﹣2有两个不相等的实数根,故C选项不符合题意;∵二次函数图象的对称轴为x=1,a<0,∴当x≤1时,y随x的增大而增大;当x≥1时,y随x的增大而减小;故D选项符合题意;故选:D.【总结归纳】本题考查了二次函数的图象与性质、二次函数图象上点的坐标特征等知识;熟练掌握二次函数的图象和性质是解题的关键.12.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148 B.152 C.174 D.202【知识考点】规律型:图形的变化类.【思路分析】观察各图可知,后一个图案比前一个图案多2(n+3)枚棋子,然后写成第n个图案的通式,再取n=10进行计算即可求解.【解题过程】解:根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.【总结归纳】考查了规律型:图形的变化类,观察图形,发现后一个图案比前一个图案多2(n+3)枚棋子是解题的关键.第Ⅱ卷(非选择题共102分)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.﹣=.【知识考点】二次根式的加减法.【思路分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解题过程】解:原式=3﹣=2.故答案为:2.【总结归纳】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,难度一般.14.若一个圆锥的底面半径是2cm,母线长是6cm,则该圆锥侧面展开图的圆心角是度.【知识考点】圆锥的计算.【思路分析】根据圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.【解题过程】解:圆锥侧面展开图的弧长是:2π×2=4π(cm),设圆心角的度数是n度.则=4π,解得:n=120.故答案为:120.【总结归纳】此题主要考查了圆锥的有关计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.在平面直角坐标系中,点A的坐标是(﹣2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′.若点A'恰在某一反比例函数图象上,则该反比例函数解析式为.【知识考点】反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;位似变换.【思路分析】直接利用位似图形的性质得出A′坐标,进而求出函数解析式.【解题过程】解:∵点A的坐标是(﹣2,1),以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为A′,∴A′坐标为:(﹣4,2)或(4,﹣2),∵A'恰在某一反比例函数图象上,∴该反比例函数解析式为:y=.故答案为:y=.【总结归纳】此题主要考查了位似变换以及待定系数法求反比例函数解析式,正确得出对应点坐标是解题关键.16.菱形的一条对角线长为8,其边长是方程x2﹣9x+20=0的一个根,则该菱形的周长为.【知识考点】解一元二次方程﹣因式分解法;菱形的性质.【思路分析】解方程得出x=4或x=5,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=5时,5+5>8,即可得出菱形ABCD的周长.【解题过程】解:如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵x2﹣9x+20=0,因式分解得:(x﹣4)(x﹣5)=0,解得:x=4或x=5,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=5时,5+5>8,∴菱形ABCD的周长=4AB=20.故答案为:20.【总结归纳】本题考查了菱形的性质、一元二次方程的解法、三角形的三边关系;熟练掌握菱形的性质,由三角形的三边关系得出AB是解决问题的关键.17.如图,在4×4的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是.【知识考点】利用轴对称设计图案;几何概率.【思路分析】直接利用轴对称图形的性质结合概率求法得出答案.【解题过程】解:如图所示:当分别将1,2位置涂黑,构成的黑色部分图形是轴对称图形,故新构成的黑色部分图形是轴对称图形的概率是:=.故答案为:.【总结归纳】此题主要考查了利用轴对称设计图案以及几何概率,正确掌握轴对称图形的性质是解题关键.18.如图,在矩形ABCD中,AB=+2,AD=.把AD沿AE折叠,使点D恰好落在AB边上的D′处,再将△AED′绕点E顺时针旋转α,得到△A'ED″,使得EA′恰好经过BD′的中点F.A′D″交AB于点G,连接AA′.有如下结论:①A′F的长度是﹣2;②弧D'D″的长度是π;③△A′AF≌△A′EG;④△AA′F∽△EGF.上述结论中,所有正确的序号是.【知识考点】四边形综合题.【思路分析】由折叠的性质可得∠D=∠AD'E=90°=∠DAD',AD=AD',可证四边形ADED'是正方形,可得AD=AD'=D'E=DE=,AE=AD=,∠EAD'=∠AED'=45°,由勾股定理可求EF的长,由旋转的性质可得AE=A'E=,∠D'ED''=α,∠EA'D''=∠EAD'=45°,可求A'F=﹣2,可判断①;由锐角三角函数可求∠FED'=30°,由弧长公式可求弧D'D″的长度,可判断②;由等腰三角形的性质可求∠EAA'=∠EA'A=52.5°,∠A'AF=7.5°,可判断③;由“HL”可证Rt△ED'G≌Rt△ED''G,可得∴∠D'GE=∠D''GE=52.5°,可证△AFA'∽△EFG,可判断④,即可求解.【解题过程】解:∵把AD沿AE折叠,使点D恰好落在AB边上的D′处,∴∠D=∠AD'E=90°=∠DAD',AD=AD',∴四边形ADED'是矩形,又∵AD=AD'=,∴四边形ADED'是正方形,∴AD=AD'=D'E=DE=,AE=AD=,∠EAD'=∠AED'=45°,∴D'B=AB﹣AD'=2,∵点F是BD'中点,∴D'F=1,∴EF===2,∵将△AED′绕点E顺时针旋转α,∴AE=A'E=,∠D'ED''=α,∠EA'D''=∠EAD'=45°,∴A'F=﹣2,故①正确;∵tan∠FED'===,∴∠FED'=30°∴α=30°+45°=75°,∴弧D'D″的长度==π,故②正确;∵AE=A'E,∠AEA'=75°,∴∠EAA'=∠EA'A=52.5°,∴∠A'AF=7.5°,∵∠AA'F≠∠EA'G,∠AA'E≠∠EA'G,∠AFA'=120°≠∠EA'G,∴△AA'F与△A'GE不全等,故③错误;∵D'E=D''E,EG=EG,∴Rt△ED'G≌Rt△ED''G(HL),∴∠D'GE=∠D''GE,∵∠AGD''=∠A'AG+∠AA'G=105°,∴∠D'GE=52.5°=∠AA'F,又∵∠AFA'=∠EFG,∴△AFA'∽△EFG,故④正确,故答案为:①②④.【总结归纳】本题是四边形综合题,考查了矩形的性质,正方形的判定和性质,全等三角形的判定和性质,锐角三角函数,弧长公式,等腰三角形的性质,旋转的性质,相似三角形的判定和性质等知识,灵活运用这些性质进行推理证明是本题的关键.三、解答题:本大题共7小题,共78分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)先化简:(),然后选择一个合适的x值代入求值.【知识考点】分式的化简求值.【思路分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解题过程】解:===,把x=1代入.【总结归纳】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(10分)某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为;(2)补全图2频数直方图;(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;(4)成绩前四名是2名男生和2名女生,若从他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.【知识考点】频数(率)分布直方图;扇形统计图;条形统计图;列表法与树状图法.【思路分析】(1)用“89.5~99.5”的人数除以它们所占的百分比可得到调查的总人数;59.5~69.5”这一范围的人数占总参赛人数的百分比,即可得出答案;(2)求出“69.5~74.5”这一范围的人数为15﹣8=7(人),“79.5~84.5”这一范围的人数为18﹣8=10(人);补全图2频数直方图即可:(3)求出成绩由高到低前40%的参赛选手人数为50×40%=20(人),由88>84.5,即可得出结论;(4)画树状图展示所有12种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解.【解题过程】解:(1)本次比赛参赛选手共有:(8+4)÷24%=50(人),“59.5~69.5”这一范围的人数占总参赛人数的百分比为×100%=10%,∴79.5~89.5”这一范围的人数占总参赛人数的百分比为100%﹣24%﹣10%﹣30%=36%;故答案为:50,36%;(2)∵“69.5~79.5”这一范围的人数为50×30%=15(人),∴“69.5~74.5”这一范围的人数为15﹣8=7(人),∵“79.5~89.5”这一范围的人数为50×36%=18(人),∴“79.5~84.5”这一范围的人数为18﹣8=10(人);补全图2频数直方图:(3)能获奖.理由如下:∵本次比赛参赛选手50人,∴成绩由高到低前40%的参赛选手人数为50×40%=20(人),又∵88>84.5,∴能获奖;(4)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率==.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.(10分)如图,无人机在离地面60米的C处,观测楼房顶部B的俯角为30°,观测楼房底部A 的俯角为60°,求楼房的高度.【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】过B作BE⊥CD交CD于E,由题意得,∠CBE=30°,∠CAD=60°,解直角三角形即可得到结论.【解题过程】解:过B作BE⊥CD交CD于E,由题意得,∠CBE=30°,∠CAD=60°,在Rt△ACD中,tan∠CAD=tan60°==,∴AD==20,∴BE=AD=20,在Rt△BCE中,tan∠CBE=tan30°==,∴CE=20=20,∴ED=CD﹣CE=60﹣20=40,∴AB=ED=40(米),答:楼房的高度为40米.【总结归纳】此题考查了解直角三角形的应用﹣仰角俯角问题,用到的知识点是俯角的定义、特殊角的三角函数值,关键是作出辅助线,构造直角三角形.22.(12分)如图,点C在以AB为直径的⊙O上,点D是半圆AB的中点,连接AC,BC,AD,BD.过点D作DH∥AB交CB的延长线于点H.(1)求证:直线DH是⊙O的切线;(2)若AB=10,BC=6,求AD,BH的长.【知识考点】圆周角定理;切线的判定与性质.【思路分析】(1)连接OD,根据圆周角定理得到∠AOD=AOB=90°,根据平行线的性质得到∠ODH=90°,于是得到结论;(2)连接CD,根据圆周角定理得到∠ADB=∠ACB=90°,推出△ABD是等腰直角三角形,得到AB=10,解直角三角形得到AC==8,求得∠CAD=∠DBH,根据平行线的性质得到∠BDH=∠OBD=45°,根据相似三角形的性质即可得到结论.【解题过程】(1)证明:连接OD,∵AB为⊙O的直径,点D是半圆AB的中点,∴∠AOD=AOB=90°,∵DH∥AB,∴∠ODH=90°,∴OD⊥DH,∴直线DH是⊙O的切线;(2)解:连接CD,∵AB为⊙O的直径,∴∠ADB=∠ACB=90°,∵点D是半圆AB的中点,∴=,∴AD=DB,∴△ABD是等腰直角三角形,∵AB=10,∴AD=10sin∠ABD=10sin45°=10×=5,∵AB=10,BC=6,∴AC==8,∵四边形ABCD是圆内接四边形,∴∠CAD+∠CBD=180°,∵∠DBH+∠CBD=180°,∴∠CAD=∠DBH,由(1)知∠AOD=90°,∠OBD=45°,∴∠ACD=45°,∵DH∥AB,∴∠BDH=∠OBD=45°,∴∠ACD=∠BDH,∴△ACD∽△BDH,∴,∴=,解得:BH=.【总结归纳】本题考查了切线的判定和性质,圆周角定理,圆内接四边形的性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.23.(12分)小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x支,购买费用为y元,请写出y 关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?【知识考点】分式方程的应用;一次函数的应用.【思路分析】(1)设超市B型画笔单价为a元,则A型画笔单价为(a﹣2)元.根据等量关系:第一次花60元买A型画笔的支数=第二次花100元买B型画笔的支数列出方程,求解即可;(2)根据超市给出的优惠方案,分x≤20与x>20两种情况进行讨论,利用售价=单价×数量分别列出y关于x的函数关系式;(3)将y=270分别代入(2)中所求的函数解析式,根据x的范围确定答案.【解题过程】解:(1)设超市B型画笔单价为a元,则A型画笔单价为(a﹣2)元.根据题意得,=,解得a=5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x﹣20)=4x+10.所以,y关于x的函数关系式为y=(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.【总结归纳】本题考查了一次函数的应用,分式方程的应用等知识,解题的关键是:(1)理解题意找到等量关系列出方程;(2)理解超市给出的优惠方案,进行分类讨论,得出函数关系式;(3)根据函数关系式中自变量的取值范围对答案进行取舍.24.(12分)问题探究:。
2022-2023学年山东省德州市陵城区七年级(上)期末数学试卷一、选择题(每小题4分,共48分)1.(4分)在0,1,﹣3,﹣2这四个数中,最小的数是()A.0B.1C.﹣2D.﹣32.(4分)与﹣|﹣5|的结果相等的是()A.5的倒数B.﹣5的相反数C.5的相反数D.53.(4分)下列是一元一次方程的是()A.3﹣2x B.6+2=8C.x2﹣49=0D.5x﹣7=3(x+1)4.(4分)体育课上体育委员为了让男生站成一条直线,他先让前两个男生站好不动,其他男生依次往后站,要求目视前方只能看到各自前面的一个同学的后脑勺,这种做法的数学依据是()A.两点确定一条直线B.两点之间线段最短C.线段有两个端点D.射线只有一个端点5.(4分)下列结论正确的是()A.a比﹣a大B.单项式的次数是5C.2m2+3m2=5m4D.x=1是方程2x﹣1=2﹣x的解6.(4分)已知|a|=5,|b|=8,且a<b,则a+b=()A.13或3B.﹣13或3C.13或﹣3D.﹣13或﹣3 7.(4分)若﹣a n+4b6与3a2b2m是同类项,则n m的值是()A.﹣8B.﹣6C.8D.98.(4分)下列说法正确的是()A.射线AB与射线BA表示同一条射线B.若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3C.一条射线把一个角分成两个角,这条射线叫这个角的平分线D.连接两点的线段叫做两点之间的距离9.(4分)下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若x=y,则=C.若x=y,则1﹣3x=1﹣3y D.若a=b,则ac=bc10.(4分)已知x=﹣1是方程2(x﹣3)+1=a﹣x的解,则a的值为()A.﹣8B.﹣7C.﹣1D.111.(4分)如图,把半径为1的圆放到数轴上,圆上一点A与表示﹣1的点重合,圆沿着数轴滚动一周,此时点A表示的数是()A.﹣1+2πB.﹣1+πC.﹣1+2π或﹣1﹣2πD.﹣1+π或﹣1﹣π12.(4分)当x=3时,多项式5ax5+4bx3+3cx﹣4的值为2022.求当x=﹣3时,多项式﹣5ax5﹣4bx3﹣3cx﹣4值是()A.2022B.﹣2022C.2030D.﹣2030二、填空题(每小题4分,共24分)13.(4分)已知实数x,y满足|x﹣5|+(y+6)2=0,则代数式(x+y)2022的值为.14.(4分)一滴墨水洒在一个数轴上,根据图中标出的数值.判断墨迹盖住的整数个数是.15.(4分)多项式12x|m|﹣(m﹣2)x+6是关于x的二次三项式,则m的平方的值是.16.(4分)如图,∠AOB=∠COD=90°,∠AOD=150°,则∠BOC=度.17.(4分)对单项式“0.9a”可以解释为:一个长方形的长是0.9米,宽是a米,这个长方形的面积是0.9a平方米.请你对“0.9a”再赋予一个含义:.18.(4分)当a=时,2(2a﹣3)的值比3(a+1)的值大1.三、解答题(7小题,共78分)19.计算:(1)(﹣17)+46+(﹣13)+(﹣16);(2);(3).(4)若一个角的补角为120°18',求这个角的余角.20.已知A=4x2+mx+2,B=3x﹣2y+1﹣nx2,且A﹣2B的值与x的取值无关.(1)求m,n的值;(2)求式子(3m+n)﹣(2m﹣n)的值.21.解方程(1)18(x﹣1)﹣2x=﹣2(2x﹣1);(2).22.薛老师坚持跑步锻炼身体,他以30min为基准,超过30min的部分计为“+”,不足30min 的部分计为“﹣”,将连续7天的跑步时间(单位:min)记录如下:星期一二三四五六日与30分钟+10﹣8+12﹣6+11+14﹣3差值(1)薛老师跑步时间最长的一天比最短的一天多跑几分钟?(2)若薛老师跑步的平均速度为0.1km/min,请计算这七天他共跑了多少km?23.为了打造社区居民幸福“生活圈”,新阳市准备在秀湖公园修建一个长为a米,宽为b 米的长方形休息区.其中半圆形是儿童游乐区,其余为绿化场地.该半圆形儿童游乐区的直径为b米.(1)半圆形儿童游乐区的面积为平方米,绿化场地的面积为平方米;(请用含a、b的式子表示,结果保留π)(2)若长方形休息区的长为60米,宽为30米.修建时,绿化场地每平方米花费20元,半圆形儿童游乐区每平方米花费50元.求修建长方形休息区的总花费.(结果保留π)24.如图,点A,B在数轴上表示的数分别为﹣4和+16,A,B两点间的距离可记为AB.(1)点C在数轴上A,B两点之间,且AC=BC,则点C对应的数是;(2)点C在数轴上A,B两点之间,且BC=3AC,求点C对应的数;(3)点C在数轴上,且AC+BC=30,求点C对应的数?25.已知,∠AOD=160°,OB,OM,ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD,∠AOB=40°,则∠BON=°;(2)如图2,若OM平分∠AOB,ON平分∠BOD,求∠MON的度数;(3)如图3,OC是∠AOD内的射线,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当射线OB在∠AOC内时,求∠MON的度数.2022-2023学年山东省德州市陵城区七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.(4分)在0,1,﹣3,﹣2这四个数中,最小的数是()A.0B.1C.﹣2D.﹣3【分析】在数轴上表示出各数.从左到右用“<”号连接起来即可.【解答】解:如图所示,故最小的是﹣3.故选:D.2.(4分)与﹣|﹣5|的结果相等的是()A.5的倒数B.﹣5的相反数C.5的相反数D.5【分析】先去绝对值符号,再对各选项进行分析即可.【解答】解:﹣|﹣5|=﹣5,A、5的倒数是,不符合题意;B、﹣5的相反数是5,不符合题意;C、5的相反数是﹣5,符合题意;D、5不符合题意.故选:C.3.(4分)下列是一元一次方程的是()A.3﹣2x B.6+2=8C.x2﹣49=0D.5x﹣7=3(x+1)【分析】根据一元一次方程的定义对各选项进行逐一分析即可.【解答】解:A、3﹣2x是代数式,不是方程,不符合题意;B、6+2=8是等式,不是方程,不符合题意;C、x2﹣49=0是一元二次方程,不符合题意;D、5x﹣7=3(x+1)是一元一次方程,符合题意.故选:D.4.(4分)体育课上体育委员为了让男生站成一条直线,他先让前两个男生站好不动,其他男生依次往后站,要求目视前方只能看到各自前面的一个同学的后脑勺,这种做法的数学依据是()A.两点确定一条直线B.两点之间线段最短C.线段有两个端点D.射线只有一个端点【分析】先让两个同学站好,实质是确定两定点,而由两点即可确定一条直线.【解答】解:由题意可知:两点确定一条直线,故选:A.5.(4分)下列结论正确的是()A.a比﹣a大B.单项式的次数是5C.2m2+3m2=5m4D.x=1是方程2x﹣1=2﹣x的解【分析】根据单项式的定义,合并同类项法则和一元一次方程的解的定义进行一一判断.【解答】解:A、当a≤0时,﹣a≥a,结论错误;B、单项式的次数是4,结论错误;C、2m2+3m2=5m2,结论错误;D、当x=1时,左边=2×1﹣1=1,右边=2﹣1=1,左边=右边,即x=1是方程2x﹣1=2﹣x的解,结论正确.故选:D.6.(4分)已知|a|=5,|b|=8,且a<b,则a+b=()A.13或3B.﹣13或3C.13或﹣3D.﹣13或﹣3【分析】根据题意得出a和b的值,然后得出结论即可.【解答】解:∵|a|=5,|b|=8,且a<b,∴a=5,b=8或a=﹣5,b=8,∴a+b=13或3,故选:A.7.(4分)若﹣a n+4b6与3a2b2m是同类项,则n m的值是()A.﹣8B.﹣6C.8D.9【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同即可求解.【解答】解:∵﹣a n+4b6与3a2b2m是同类项,∴n+4=2,2m=6,∴n=﹣2,m=3,∴n m=(﹣2)3=﹣8,故选:A.8.(4分)下列说法正确的是()A.射线AB与射线BA表示同一条射线B.若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3C.一条射线把一个角分成两个角,这条射线叫这个角的平分线D.连接两点的线段叫做两点之间的距离【分析】由同角的补角相等;端点、方向相同的射线是同一条射线;连接两点的线段长度叫两点的距离;角平分线定义,即可判断.【解答】解:A、射线AB与射线BA端点、方向不同,故A不符合题意;B、若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3,正确,故B符合题意;C、一条射线把一个角分成两个相等的角,这条射线叫这个角的平分线,故C不符合题意;D、连接两点的线段长度叫两点的距离,故D不符合题意.故选:B.9.(4分)下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若x=y,则=C.若x=y,则1﹣3x=1﹣3y D.若a=b,则ac=bc【分析】直接利用等式的基本性质进而判断得出即可.【解答】解:A、若x=y,则x+5=y+5,正确,不合题意;B、若x=y,则=,a≠0,故此选项错误,符合题意;C、若x=y,则1﹣3x=1﹣3y,正确,不合题意;D、若a=b,则ac=bc,正确,不合题意.故选:B.10.(4分)已知x=﹣1是方程2(x﹣3)+1=a﹣x的解,则a的值为()A.﹣8B.﹣7C.﹣1D.1【分析】把x=﹣1代入方程,可得关于a的一元一次方程,再解方程即可求出a的值.【解答】解:把x=﹣1代入方程得:2×(﹣4)+1=a+1,解得a=﹣8,故选:A.11.(4分)如图,把半径为1的圆放到数轴上,圆上一点A与表示﹣1的点重合,圆沿着数轴滚动一周,此时点A表示的数是()A.﹣1+2πB.﹣1+πC.﹣1+2π或﹣1﹣2πD.﹣1+π或﹣1﹣π【分析】先由圆的周长公式得出周长为2π,再分两种情况可得答案.【解答】解:∵半径为1的圆从数轴上表示﹣1的点沿着数轴滚动一周到达A点,∴A点与﹣1之间的距离是:2×π×1=2π,当A点在﹣1的左边时表示的数是﹣1﹣2π,当A点在﹣1的右边时表示的数是﹣1+2π,故选:C.12.(4分)当x=3时,多项式5ax5+4bx3+3cx﹣4的值为2022.求当x=﹣3时,多项式﹣5ax5﹣4bx3﹣3cx﹣4值是()A.2022B.﹣2022C.2030D.﹣2030【分析】根据题意列等式,化简整理后代入求值.【解答】解:5a×35+4b×33+3c×3﹣4=2022,∴5a×35+4b×33+3c×3=2026,当x=﹣3时,﹣5ax5﹣4bx3﹣3cx﹣4=﹣5a×(﹣3)5﹣4b×(﹣3)3﹣3c×(﹣3)﹣4=5a×35+4b×33+3c×3﹣4=2026﹣4=2022.故选:A.二、填空题(每小题4分,共24分)13.(4分)已知实数x,y满足|x﹣5|+(y+6)2=0,则代数式(x+y)2022的值为1.【分析】利用非负数的性质进而得出x,y的值,代入计算即可得出答案.【解答】解:∵|x﹣5|+(y+6)2=0,∴x﹣5=0,y+6=0,解得:x=5,y=﹣6,则(x+y)2020=(5﹣6)2022=1.故答案为:1.14.(4分)一滴墨水洒在一个数轴上,根据图中标出的数值.判断墨迹盖住的整数个数是16.【分析】根据实数在数轴上排列的特点判断出墨迹盖住的最左侧的整数和最右侧的整数,即可得到所有的被盖住的整数.【解答】解:因为墨迹最左端的实数是﹣5.5,最右端的实数是10.5.根据实数在数轴上的排列特点,可得墨迹遮盖部分最左侧的整数是﹣5,最右侧的整数是10.所以遮盖住的整数共有16个.故答案是:16.15.(4分)多项式12x|m|﹣(m﹣2)x+6是关于x的二次三项式,则m的平方的值是4.【分析】直接根据二次三项式列方程计算即可.【解答】解:∵多项式12x|m|﹣(m﹣2)x+6是关于x的二次三项式,∴|m|=2且m﹣2≠0,解得:m=﹣2,∴m2=4,故答案为:4.16.(4分)如图,∠AOB=∠COD=90°,∠AOD=150°,则∠BOC=30度.【分析】根据角的和差,可得∠AOC的度数,根据余角的性质,可得答案.【解答】解:由角的和差,得∠AOC=∠AOD﹣∠COD=150°﹣90°=60°.由余角的性质,得∠COB=90°﹣∠AOC=90°﹣60°=30°,故答案为:30°.17.(4分)对单项式“0.9a”可以解释为:一个长方形的长是0.9米,宽是a米,这个长方形的面积是0.9a平方米.请你对“0.9a”再赋予一个含义:0.9a可以表示铅笔0.9元一支,购买a支,一共需要花费0.9a元.【分析】0.9a可以表示铅笔0.9元一支,购买a支,一共需要花费0.9a元;只要符合实际情境的答案都可以.【解答】解:0.9a可以表示铅笔0.9元一支,购买a支,一共需要花费0.9a元,故答案为:0.9a可以表示铅笔0.9元一支,购买a支,一共需要花费0.9a元.18.(4分)当a=10时,2(2a﹣3)的值比3(a+1)的值大1.【分析】根据题意列出方程,求出方程的解即可得到a的值.【解答】解:根据题意,得:2(2a﹣3)﹣3(a+1)=1,去括号,得4a﹣6﹣3a﹣3=1,移项,得4a﹣3a=1+6+3,合并同类项,得a=10.故答案为:10.三、解答题(7小题,共78分)19.计算:(1)(﹣17)+46+(﹣13)+(﹣16);(2);(3).(4)若一个角的补角为120°18',求这个角的余角.【分析】(1)直接根据加法运算律计算即可;(2)先将除法转化为乘法,再计算即可;(3)先算乘方和绝对值,再算乘法,最后算加减;(4)设这个角为a,先求出a的度数,再求a的余角即可.【解答】解:(1)(﹣17)+46+(﹣13)+(﹣16)=(﹣17﹣13)+(46﹣16)=﹣30+30=0;(2)==;(3)==﹣1﹣2+4=1;(4)设这个角为a,则a=180°﹣120°18'=59°42',则a的余角为:90°﹣a=90°﹣59°42'=30°18'.20.已知A=4x2+mx+2,B=3x﹣2y+1﹣nx2,且A﹣2B的值与x的取值无关.(1)求m,n的值;(2)求式子(3m+n)﹣(2m﹣n)的值.【分析】(1)先将A=4x2+mx+2,B=3x﹣2y+1﹣nx2代入A﹣2B中,再根据去括号法则和合并同类项法则进行化简,最后根据A﹣2B的值与x的取值无关即可求解;(2)先将(3m+n)﹣(2m﹣n)进行化简,再将(1)中的m,n的值代入即可求解.【解答】解:(1)∵A=4x2+mx+2,B=3x﹣2y+1﹣nx2,∴A﹣2B=4x2+mx+2﹣2(3x﹣2y+1﹣nx2)=4x2+mx+2﹣6x+4y﹣2+2nx2=(4+2n)x2+(m﹣6)x+4y,∵A﹣2B的值与x的取值无关,∴4+2n=0,m﹣6=0,∴n=﹣2,m=6;(2)(3m+n)﹣(2m﹣n)=3m+n﹣2m+n=m+2n,∵n=﹣2,m=6,∴原式=6+2×(﹣2)=2.21.解方程(1)18(x﹣1)﹣2x=﹣2(2x﹣1);(2).【分析】(1)先去括号,再移项、合并同类项、系数化为1即可;(2)先去分母,再去括号、移项、合并同类项、系数化为1即可.【解答】解:(1)去括号得,18x﹣18﹣2x=﹣4x+2,移项得,18x﹣2x+4x=2+18,合并同类项得,20x=20,x的系数化为1得,x=1;(2)去分母得,2(3y﹣1)﹣20=5(5y﹣7)去括号得,6y﹣2﹣20=25y﹣35,移项得,6y﹣25y=﹣35+20+2,合并同类项得,﹣19y=﹣13,x的系数化为1得,y=.22.薛老师坚持跑步锻炼身体,他以30min为基准,超过30min的部分计为“+”,不足30min 的部分计为“﹣”,将连续7天的跑步时间(单位:min)记录如下:星期一二三四五六日与30分钟+10﹣8+12﹣6+11+14﹣3差值(1)薛老师跑步时间最长的一天比最短的一天多跑几分钟?(2)若薛老师跑步的平均速度为0.1km/min,请计算这七天他共跑了多少km?【分析】(1)正数值最大的是跑步时间最长,负数最小的是跑步时间最短的,相减求出时间差即可;(2)基准数乘7再加上一组正负数的和,求出跑步所用的总时间,再让总时间乘平均速度,求出结果.【解答】解:(1)14﹣(﹣8)=22(min),答:薛老师跑步时间最长的一天比最短的一天多跑22min.(2)30×7+(10﹣8+12﹣6+11+14﹣3)=240(min),240×0.1=24(km),答:薛老师这七天一共跑了24km.23.为了打造社区居民幸福“生活圈”,新阳市准备在秀湖公园修建一个长为a米,宽为b 米的长方形休息区.其中半圆形是儿童游乐区,其余为绿化场地.该半圆形儿童游乐区的直径为b米.(1)半圆形儿童游乐区的面积为b2平方米,绿化场地的面积为(ab﹣b2)平方米;(请用含a、b的式子表示,结果保留π)(2)若长方形休息区的长为60米,宽为30米.修建时,绿化场地每平方米花费20元,半圆形儿童游乐区每平方米花费50元.求修建长方形休息区的总花费.(结果保留π)【分析】(1)由圆的面积公式和长方形面积公式可得答案;(2)结合(1),把a=60米,b=30米代入可算得答案.【解答】解:(1)半圆形儿童游乐区的面积为π•()2=b2(平方米),绿化场地的面积为(ab﹣b2)平方米,故答案为:b2,(ab﹣b2);(2)根据题意得,a=60米,b=30米,∴50×b2+20×(ab﹣b2)=b2+20ab=×302+20×60×30=(3375π+36000)元,∴修建长方形休息区的总花费是(3375π+36000)元.24.如图,点A,B在数轴上表示的数分别为﹣4和+16,A,B两点间的距离可记为AB.(1)点C在数轴上A,B两点之间,且AC=BC,则点C对应的数是6;(2)点C在数轴上A,B两点之间,且BC=3AC,求点C对应的数;(3)点C在数轴上,且AC+BC=30,求点C对应的数?【分析】(1)根据AC=BC列出方程,解方程即可;(2)根据BC=4AC列出方程,解方程即可;(3)分C在A的左边或C在B的右边两种情况进行讨论,根据AC+BC=30列出方程即可求解.【解答】解:设点C对应的数为x.(1)根据题意得x﹣(4)=16﹣x,解得x=6.答:点C对应的数是6.故答案为:6;(2)根据题意得16﹣x=3[x﹣(﹣4)],解得x=1.答:点C对应的数是1.(3)设C表示的数为x,当C在A左侧时AC+BC=30,则﹣4﹣x+16﹣x=30,解得x=﹣9;当C在B右侧时,x﹣16+x﹣(﹣4)=30,解得x=21;综上,x为21或﹣9.25.已知,∠AOD=160°,OB,OM,ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD,∠AOB=40°,则∠BON=60°;(2)如图2,若OM平分∠AOB,ON平分∠BOD,求∠MON的度数;(3)如图3,OC是∠AOD内的射线,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当射线OB在∠AOC内时,求∠MON的度数.【分析】(1)根据角平分线的定义即可得到结论;(2)根据角平分线的定义求出∠BOM和∠BON,然后根据∠MON=∠BOM+∠BON代入数据进行计算即可得解;(3)设∠AOB=x,表示出∠BOD=160°﹣x,根据角平分线的定义表示出∠COM和∠BON,然后根据∠MON=∠COM+∠BON﹣∠BOC列式计算即可得解.【解答】解:(1)∵∠AOD=160°,∠AOB=40°,∴∠BOD=120°,∵ON平分∠BOD,∴∠BON=∠BOD=60°,故答案为:60;(2)∵ON平分∠BOD,OM平分∠AOB,∴∠BON=∠BOD,∠BOM=∠AOB,∵∠AOD=160°,∴∠MON=∠BON+∠BOM=∠BOD+∠AOB=∠AOD=80°;(3)设∠AOB=x,则∠BOD=160°﹣x,∵OM平分∠AOC,ON平分∠BOD,∴∠COM=∠AOC=(x+20°),∠BON=∠BOD=(160°﹣x),∴∠MON=∠COM+∠BON﹣∠BOC=(x+20°)+(160°﹣x)﹣20°=70°.。
德州市2019年初中学业水平测试数学模拟测试题3(含答案)1.观察下列一组数的排列: 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, ,那么第 2005 个数是 ( )A .1B .2C .3D .42.一个数的绝对值是5,则这个数可以是( )A .5B .-5C .D .5或-53.如图,在平面直角坐标系中,直线经过点,作轴于点,将绕点逆时针旋转得到.若点的坐标为,则点的坐标为( ) A . B . C . D .4.下列计算正确的是( )A B .C .=10 D5.如图,AB 是⊙O 的直径,CD 为弦,连结AD 、AC 、BC ,若∠CAB=65°则∠D 的度数为( ) A .65° B .40° C .25° D .35°6.方程2450x x --=经过配方后,其结果正确的是( )A .()221x -=B .()221x +=-C .()229x -=D .()229x +=7.已知a=|−30−42|,b=|−30|−|−42|,c=−30−|−42|,d=−|−30|−(−42),则a 、b 、c 、d 的大小顺序为( )A .d <c <b <aB .c <d <b <aC .b <d <c <aD .c <b <d <a8.如图,在菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于点F ,垂足为点E ,连接DF ,且∠CDF =24°,则∠DAB 等于A .100°B .104°C .105°D .110°9.下列乘法中,能运用平方差公式进行运算的是( )A .(﹣x ﹣y )(x+y )B .(2x ﹣y )(y ﹣2x )C .(1﹣12x )(﹣1﹣12x ) D .(3x+y )(x ﹣3y ) 10.将矩形ABCD 沿AE 折叠,得到如图所示的图形,已知∠CED /=55°,则∠BAD /的大小是( )A .30° B .35° C .45° D .60°11.由若干个相同的正方体组成的几何体,如图(1)所示,其左视图如图(2)所示,则这个几何体的俯视图为()A.B.C.D.12.如图,由AD∥BC可以得到的是()A.∠1=∠2B.∠3+∠4=90°C.∠DAB+∠ABC=180°D.∠ABC+∠BCD=180°13.抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于正半轴C点,且AC=20,BC=15,∠ACB=90°,则此抛物线的解析式为__________________________________.14.如果一个多边形的每一个内角都是120°,那么这个多边形是____.15.在比例尺是20:1的图纸上量得一个零件的直径是4厘米,这个零件直径的实际长度是(_________)毫米。
数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前山东省德州市2017年初中学业水平考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2-的倒数是( )A .12-B .12C .2-D .2 2.下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD 3.2016年,我市“全面改薄”和解决“大班额”工程成绩突出,两项工程累计开工面积达477万米,各项指标均居全省前列.477万用科学记数法表示正确的是( )A .54.7710⨯B .547.710⨯C .64.7710⨯D .60.47710⨯4.如图,两个等直径圆柱构成如图所示的“T ”形管道,则其俯视图正确的是 ( )(第4题)ABCD5.下列运算正确的是( ) A .22()m m a a = B .33(2)2a a =C .3515a a a --=D .352a a a --÷= 6.该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是( )A .平均数B .方差C .众数D .中位数7.下列函数中,对于任意实数1x ,2x ,当12x x >时,满足12y y <的是 ( )A .32y x =-+B .21y x =+C .221y x =+D .1y x=- 8.不等式组293,1213x x x +⎧⎪+⎨-⎪⎩≥>的解集是( )A .3x -≥B .34x -≤<C .32x -≤<D .4x >9.公式0L L KP =+表示当重力为P 的物体作用在弹簧上时弹簧的长度.0L 代表弹簧的初始长度,用厘米(cm )表示,K 表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm )表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是 ( )A .100.5L P =+B .105L P =+C .800.5L P =+D .805L P =+10.若某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料.若设第一次买了x 本资料,列方程正确的是( )A .240120420x x -=- B .240120420x x -=+ C .120240420x x -=-D .120240420x x -=+11.如图放置的两个正方形,大正方形ABCD 边长为a ,小正方形CEFG 边长为()b a b >,点M 在BC 边上,且BM b =.连接AM ,MF ,MF 交CG 于点P ,将ABM △绕点A 旋转至ADN △,将MEF △绕点F 旋转至NGF △. 给出以下5个结论:①MAD AND∠=∠;②2bCP ba=-;③ABM NGF △≌△;④22AMFN S a b =+四边形;⑤A ,M ,P ,D 四点共圆. 其中正确的个数是( )A .2B .3C .4D .512.观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页) 形,挖去中间的一个小三角形(如图1);对剩下的3个小三角形再分别重复以上做法,……将这种做法继续下去(如图2、图3……),则图6中挖去三角形的个数为( )A .121B .362C .364D .729第Ⅱ卷(非选择题 共84分)二、填空题(本大题共5小题,每小题4分,共20分.) 13.= .14.如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法,其理由是 .15.方程3(1)2(1)x x x -=-的根为 .16.淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是 .17.某景区修建一栋复古建筑,其窗户设计如图所示.O 的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点),与左右两边相交(F ,G 为其中两个交点).图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m ,根据设计要求,若45EOF ∠=︒,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为 .三、解答题(本大题共7小题,共64分.解答应写出必要的文字说明、证明过程或演算步骤)18.(本小题满分6分)先化简,在求值:222442342a a a a a a -+-÷--+,其中72a =.19.(本小题满分8分)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分.为了解中学生在假期使用手机的情况(选项:A .和同学亲友聊天;B .学习;C .购物;D .游戏;E .其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调査,得到如: 根据以上信息解答下列问题: (1)这次被调查的学生有多少人?(2)求表中m ,n ,p 的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人.并根据以上调査结果,就中学生如何合理使用手机给出你的一条建议.20.(本小题满分8分)如图,已知Rt ABC △,90C ∠=︒,D 为BC 的中点.以AC 为直径的O 交AB 于点E .(1)求证:DE 是O 的切线.(2)若:1:2AE EB =,6BC =,求AE 的长.21.(本小题满分10分)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第5页(共16页) 数学试卷 第6页(共16页)如图所示,某公路检测中心在一事故多发地带安装了一个测速仪器,检测点设在距离公路10m 的A 处,测得一辆汽车从B 处行驶到C 处所用的时间为0.9s .已知30B ∠=︒,45C ∠=︒.(1)求B ,C 之间的距离.(保留根号)(2)如果此地限速为80km/h ,那么这辆汽车是否超速?请说明理由.(1.71.4)22.(本小题满分10分)随着新农村的建设和旧城的改造,我们的家园越来越美丽.小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高2m 的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,水柱落地处离池中心3m . (1)请你建立适当的直角坐标系,并求出水柱抛物线的函数解析式. (2)求出水柱的最大高度.23.(本小题满分10分)如图1,在矩形纸片ABCD 中,3cm AB =,5cm,AD =折叠纸片使点B 落在边AD 上的点E 处,折痕为PQ .过点E 作EF AB ∥交PQ 于F ,连接BF .(1)求证:四边形BFEP 为菱形.(2)当点E 在AD 边上移动时,折痕的端点P ,Q 也随着移动. ①当点Q 与点C 重合时(如图2),求菱形BFEP 的边长.②若限定P ,Q 分别在BA ,BC 上移动,求出点E 在边AD 上移动的最大距离.24.(本小题满分12分)有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数1y x k=与()0ky k x=≠的图象性质. 小明根据学习函数的经验,对函数1y x k=与k y x =,当0k >时的图象性质进行了探究.下面是小明的探究过程: (1)如图所示,设函数1y x k=与k y x =图像的交点为A ,B .已知A 的坐标为(),1k --,则B 点的坐标为 .(2)若P 点为第一象限内双曲线上不同于点B 的任意一点.①设直线PA 交x 轴于点M ,直线PB 交x 轴于点N . 求证:PM PN =. 证明过程如下:设(,)kP m m,直线PA 的解析式为(0)y ax b a =+≠. 则1,.ka b k ma b m -+=-⎧⎪⎨+=⎪⎩解得a b =⎧⎨=⎩, . ∴直线PA 的解析式为 .请你把上面的解答过程补充完整,并完成剩余的证明.②当P 点坐标为(1,)(1)k k ≠时,判断PAB △的形状,并用k 表示出PAB △的面积.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共16页) 数学试卷 第8页(共16页)山东省德州市2016年初中毕业学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】2的相反数是2-,故选C .【提示】直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案. 【考点】相反数 2.【答案】D【解析】合并同类项系数相加字母及指数不变,故A 正确;幂的乘方底数不变指数相乘,故B 正确;同底数幂的乘法底数不变指数相加,故C 正确;同底数幂的除法底数不变指数相减,故D 错误,故选D .【考点】合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方 3.【答案】D【解析】6408 4.0810=⨯万.【提示】科学记数法的表示形式为n10a ⨯的形式,其中11|a |0≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【考点】科学记数法表示较大的数 4.【答案】A【解析】由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A 选项正确,故选A .【提示】根据各个几何体的三视图的图形易求解. 【考点】简单几何体的三视图 5.【答案】C【解析】为了审核书稿中的错别字,应选择全面调查,A 错误;为了了解春节联欢晚会的收视率,选择抽样调查,B 错误;“射击运动员射击一次,命中靶心”是随机事件,C 正确;“经过由交通信号灯的路口,遇到红灯”是随机事件,D 错误.【考点】必然事件,不可能事件,随机事件的概率【解析】100个数据,中间的两个数为第50个数和第51个数,而第50个数和第51个数都落在第三组,所以参加社团活动时间的中位数所在的范围为6~8(小时),故选B . 【考点】中位数,频数 9.【答案】D【解析】平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,则平移变换是“等距变换”;旋转的性质:旋转前、后的图形全等,则旋转变换是“等距变换”;轴对称的性质:成轴对称的两个图形全等,则轴对称变换是“等距变换”;位似变换的性质:位似变换的两个图形是相似形,则位似变换不一定是等距变换.【考点】平移,旋转变换,轴对称变换,位似变换 10.【答案】B【解析】在2y x =-中,20k =-<,所以y 的值随x 的值增大而减小;在31y x =-中,30k =>,所以y 的值随x 的值增大而增大;在1y x=中,10k =>,所以y 的值随x 的值增大而减小;二次函数2y x =,当0x <时,y 的值随x 的值增大而减小;当0x >时,y 的值随x 的值增大而增大,故选B .【考点】反比例函数的性质,一次函数的性质,反比例函数的性质和二次函数的性质 11.【答案】C【解析】根据勾股定理得:,则该直角三角形能容纳的圆形(内切圆)半径8151732r +-==(步),即直径为6步,故选C . 【考点】三角形的内切圆与圆心 12.【答案】C数学试卷 第9页(共16页) 数学试卷 第10页(共16页)()AM BC BM AM BC =-+=()22221tan ,αα=+)()2,A M B C A M A M-+-④正确,故选C .【解析】如图,连接OM 交AB 于点C ,连接OA ,OB ,由题意知,OM AB ⊥,12OC MC ==,在Rt AOC △中, 111,cos 22OC OA OC AOC AC OA ==∴∠==== ,,2120,AOB AOC ∴∠=∠=︒则弓形ABM 的面积=扇形OAB的面积-三角形AOB 的面积212011=3602π⨯-123π⨯=-,所以阴影面积=半圆面积-两倍的弓形ABM 的面积2112236πππ⎛=⨯-=- ⎝⎭.【考点】扇形面积的计算,图形的翻折变换17.【答案】()100810092,2 【解析】观察,发现规律,()()()()12341,2,2,2,2,4,4,4,A A A A ----…()()()2+1A -2,22,20171008∴-=n nn 21,⨯+所以2017A 的坐标为()100810092,2.【考点】一次函数图象上点的坐标特征,规律型中坐标的变【解析】()5231x x +≥-,解得:2x ≥-2512x x +->-,解得:4x < 22,x x S S < 乙乙甲甲>数学试卷 第11页(共16页) 数学试卷 第12页(共16页)所以甲的平均成绩高于乙,且甲的成绩更稳定,由表格可知,所有等可能结果共有25种,其中两个人的成绩都大于80分有12种,所以抽到的两个人的成绩都大于80分的概率为1225.45,.,,AE BAC ABF CBF OB OC OE BC ∠∴∠=∠=∴⊥ 平分 O 23.【答案】(1)如图1中,连接BD .∵点E 、H 分别为边AB ,DA 的中点,1,2EH BD EH BD ∴=∥.∵点F ,G 分别为边BC ,CD 的中点,1,2FG BD FG BD ∴=∥.∴中点四边形EFGH 是平行四边形. (2)四边形EFGH 是菱形. 证明:如图2中,连接AC ,BD .数学试卷 第13页(共16页) 数学试卷 第14页(共16页)APB CPD ∠=∠ ,+=APB APD CPD APD ∴∠∠∠+∠,即APC BPD ∠=∠. 在APC △和BPD △中,,,,AP PB PC PD APC BPD =⎧⎪=⎨⎪∠=∠⎩.APC BPD ∴∽△△AC BD ∴=.又点E ,F ,G 分别为边AB ,BC ,CD 的中点,11,22EF AC FG BD ∴==,3,1,OB OC BE DE ====BOC ∴△与BED △都是等腰直角三角形,45,90,OBC DBE CBD ∴∠=∠=︒∠=︒∴BCD △是直角三角形.(3)()()0,3,C 3,0,B -3y x ∴=-为直线BC 解析式.因为点P 的横坐标为t ,PM x ⊥轴,所以点M 的横坐标为t ,因为点P 在直线BC 上,点M 在抛物线上,所以()()22,3,M ,23P t t t t t ---过点Q 作QF PM ⊥,所以PQF △是等腰直角三角形,1.PQ QF ==讨论:如图2,当点P 在点M 上方时,即03t <<时,2t 3PM t =-+213t 22S t=-+ 如图3,当点P 在点M 下方时,即0t <或3t >时,()2t 233,PM t t =----213t .22=-S t【考点】二次函数,一元二次方程的解法待定系数法求函数解析式,等腰直角三角形的性质和判定数学试卷第15页(共16页)数学试卷第16页(共16页)数学试卷第17页(共18页)数学试卷第18页(共18页)。
2020年初中学业水平考试数学答题注意事项1、本试卷共6页,满分150分,考试试卷150分钟。
2、答案全部写在答题卡上,写在本试卷上无效。
3、答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其它答案,答非选择题必须用0.5毫米黑色墨水签字笔,在答题卡上对应题号的答题区域书写答案,注意不要答错位置,也不要超界。
4、作图必须用2B铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共8小题,每小题3分,共24分。
在每小题所给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.2019的相反数是11A. B.-2019 C.- D.-2019201920192.下列运算正确的是A.a2+a3=a5B.(a2)3=a5C.a6÷a3=a2D.(ab2)3=a3b63.一组数据:2、4、4、3、7、7,则这组数据的中位数是A.3B. 3.5C.4D.74.一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等A.105°B.100°C.75°D.60°5.一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是A.20πB.15πC.12πD.9π6.不等式x一1≤2的非负整数解有A.1个B.2个C.3个D.4个7.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是A.63—πB.63-2πC.63+πD.3+2π( 计算:( )-1 -(π-1)0 + 1 - 3 )÷8. 如图在平面直角坐标系 xoy 中,菱形 ABCD 的顶点 A 与原点 o 重合,顶点 B 落在 x 轴的k正半轴上,对角线 AC 、BD 交于点 M ,点 D 、M 恰好都在反比例函数 y= (x>0)的图像上xAC,则 的值为BDA.2B. 3C. 2D. 5二、填空题, 本大题共 10 小题,每小题 3 分,共 30 分,不需写出解答过程,请把答案直 接填写在答题卡相应位置上)9. 实数 4 的算术平方根为▲ 10. 分解因式 a 2-2a=▲ 11. 宿迁近年来经济快速发展,2018 年 GDP 约达到 275 000 000 000 元。
德州市2016年初中学业水平考试说明数学一、考试范围数学学科考试以教育部颁布的《义务教育数学课程标准(2011年版)》为依据,以其规定的“课程目标”与“课程内容”为考试范围。
二、考试内容和要求数学学科的考试内容是指《义务教育数学课程标准(2011年版)》中所规定的课程内容。
(一)考查目标与要求数学学科考试按照“注重基础,能力立意”的原则,考查初中数学的基础知识、基本技能、基本思想和基本活动经验,考查抽象概括能力、运算能力、推理能力、分析和解决问题的能力、空间观念、几何直观、数据分析能力、模型思想、应用意识和创新意识等。
1.“四基”要求注重对基础知识的考查。
全面考查基础知识,突出对支撑学科体系的重点知识的考查,注重知识的整体性和知识之间的内在联系。
注重对基本技能的考查。
考查技能操作的程序与步骤及其中蕴含的原理。
注重对基本思想的考查。
以基础知识为载体,考查对知识本质及规律的理性认识。
注重对基本活动经验的考查。
考查在阅读、观察、实验、计算、推理、验证等活动过程中所积累的学习与应用基础知识、基本技能、基本思想方法的经验和思维的经验。
2.能力要求对数学能力的考查,以考查思维为核心,包括对数学知识、数学知识形成与发展过程、数学知识灵活应用的考查,注重全面,突出重点,适度综合,体现应用。
将对抽象概括能力、运算能力、推理能力、分析和解决问题的能力的考查贯穿于全卷。
抽象概括能力主要是指在不同问题的情境下,通过对具体对象的抽象概括,发现所研究对象的本质特征;从给定信息中概括出结论,将其应用于所研究的问题中。
运算能力主要是指理解运算的算理;根据法则和运算律进行正确的运算;根据特定的问题,分析运算条件,探究、设计和选择合理、简洁的运算途径,解决问题;根据需要进行估算。
推理能力包括合情推理能力和演绎推理能力。
合情推理能力是指根据问题的已知,结合已有的事实,凭借所积累的经验,利用归纳与类比等方法,推断出问题的某一特定结论;演绎推理能力是指根据问题的已知、已有的事实和确定的规则,进行逻辑思考,推导出未知命题的正确性。
一般地,运用合情推理进行探索,运用演绎推理进行证明。
分析与解决问题的能力主要是指阅读、理解问题,根据问题背景,运用所学知识、思想方法和积累的活动经验,获取有效信息,选择恰当方法,形成解决问题的思路,并用数学语言表达解决问题的过程。
空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出实物;判断物体的方位和物体间的位置关系;描述图形的运动与变化;依据语言的描述画出图形。
几何直观主要是指利用图形描述、分析问题,探索、发现解决问题的思路,并预测结果。
借助几何直观使复杂问题简明、形象。
数据分析观念主要是指整理、分析数据;从大量数据中提取有效信息,并作出判断;根据问题的实际背景,选择合适的统计方法,解决实际问题。
模型思想与应用意识主要是指有意识的利用数学概念、原理和方法解决实际问题;根据具体问题,抽象出数学问题,将问题中的数量关系、位置关系和变化规律用方程(组)、不等式、函数、几何图形、统计图表等进行表示,并求出检验结果,验证模型的合理性。
创新意识主要是指从数学角度发现和提出问题,运用所学的知识、数学思想和积累的活动经验,进行独立思考,分析问题,选择有效方法,创造性的解决问题。
(二)考试内容的知识要求层次《数学课程标准》阐述的教学要求具体分以下几个层次知识技能要求:(1)了解:从具体实例中知道或举例说明对象的有关特征;根据对象的特征,从具体情境中辨认或者举例说明对象。
(2)理解:描述对象特征和由来,阐述此对象与有关对象之间的区别和联系。
(3)掌握:在理解的基础上,把对象用于新的情境,解决有关的数学问题和简单的实际问题。
(4)运用:通过阅读、观察、实验、猜测、计算、推理、验证等数学活动,理解或提出问题,寻求解决问题的思路;综合使用已掌握的对象,选择或创造适当的方法,实现对数学问题或实际问题的分析与解决。
过程性要求:(5)经历:在特定的数学活动中,获得一些感性认识。
(6)体验:参与特定的数学活动,主动认识或验证对象的特征,获得一些经验。
(7)探索:独立或与他人合作参与特定的数学活动,理解或提出问题,寻求解决问题的思路,发现对象的特征及其与相关对象的区别和联系,获得一定的理性认识。
这些要求从不同角度表明了初中数学学业水平考试要求的层次性。
(三)具体内容与考试要求细目列表(四)初高衔接内容1.因式分解:十字相乘法因式分解。
十字相乘法在初中已经不作要求了,但是到了高中,教材中却多处要用到。
2.二次根式中对分母有理化。
这是初中不作要求的内容,但是分子、分母有理化却是高中函数、不等式常用的解题技巧。
3.根与系数的关系(韦达定理)(1)理解一元二次方程的根的判别式,并能用判别式判定根的情况; (2)掌握一元二次方程根与系数的关系,并能熟练运用。
4.会解可以化为一元二次方程的分式方程。
5. 二次函数二次函数的图象和性质是初高中衔接中最重要的内容,二次函数知识的生长点在初中,而发展点在高中。
6.图象的平移变换。
理解函数2y ax =与2()y a x h k =-+图象之间的变换关系。
三、试卷结构(一)试卷分数、考试时间 试卷满分120分 考试时间120分钟(二)试卷的题型及分数分配 1.选择题:12小题,占分36分; 2.填空题:5小题,占分20分;3.解答题:7个小题,占分64分.解答题包括计算题、证明题、应用性问题、实践操作题、拓展探究题等不同形式。
(三)试卷内容结构1.各能力层级试题比例:了解约占10%,理解约占20%,掌握约占60%,灵活运用约占10%。
2.各知识板块试题比例:数与代数约占45%,图形与几何约占40%,统计与概率约占15%。
(四)试卷难度结构试卷有较易试题、中等难度试题和较难试题组成,总体难度适中。
容易题约占50%,中档题约占30%,较难题约占20%。
四、题型示例(一)选择题示例1 如图,在□ABCD 中,AC 平分∠DAB ,AB = 3, 则□ABCD 的周长为A .6B .9C .12D .15【答案】C.【说明】本题属于“图形与几何”板块内容,能力要求为“掌握”层级,预估难度为0.80~0.90,为容易题.示例2函数y 的自变量x 的取值范围是( ) A .0x ¹B .1x ?C .1x ?且0x ¹D .0x >且1x ?【答案】C.【说明】本题属于“数与代数”板块内容,能力要求为“掌握”层级,预估难度为0.70~0.80,为容易题.示例3一项“过关游戏”规定:在过第n 关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n 次,若n 次抛掷所出现的点数之和大于254n ,则算过关;否则不算过关.则能过第二关的概率是 A .1318 B .518 C .14 D .19【答案】A.【说明】本题属于“统计与概率”板块内容,能力要求为“掌握”层级,预估难度为0.60~0.70,为中档题. (二)填空题【示例4】方程x 2+1=2的解是 . 【答案】1x =?.【说明】本题属于“数与代数”板块内容,能力要求为“掌握”层级,预估难度为0.80~0.90,为容易题.ABCD(例1图)【示例5】甲乙两种水稻实验品种连续5年的平均单位面积产量如下(单位:吨/公顷):经计算,x 甲=10,x 乙=10,试根据这组数据估计__________种水稻品种的产量比较稳定. 【答案】甲.【说明】本题属于“统计与概率”板块内容,能力要求为“掌握”层级,预估难度为0.70~0.80,为容易题.【示例6】如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上.下列结论:① CE =CF ;②∠AEB =75°;③BE +DF =EF ;④S 正方形ABCD=2 . 其中正确的序号是______________.(把你认为正确的都填上) 【答案】①②④.【说明】本题属于“图形与几何”板块内容,能力要求 为“灵活应用”层级,预估难度为0.40~0.50,为较难题.【示例7】如图,抛物线y =x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3…A n ,….将抛物线y =x 2沿直线L :y =x 向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M 1,M 2,M 3,…M n ,…都在直线L :y =x 上; ②抛物线依次经过点A 1,A 2,A 3…A n ,…. 则顶点M 2014的坐标为_____________.AB CD EF例7图【答案】(4027,4027)【说明】本题属于“数与代数”“图形与几何”板块内容,能力要求为“掌握”层级,过程要求为“体验”层次,预估难度为0.40~0.50,为较难题. (三)解答题【示例8】 计算: 0(8)-+3 tan 30°13--.【答案】原式=151333=. 【说明】本题属于“数与代数”板块内容,能力要求为“掌握”层级,预估难度为0.80~0.90,为容易题.【示例9】 如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC 为10 m ,测角仪的高度CD 为1.5 m ,测得树顶A 的仰角为33°.求树的高度AB .(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)【答案】略【说明】本题属于“图形与变换”内容在求解实际问题中的应用,能力要求为“掌握”层级,预估难度为0.70~0.80,为容易题.【示例10】如图,⊙O 的直径AB 为10cm ,弦BC 为5cm ,D 、E 分别是∠ACB 的平分线与⊙O ,AB 的交点,P 为AB 延长线上一点,且PC =PE . (1)求AC 、AD 的长;(2)试判断直线PC 与⊙O 的位置关系,并说明理由.CD B A例10图 33°【答案】略【说明】本题属于“图形与几何”板块内容,能力要求为“掌握”层级,预估难度为0.50~0.60,为中档题.【示例11】在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)用列表法表示出(x,y)的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数4yx=的图象上的概率;(3)求小明、小华各取一次小球所确定的数x、y满足4yx<的概率.【答案】略【说明】本题属于“统计与概率”与“数与代数”板块内容综合题,能力要求为“掌握”层级,预估难度为0.60~0.70,为中档题.【示例12】问题背景:如图1:在四边形ABC中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD 上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【答案】略【说明】本题属于“图形与几何”板块内容综合题,能力要求为“掌握”层级,过程性要求为“探索”层次,预估难度为0.40~0.50,为较难题.【示例13】如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.【答案】略【说明】本题属于“数与代数”和“空间与图形”两板块内容综合题,能力要求为“灵活运用”层级,过程性要求为“探索”层次,预估难度为0.20~0.40,为难题.五、样题德州市二〇一五年初中学业水平考试数学试题本试题分选择题36分;非选择题84分;全卷满分120分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并收回. 注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的县(市、区)、学校、姓名、准考证号填写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.12-的结果是 A .12-B .12C .-2D .2 2.某几何体的三视图如图所示,则此几何体是 A .圆锥 B .圆柱 C .长方体 D .四棱柱3. 2014年德州市农村中小学校舍标准化工程开工学校项目356个,开工面积56.2万平方米,开工面积量创历年最高.56.2万平方米用科学记数法表示正确的是A .45.6210⨯m 2B .456.210⨯ m 2C .55.6210⨯ m 2D .30.56210⨯ m 2 4.下列运算正确的是 AB . 326b b b ?C .495a a -=-D .()3236ab a b =5.一组数1,1,2,x ,5,y ,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为A .8B .9C .13D .156.如图,在△ABC 中,∠CAB =65°.将△ABC 在平面内绕点A 旋转到△AB C ''的位置,使第2题图′得CC '∥AB ,则旋转角的度数为 A .35° B .40° C .50°D .65°7.若一元二次方程220x x a ++=有实数解,则a 的取值范围是 A .a <1 B .a ≤4 C . a ≤1 D . a ≥ 18.下列命题中,真命题的个数是 ①若112x -<<-,则121x-<<-;②若12x -≤≤,则214x ≤≤; ③凸多边形的外角和为360°;④三角形中,若∠A +∠B =90°,则sin A =cos B . A .4 B .3 C .2 D .19.如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4∶5.那么所需扇形铁皮的圆心角应为 A .288° B .144° C .216° D .120°10.经过某十字路口的汽车,可能直行,也可能左转或者右转.如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是 A .74 B .94 C .92D .1911.如图,AD 是△ABC 的角平分线,DE ,DF 分别是△ABD 和△ACD 的高.得到下面四个结论:①OA =OD ;②AD ⊥EF ;③当∠A =90°时,四边形AEDF 是正方形; ④2222AE DF AF DE +=+.上述结论中正确的是 A .②③ B .②④ C .①②③ D .②③④12.如图,平面直角坐标系中,A 点坐标为(2,2),点P (m ,n )在直线2y x =-+上运动,设△APO 的面积为S ,则下面能够反映S 与m 的函数关系的图象是 第11题图ABCEF O第9题图第Ⅱ卷(非选择题 共84分)二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.计算22-+0=_______.14.方程211x x x-=- 的解为x =_______. 15.在射击比赛中,某运动员的6次射击成绩(单位:环)为:7,8,10,8,9,6﹒计算这组数据的方差为_________.16.如图,某建筑物BC 上有一旗杆AB ,从与BC 相距38m 的D 处观测旗杆顶部A 的仰角为50º,观测旗杆底部B 的仰角为45º,则旗杆的高度约为________m .(结果精确到0.1m .参考数据:sin50º≈0.77,cos50º≈0.64,tan50º≈1.19)17. 如图1,四边形ABCD 中,AB ∥CD ,AD DC CB a ===,60A ??.取AB 的中点1A ,连接1A C ,再分别取1A C 、BC 的中点1D ,1C ,连接11D C ,得到四边形111A BC D ,如图2;同样方法操作得到四边形222A BC D ,如图3;…,如此进行下去,则四边形n n n A BC D 的面积为 .三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分6分)先化简,再求值:2222()a b ab b a a a--÷- ,其中2a =+,2b =- 19. (本题满分8分)2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行…图1图2图3第17题图C 2D 2 A 2 DC B AA 1 D 1C 1C 1D 1A 1 AB C DD C BAABDC第16题图居民阶梯水价制度.小明为了解市政府调整水价方案的社会反响,随机访问了自己居住小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1、图2.小明发现每月每户的用水量在5m3—35 m3之间,有8户居民对用水价格调价涨幅抱无所谓,不会考虑用水方式的改变.根据小明绘制的图表和发现的信息,完成下列问题:(1)n=_______,小明调查了_______户居民,并补全图1;(2)每月每户用水量的中位数和众数分别落在什么范围?(3)如果小明所在小区有1800户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?20.(本题满分8分)如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,BE∥AC,AE∥OB.(1)求证:四边形AEBD是菱形;(2)如果OA=3,OC=2,求出经过点E21.(本题满分10分)如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断 ABC的形状:______________;(2)试探究线段P A,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于AB的什么位置时,四边形APBC的面积最大?求出最大面积.视调价涨幅采取相应的用水方式改变不管调价涨幅如何都要改变用水方式对调价涨幅抱无所谓,不会考虑用水方式改变图2120°30°第20题图n°图1每月每户用水量(m3)第19题图22. (本题满分10分)某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示. (1)根据图象求y 与x 的函数关系式;(2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?23. (本题满分10分) (1)问题如图1,在四边形ABCD 中,点P 为AB 上一点, 90DPC A B ∠=∠=∠=︒. 求证:AD ·BC =AP ·BP . (2)探究如图2,在四边形ABCD 中,点P 为AB 上一点,当DPC A B θ∠=∠=∠=时,上述结论是否依然成立?说明理由. (3)应用请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB =6,AD =BD =5, 点P 以每秒1个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠CPD =∠A .设点P 的运动时间为t (秒),当以D 为圆心, DC 为半径的圆与AB 相切时,求t 的值.24. (本题满分12分)已知抛物线 y =-mx 2+4x +2m 与x 轴交于点A (α,0)、B(β,0),且112αβ+=-.(1)求抛物线的解析式.第22题图/千克)图1图2 PACBD图3 P DACB第23题图(2)抛物线的对称轴为l ,与y 轴的交点为C ,顶点为D ,点C 关于l 对称点为E .是否存在 x 轴上的点M 、y 轴上的点N ,使四边形DNME 的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点D 、E 、P 、Q 为顶点的四边形为平行四边形时,求点P 的坐标.数学试题参考解答及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共5小题,每小题4分,共20分) 13.54 ;14.2;15.53; 16.7.2;172 .三、解答题:(本大题共7小题, 共64分) 18. (本题满分6分)解:原式=22222()ab a ab b a a--+÷ =2()()()a b a b aa ab +-⋅- …………………………………………2分=a ba b+-. …………………………………………4分 ∵2a =+,2b =∴4a b += ,a b -= …………………………………………5分原式=3. …………………………………………6分 19.(本题满分8分)解:(1)210 96 …………………………………………2分 补全图1为:…………………………………………4分每月每户用水量(m 3)5(2)中位数落在15—20之间,众数落在10—15之间;………………………6分 (3)视调价涨幅采取相应的用水方式改变的户数为:1800×210360=1050(户). ……………………………………………8分 20 .(本题满分8分)(1) 证明:∵ BE ∥AC ,AE ∥OB ,∴四边形AEBD 是平行四边形. …………………………………………2分 又∵四边形OABC 是矩形, ∴OB =AC ,且互相平分, ∴DA =DB .∴四边形AEBD 是菱形. …………………………………………4分 (2)连接DE ,交AB 于点F . 由(1)四边形AEBD 是菱形,∴AB 与DE 互相垂直平分.………………………5分 又∵OA =3,OC =2, ∴EF =DF =12OA =32 ,AF =12AB =1 . ∴E 点坐标为(92,1).…………………………………………7分设反比例函数解析式为ky x= ,把点E (92 ,1)代入得92k =.∴所求的反比例函数解析式为92y x=.…………………………………………8分21.(本题满分10分)解:(1)等边三角形.…………………………………………2分 (2)P A +PB =PC . …………………………………………3分证明:如图1,在PC 上截取PD =P A ,连接AD .……………………………4分 ∵∠APC =60°,∴△P AD 是等边三角形.∴P A =AD ,∠P AD =60°. 又∵∠BAC =60°,∴∠P AB =∠DAC . ∵AB =AC ,∴△P AB ≌△DAC .…………………………………………6分 ∴PB =DC . ∵PD +DC =PC ,∴P A +PB =PC .…………………………………………7分(3)当点P 为AB 的中点时,四边形APBC 面积最大.…………………8分 理由如下:如图2,过点P 作PE ⊥AB ,垂足为E , 过点C 作CF ⊥AB ,垂足为F ,∵12PAB S AB PE ∆=⋅, 12ABC S AB CF ∆=⋅.∴S 四边形APBC =1()2AB PE CF + .∵当点P 为AB 的中点时,PE +CF =PC , PC 为⊙O 直径, ∴四边形APBC 面积最大. 又∵⊙O 的半径为1,∴其内接正三角形的边长AB.………………………………………………9分 ∴S 四边形APBC=122⨯10分 22.(本题满分10分)解:(1)设y 与x 函数关系式为y =kx +b ,把点 (40,160),(120, 0)代入得,40160,1200.k b k b +=⎧⎨+=⎩………………………3分 解得 2,240.k b =-⎧⎨=⎩∴y 与x 函数关系式为y =-2x +240(40120x ≤≤ ).………………………5分 (2) 由题意,销售成本不超过3000元,得40(-2x +240)≤ 3000. 解不等式得,82.5x ≥.∴82.5120x ≤≤.………………………7分根据题意列方程得(x -40)(-2x +240)=2400.………………………8分图2/千克)即:216060000x x -+=.解得 160x = , 2100x =.………………………9分 ∵60<82.5,故舍去.∴销售单价应该定为100元.………………………10分 23. (本题满分10分) (1)证明:如图1 ∵∠DPC =∠A =∠B =90°, ∴∠ADP +∠A PD =90°. ∠BPC +∠APD =90°. ∴∠ADP =∠BPC ,∴△ADP ∽△ BPC .………………………………………………………1分 ∴AD APBP BC=. ∴AD ⋅BC =AP ⋅BP .………………………………………………………2分 (2)结论AD ⋅BC =AP ⋅BP 仍成立.理由:如图2,∵∠BPD =∠DPC +∠BPC ,又∵∠BPD =∠A +∠ADP , ∴∠A +∠ADP =∠DPC +∠BPC . ∵∠DPC =∠A =θ ,∴∠BPC =∠ADP .………………………………………3分 又∵∠A =∠B =θ,∴△ADP ∽△ BPC .………………………………………4分 ∴AD APBP BC=. ∴AD ⋅BC =AP ⋅BP .………………………………………5分 (3)如图3,过点D 作DE ⊥AB 于点E . ∵AD =BD =5,∴AE =BE =3,由勾股定理得DE =4. ………………………………………6分 ∵以D 为圆心,DC 为半径的圆与AB 相切, ∴DC =DE =4,图2ACB DD∴BC =5-4=1. 又∵AD =BD , ∴∠A =∠B .由已知,∠CPD =∠A , ∴∠DPC =∠A =∠B .由(1)、(2)的经验可知AD ⋅BC =AP ⋅BP . ………………………7分 又AP =t ,BP =6-t ,∴t (6-t )=5×1.…………………………………………………8分 解得t 1=1,t 2=5.∴t 的值为1秒或5秒.…………………………………………………10分 24.(本题满分12分)(1)由题意可知,α,β 是方程2420mx x m -++= 的两根,由根与系数的关系可得,α+β=4m,αβ=-2.………………………1分 ∵112αβ+=- ,∴2αβαβ+=- .即:422m =--. ∴m =1.………………………2分∴抛物线解析式为242y x x =-++. ………………………3分 (2) 存在x 轴,y 轴上的点M ,N ,使得四边形DNME 的周长最小. ∵2242(2)6y x x x =-++=--+,∴抛物线的对称轴l 为2x = ,顶点D 的坐标为(2,6).………………………4分 又抛物线与y 轴交点C 的坐标为(0,2),点E 与点C 关于l 对称, ∴E 点坐标为(4,2).作点D 关于y 轴的对称点D ′,作点E 关于x 轴的对称点E ′,…………………………5分 则D ′坐标为(-2,6),E ′坐标为(4,-2).连接D ′E ′,交x 轴于M ,交y 轴与N . 此时,四边形DNME 的周长最小为D ′E ′+DE .(如图1所示) 延长E ′E , D ′D 交于一点F ,在Rt △D ′E ′F 中,D ′F =6,E ′F =8.∴D ′E ′10= .…………………………6分设对称轴l 与CE 交于点G ,在Rt △DG E 中,DG =4,EG =2.∴DE= ∴四边形DNME 的周长的最小值为10+.…………………………8分(3)如图2, P 为抛物线上的点,过P 作PH ⊥x 轴,垂足为H .若以点D 、E 、P 、Q 为顶点的四边形为平行四边形,则△PHQ ≌△DGE .∴PH =DG =4. …………………………9分 即y =4.∴当y =4时,242x x -++ =4,解得2x =±.…………………………10分 当y =-4时,242x x -++ =-4,解得2x =±∴点P的坐标为(2,4),(24),(2-4),(2+-4).……………………………12分xx 图2。