确山2017_2018八年级数学下学期期中试题
- 格式:doc
- 大小:4.39 MB
- 文档页数:9
2017-2018学年河南省驻马店市确山县八年级(下)期中数学试卷一、选择题(每小题3分,共36分.下列各小题均有四个答案,其中只有一个是正确的.)1.(3分)函数y =x 的取值范围是( )A .2x >B .2x <C .2x …D .2x …2.(3分)以下列各组数的线段为边,能组成直角三角形的是( )A .3,5,9B .4,6,8C .12 D3.(3分)在Rt ABC ∆中,a ,b ,c 为三边长,则下列关系中正确的是( )A .222a b c +=B .222a c b +=C .222b c a +=D .以上都有可能4.(3分)如图, 在Rt ABC ∆中,30A ∠=︒,1BC =,点D ,E 分别是直角边BC ,AC 的中点, 则DE 的长为( )A . 1B . 2CD .15.(3分)如图, 在四边形ABCD 中,//AB CD ,要使得四边形ABCD 是平行四边形, 可添加的条件不正确的是( )A .AB CD = B .//BC AD C .BC AD = D .A C ∠=∠6.(3分)下列命题中, 真命题是( )A . 两对角线相等的四边形是矩形B . 两对角线互相平分的四边形是平行四边形C . 两对角线互相垂直的四边形是菱形D . 两对角线互相垂直且平分的四边形是正方形7.(3分)有下列四个条件:①AB BC =,②90ABC ∠=︒,③AC BD =,④AC BD ⊥.从中选取两个作为补充条件,使ABCD 为正方形(如图).现有下列四种选法,其中错误的是( )A .②③B .②④C .①②D .①③8.(3分)在ABCD 中,3AB =,4BC =,当ABCD 的面积最大时, 下列结论正确的有( )①5AC =;②180A C ∠+∠=︒;③AC BD ⊥;④AC BD =.A .①②③B .①②④C .②③④D .①③④9.(3分)如图, 小巷左右两侧是竖直的墙, 一架梯子斜靠在左墙时, 梯子底端到左墙角的距离为 0.7 米, 顶端距离地面 2.4 米 . 如果保持梯子底端位置不动, 将梯子斜靠在右墙时, 顶端距离地面 2 米, 则小巷的宽度为( )A . 0.7 米B . 1.5 米C . 2.2 米D . 2.4 米10.(3分)星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼, 她连续、 匀速走了60min 后回家, 图中的折线段OA AB BC --是她出发后所在位置离家的距离()s km 与行走时间()t min 之间的函数关系, 则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A .B .C .D .11.(3分)用四个全等的直角三角形镶嵌而成的正方形如图所示, 已知大正方形的面积为 49 ,小正方形的面积为 4 ,若x ,y 表示直角三角形的两直角边长()x y >,给出下列四个结论:①2249x y +=;②2x y -=;③245xy =;④9x y +=. 其中正确的结论是( )A .①②③B .①②③④C .①③D .②④12.(3分)如图,在矩形ABCD 中,边AB 的长为3,点E ,F 分别在AD ,BC上,连接BE ,DF ,EF ,BD .若四边形BEDF 是菱形,且EF AE FC =+,则边BC 的长为( )A .B .C .D 二、填空题(每小题3分,共24分)13.(3分)当x = 时, 函数2y x l =-+的值是5-.。
20仃一2018学年度 八年级下学期期中数学试题题号-一--二二三分x k b 1 . c o212223242526得分一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中 只有一个是符合题意的,把正确答案前字母序号填在下面表格相应的题号下。
题号123456789101112答案1 •下列式子中,属于最简二次根式的是()F 列各组数是三角形的三边,不能组成直角三角形的一组数是(4.下列计算错误的是 ( )A . 3,2- 2=3B .,60S 5=2 .35.如图,是台阶的示意图.已知每个台阶的宽度都是20cm ,每个台阶的高度都是 10cm ,连接AB , 则 AB 等于() A .120cm B . 130cm C . 140cm D . 150cm6. 女口图,矩形ABCD 的对角线 AC 、BD 相交于点 O ,CE // BD ,DE // AC ,若AC=4,贝U 四边形 CODE 的周长()A . 4B .6 C .8 D .10A. . 9B. 7C. (202. 3. A . 3,4,5B . 6, 8, 10C . 1.5,2,2.5F 列条件中,能确定一个四边形是平行四边形的是(A . 一组对边相等B . 一组对角相等 两条对角线相等 D .两条对角线互相平分D.7題圉7. 如图,在平行四边形ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,贝U AB 的长A . 1B . 2C. 1D . 4&菱形具有而矩形不一定具有的性质是()A.内角和等于360度B.对角相等C.对边平行且相等D.对角线互相垂直 9•若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是A •矩形 B.等腰梯形 C .对角线相等的四边形 D .对角线互相垂直的四边形10 .化简(二-2) 2016?(二+2) 2017 的结果为A . - 1B . 二-2C .7+2D .-二-211. 如图,在矩形 ABCD 中,AB = 8, BC = 4,将矩形沿 AC 折叠, 点D 落在点D'处,则重叠部分 △ AFC 的面积为. A . 10 B . 12C . 16D . 2012、 如图,正方形 ABCD 中,AE = AB ,直线DE 交BC 于点F ,则/ BEF =( A . 30 ° B . 45 ° C . 55 ° D .60 °二、填空题(本题有8小题,每小题4分,共32分)13、 若代 数式一、有意义,则实数x 的取值范围是 _____________ .x —115 .如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交 AD 和BC 于点E 、F ,AB=2,BC=3,则图中阴影部分的面积为 _______________> 1)个等式写出来 ____________ . ____________14 .计算吋,--的结果是13題圈 2题圉 16.如图,要使平行四边形 ABCD 是矩形,则应添加的条件是 I?題圉_ (添加一个条件即可) 17.如图,由四个直角边分别为 5和4的全等直角三角形拼成为 __________ .赵爽弦图”,其中阴影部分面积18.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多 1 m ,当它把绳子的下端拉开 5m后,发现下端刚好接触地面,则旗杆的高为19.观察下列各式:请你找出其中规律,并将第n (nCA E D E F CND锁團20. 如图,在等腰Rt△ OAA i中,/ OAA i= 90° OA = 1,以OA i为直角边作等腰Rt△ OA1A2,以OA?为直角边作等腰Rt△ OA2A3,…则OA5的长度为三、解答下列各题(满分52分)21. (每小题4分,本题满分8分)计算:(1)( _+ 7)(7)-(_+3 2;22. (本题满分7分)如图,在厶ABC中,AD丄BC于D,点D , E, F分别是BC, AB, AC的中点.求证:四边形AEDF是菱形.23. (本题满分7分)如图,在等边三角形ABC中,BC=6cm.射线AG//BC,点E从点A出发沿射线AG以1cm/s 的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D 时,求证:△ ADE CDF ;(2)填空:当t为___________ s时,四边形ACFE是菱形;24. (本题满分8分)小红同学要测量A、C两地的距离,但A、C 之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,/ ABC=120 °请你帮助小红同学求出A、C两点之间的距离.(参考数据>'20疋4.,心6 4.625. (本题满分10分)如图,在A ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC 的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC ; /(2)若AB =AC,试判断四边形ADCF的形状,并证明你的结论.25.(本题满分12分) 如图,△ ABC中,点0是边AC上一个动点,过0作直线MN // BC.设MN 交/ ACB 的平分线于点E,交/ ACB的外角平分线于点 F .(1)求证:OE = OF;(2)若CE=8, CF=6,求0C 的长;(3)当点0在边AC上运动到什么位置时,四边形并说明理由. AECF 是矩八年级数学试题参考答案及评分标准(这里只提供了一种解法或证法,其他证法,只要合理,一样得分) 、1——12: BDDAB CBDCC AB 、13.xK0且XH1 ; 14. 2;15. 3; 16. AB 丄 BC (或 AC=BD ) ; 17.1; 18.咕詁 20 . 4疋.三、21.(1)原式=7 - 5 -( 3+6 二+18) -------------- 2 分 =2 - 21 - 6 :_________________ 3 分------------------ 4 分D 是AC 边的中点 • AD 二CD又ADE — CDFADE^A CDF --------------------------24. 解:过C 作CD 丄AB 交AB 延长线于点 D ,• / ABC=120° ,• / CBD=60° , --------------------------------------------- 2 分在 Rt A BCD 中,/ BCD=90° -/ CBD=30° ,12m(2)原式=2 .2+3-2-1+2----------- 2 分=4+ “ 2 ; ------------------------------ 4 分 22.答案:证明:•••点 D , E , F 分别是BC , AB , AC 的中点, ••• DE // AC , DF // AB, ------- •••四边形AEDF 是平行四边形,又••• AD 丄 BC , BD=CD , • -------------------------------------- A B=AC, --------------------------------- • --------------------------------------A E=AF, ---------------------------------2 分 ---------3 分 ------- 5 分 ------------ 6 -------------23.(1)证明:T AG // BCEAD —ACB(2) 6----------------------------------------- 7 分------------------------- 3 分• BD=BC=^=10(米),••• CD= ~~=10 -(米), -------------------- 4 分••• AD=AB + BD=80+10=90 米, -------------------- 5 分在RgACD 中,AC=「「= -92(米),答:A、C两点之间的距离约为92米. --------------------------- 8分25. (1)证明:T AF // BC,•••/ AFE= / DBE ,••• E是AD的中点,•AE=DE ,在△AFE 和△DBE 中ZAFE^ZDBE” ZFEA^ZBED牠二DE•△ AFE ◎△ DBE ( AAS ),•AF=BD ,•/ AD是BC边上的中线,•BD=CD ,•AF=DC .(2)四边形ADCF是矩形, ---------------------------------- 6分证明:AF // DC , AF=DC ,•四边形ADCF是平行四边形,•/ AC=AB , AD 是中线,• AD 丄DC , 即/ ADC=90 度--------------- ----------------- 8分•平行四边形ADCF是矩形. --------------------------------- 10 分26. (1)证明:T MN交/ ACB的平分线于点E,交/ ACB的外角平分线于点F,• / 2= / 5,/ 4= / 6, ------------------------------------------------------------------------------ •/ MN // BC,•••/ 1= / 5,Z 3= / 6, -------------------------------------------------------------------------------- 2 分:丄 1= / 2,/ 3= / 4, ----------------------------------------------------------------------------- 3 分•EO=CO, FO=CO,•OE=OF; --------------------------------------------------------- 4 分(2)解:•••/ 2= / 5, / 4= / 6,•/ 2+ / 4= / 5+ / 6=90 ° ----------------------------------------------------------------- 5 分•/ CE=8, CF=6,•EF= 丁=10, ------------------------------------------------------------------------ 6 分•OC= EF=5; ----------------------------------------------------- 8 分2(3)------------------------------------------------------------------------------------------------------------ 答:当点O在边AC上运动到AC中点时,四边形AECF是矩形. ---------------------- 9分证明:当O为AC的中点时,AO=CO ,•/ EO=FO ,•四边形AECF是平行四边形,----------------------------- 10 分V/ ECF =90°,•平行四边形AECF是矩形. 12。
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.如果y=+2,那么(﹣x)y的值为()A.1B.﹣1C.±1D.02.下列各式属于最简二次根式的是()A.B.C.D.3.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=24.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个5.如图,AB=AC,则数轴上点C所表示的数为()A.+1B.﹣1C.﹣+1D.﹣﹣16.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,237.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形8.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.249.如图,将长16cm,宽8cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为()cm.A .6B .4C .10D .210.如图,A ,B 两地被池塘隔开,小明通过下列方法测出了A 、B 间的距离:先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 的长为6m ,由此他就知道了A 、B 间的距离.有关他这次探究活动的描述错误的是( )A .AB =12m B .MN ∥ABC .△CMN ∽△CABD .CM :MA =1:2二.填空题(共6小题,满分24分,每小题4分)11.计算:×=12.已知▱ABCD 的周长为28,自顶点A 作AE ⊥DC 于点E ,AF ⊥BC 于点F .若AE =3,AF =4,则CE ﹣CF = .13.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 cm 2.14.若最简二次根式与能合并成一项,则a = .15.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是 .16.若x=﹣1,则x3+x2﹣3x+2019的值为.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)218.如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.19.如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点,连接BE、DF.求证:BE∥DF.20.如图,在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=,求(1)AD的长;(2)△ABC是直角三角形吗?为什么?21.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?22.如图,矩形ABCD,延长BC到G,连接GD.作∠BGD的平分线交AB于E.若EG=DG,AD =AE.(1)求证:GE=2BE;(2)若EG=4,求梯形ABGD的面积.23.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.24.如图,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤25).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.如果y=+2,那么(﹣x)y的值为()A.1B.﹣1C.±1D.0【分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答】解:∵y=+2,∴1﹣x≥0,x﹣1≥0,解得:x=1,故y=2,则(﹣1)2=1.故选:A.【点评】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.2.下列各式属于最简二次根式的是()A.B.C.D.【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.【点评】此题考查了最简二次根式的知识,解答本题的关键是熟练掌握最简二次根式满足的两个条件,属于基础题,难度一般.3.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如图,AB=AC,则数轴上点C所表示的数为()A.+1B.﹣1C.﹣+1D.﹣﹣1【分析】根据勾股定理列式求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【解答】解:由勾股定理得,AB==,∴AC=,∵点A表示的数是﹣1,∴点C表示的数是﹣1.故选:B.【点评】本题考查了勾股定理,实数与数轴,是基础题,熟记定理并求出AB的长是解题的关键.6.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.【点评】此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.7.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项错误;B、根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD是菱形,故本选项错误;C、根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD是矩形,故本选项错误;D、根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项正确;综上所述,符合题意是D选项;故选:D.【点评】本题考查正方形的判定、菱形的判定、矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.24【分析】根据菱形的性质即可求出答案.【解答】解:由于菱形的两条对角线的长为6和8,∴菱形的边长为:=5,∴菱形的周长为:4×5=20,故选:C.【点评】本题考查菱形的性质,解题的关键是熟练运用菱形的性质,本题属于基础题型.9.如图,将长16cm,宽8cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为()cm.A.6B.4C.10D.2【分析】连接AC,则EF垂直平分AC,推出△AOE∽△ABC,根据勾股定理,可以求出AC的长度,根据相似三角形对应边的比等于相似比求出OE,即可得出EF的长.【解答】解:连接AC,与EF交于O点,∵E点在AB上,F在CD上,A、C点重合,EF是折痕,∴AO=CO,EF⊥AC,∵AB=16,BC=8,∴AC=,∴AO=,∵∠EAO=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴OE:BC=AO:BA,即∴OE=,∴EF=2OE=.故选:B.【点评】本题主要考查了矩形的性质、勾股定理、相似三角形的判定和性质、折叠的性质;熟练掌握矩形的性质和折叠的性质,证明三角形相似是解决问题的关键.10.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()A.AB=12m B.MN∥AB C.△CMN∽△CAB D.CM:MA=1:2【分析】由已知条件得出MN是△ABC的中位线,CM=MA,由三角形中位线定理得出MN∥AB,MN=AB,AB=2MN=12m,得出△CMN∽△CAB;即可得出结论.【解答】解:∵M、N分别是AC、BC的中点,∴MN是△ABC的中位线,CM=AM,∴MN∥AB,MN=AB,AB=2MN=12m,CM:MA=1:1,∴△CMN∽△CAB;故A,B,C正确,故选:D.【点评】本题考查了三角形中位线定理;熟练掌握三角形中位线定理,并能进行推理计算是解决问题的关键.二.填空题(共6小题,满分24分,每小题4分)11.计算:×=12【分析】直接利用二次根式乘法运算法则计算得出答案.【解答】解:×=×2=12.故答案为:12.【点评】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.12.已知▱ABCD的周长为28,自顶点A作AE⊥DC于点E,AF⊥BC于点F.若AE=3,AF=4,则CE﹣CF=14﹣7或2﹣(答对前者得2分,答对后者得1分).【分析】首先可证得△ADE∽△ABF,又由四边形ABCD是平行四边形,即可求得AB与AD的长,然后根据勾股定理即可求得DE与BF的长,继而求得答案.【解答】解:如图1:∵AE⊥DC,AF⊥BC,∴∠AED=∠AFB=90°,∵四边形ABCD是平行四边形,∴∠ADC=∠CBA,AB=CD,AD=BC,∴△ADE∽△ABF,∴,∵AD+CD+BC+AB=28,即AD+AB=14,∴AD=6,AB=8,∴DE=3,BF=4,∴EC=CD﹣DE=8﹣3,CF=BF﹣BC=4﹣6,∴CE﹣CF=(8﹣3)﹣(4﹣6)=14﹣7;如图2:∵AE⊥DC,AF⊥BC,∴∠AED=∠AFB=90°,∵四边形ABCD是平行四边形,∴∠ADC=∠CBA,AB=CD,AD=BC,∴∠ADE =∠ABF ,∴△ADE ∽△ABF ,∴,∵AD +CD +BC +AB =28,即AD +AB =14,∴AD =6,AB =8,∴DE =3,BF =4,∴EC =CD +DE =8+3,CF =BC +BF =6+4,∴CE ﹣CF =(8+3)﹣(6+4)=2﹣.∴CE ﹣CF =14﹣7或2﹣.【点评】本题主要考查的是平行四边形的性质.解题时,还借用了勾股定理这一知识点. 13.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 41 cm 2.【分析】连接E 、F 两点,由三角形的面积公式我们可以推出S △EFC =S △BCQ ,S △EFD =S △ADF ,所以S △EFG =S △BCQ ,S △EFP =S △ADP ,因此可以推出阴影部分的面积就是S △APD +S △BQC .【解答】解:连接E 、F 两点,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴△EFC 的FC 边上的高与△BCF 的FC 边上的高相等,∴S △EFC =S △BCF ,∴S △EFQ =S △BCQ ,同理:S △EFD =S △ADF ,∴S △EFP =S △ADP ,∵S △APD =16cm 2,S △BQC =25cm 2,∴S 四边形EPFQ =41cm 2,故答案为:41.【点评】本题主要考查了平行四边形的性质,题目综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形.14.若最简二次根式与能合并成一项,则a = 1 .【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a 的方程,根据解方程,可得答案.【解答】解:=2,由最简二次根式与能合并成一项,得a +1=2.解得a =1.故答案为:1.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.15.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是 (﹣5,4) .【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD===4,∴点C的坐标是:(﹣5,4).故答案为:(﹣5,4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.16.若x=﹣1,则x3+x2﹣3x+2019的值为2018.【分析】先根据x的值计算出x2的值,再代入原式=x•x2+x2﹣3x+2019,根据二次根式的混合运算顺序和运算法则计算可得.【解答】解:∵x=﹣1,∴x2=(﹣1)2=2﹣2+1=3﹣2,则原式=x•x2+x2﹣3x+2019=(﹣1)×(3﹣2)+3﹣2﹣3(﹣1)+2019=3﹣4﹣3+2+3﹣2﹣3+3+2019=2018,故答案为:2018.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.【分析】设BD=x,根据勾股定理列出方程,解方程即可.【解答】解:设BD=x,则AD=2x,由勾股定理得,CD2=AC2﹣AD2,CD2=BC2﹣BD2,∴AC2﹣AD2=BC2﹣BD2,即32﹣(2x)2=22﹣x2,解得,x=,即BD的长为.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.19.如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点,连接BE、DF.求证:BE∥DF.【分析】根据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE∥DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形∴OA=OC,OB=OD∵E、F分别是OA、OC的中点∴OE=OA,OF=OC∴OE=OF∴四边形BFDE是平行四边形∴BE∥DF【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.20.如图,在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=,求(1)AD的长;(2)△ABC是直角三角形吗?为什么?【分析】(1)由CD垂直于AB,得到三角形BCD与三角形ACD都为直角三角形,由BC与DB,利用勾股定理求出CD的长,再利用勾股定理求出AD的长即可;(2)三角形ABC为直角三角形,理由为:由BD+AD求出AB的长,利用勾股定理的逆定理得到三角形ABC为直角三角形.【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BC=3,DB=,根据勾股定理得:CD==,在Rt△ACD中,AC=4,CD=,根据勾股定理得:AD==;(2)△ABC为直角三角形,理由为:∵AB=BD+AD=+=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.【点评】此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理及勾股定理的逆定理是解本题的关键.21.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?【分析】根据小球滚动的速度与机器人行走的速度相等,运动时间相等得出BC=CA.设AC为x,则OC=9﹣x,根据勾股定理即可得出结论.【解答】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.22.如图,矩形ABCD,延长BC到G,连接GD.作∠BGD的平分线交AB于E.若EG=DG,AD =AE.(1)求证:GE=2BE;(2)若EG=4,求梯形ABGD的面积.【分析】(1)连接DE,根据矩形的性质可得△ADE是等腰直角三角形,所以,∠AED=45°,设∠BGE=x,根据角平分线的定义可得∠DGE=x,根据直角三角形两锐角互余求出∠BEG,根据等腰三角形两底角相等求出∠DEG,然后根据平角等于180°列式求解即可得到x=30°,再根据30°所对的直角边等于斜边的一半证明;(2)先求出∠CGD=60°,然后解直角三角形求出CD的长度,根据矩形的对边相等求出AB的长度,在Rt△BGE中,求出BE、BG的长度,然后求出AE,即可得到AD,然后利用梯形的面积公式列式计算即可得解.【解答】(1)证明:如图,连接DE,∵AD=AE,∴△ADE是等腰直角三角形,∴∠AED=45°,设∠BGE=x,∵GE是∠BGD的平分线,∴∠BGE=∠DGE=x,在Rt△BGE中,∠BEG=90°﹣x,∵EG=DG,∴∠DEG=(180°﹣x),又∵∠AED+∠DEG+∠BEG=180°,∴45°+(180°﹣x)+90°﹣x=180°,解得x=30°,即∠BGE=30°,∴GE=2BE;(2)解:∵GE是∠BGD的平分线,∴∠CGD=∠BGE+∠DGE=30°+30°=60°,∴CD=DG sin60°=4×=2,在Rt△BGE中,BE=EG=×4=2,BG=EG cos30°=4×=2,∴AD=AE=AB﹣BE=2﹣2,梯形ABGD的面积=(AD+BG)CD=(2﹣2+2)×2=(4﹣2)=12﹣2.【点评】本题考查了矩形的性质,解直角三角形,直角三角形30°角所对的直角边等于斜边的一半的性质,题目设计巧妙,难度较大,利用∠BGE的度数恰好30°求解是解题的关键.23.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.如图,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤25).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.【分析】(1)可以证明四边形AEFD为平行四边形,如果四边形AEFD能够成为菱形,则必有邻边相等,则AE=AD,列方程求出即可;(2)当△DEF为直角三角形时,有三种情况:①当∠EDF=90°时,如图3,②当∠DEF=90°时,如图4,③当∠DFE=90°不成立;分别找一等量关系列方程可以求出t的值.【解答】(1)解:四边形AEFD能够成为菱形,理由是:由题意得:AE=2t,CD=4t,∵DF⊥BC,∴∠CFD=90°,∴∠C=30°,∴DF=CD=×4t=2t,∴AE=DF;∵DF⊥BC,∴∠CFD=∠B=90°,∴DF∥AE,∴四边形AEFD是平行四边形.当AE=AD,四边形AEFD是菱形,∵AC=100,CD=4t,∴AD=100﹣4t,∴2t=100﹣4t,t=,∴当t=时,四边形AEFD能够成为菱形;(3)分三种情况:①当∠EDF=90°时,如图3,则四边形DFBE为矩形,∴DF=BE=2t,∵AB=AC=50,AE=2t,∴2t=50﹣2t,t=,②当∠DEF=90°时,如图4,∵四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,在Rt△ADE中,∠A=60°,AE=2t,∴AD=t,则100=t+4t,t=20,③当∠DFE=90°不成立;综上所述:当t为s或20s时,△DEF为直角三角形.【点评】本题是四边形的综合题,考查了平行四边形、菱形、矩形的性质和判定,也是运动型问题,难度不大,是常出题型;首先要表示出两个动点在时间t时的路程,弄清动点的运动路径,再根据其运动所形成的特殊图形列式计算;同时,所构成的直角三角形因为直角顶点不确定,所以要分情况进行讨论.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.在式子,,,,(x≤0)中,一定是二次根式的有()A.1个B.2个C.3个D.4个2.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线BD的长等于()A.6米B.6米C.3米D.3米3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=84.下列判断错误的是()A.有两个直角的四边形是矩形B.有一个直角的平行四边形是矩形C.对角线相等的平行四边形是矩形D.对角线互相垂直平分的四边形是菱形5.下列二次根式中,是最简二次根式的是()A.B.C.D.6.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°7.下列说法中的错误的是()A.一组邻边相等的矩形是正方形B.一组邻边相等的平行四边形是菱形C.一组对边相等且有一个角是直角的四边形是矩形D.一组对边平行且相等的四边形是平行四边形8.下列四组数中不是勾股数的是()A.3,4,5B.2,3,4C.5,12,13D.8,15.179.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3B.4C.15D.7.210.下列命题中的假命题是()A.过直线外一点有且只有一条直线与这条直线平行B.平行于同一直线的两条直线平行C.直线y=2x﹣1与直线y=2x+3一定互相平行D.如果两个角的两边分别平行,那么这两个角相等二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是.12.如图,P是▱ABCD的边AD上一点,E、F分别是PB、PC的中点,若▱ABCD的面积为16cm2,则△PEF的面积(阴影部分)是cm2.13.已知在△ABC中,∠C=90°,AC=3,BC=4,分别以AC、BC、AB为直径作半圆,如图所示,则阴影部分的面积是.14.计算(+2)(﹣2)的结果是.15.如图,BD与CD分别平分∠ABC、∠ACB的外角∠EBC、∠FCB,若∠A=80°,则∠BDC =.16.如图所示,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D,若OE=4,∠AOB=60°,则DE=.三.解答题(共9小题,满分86分)17.化简:.18.若a,b,c为△ABC的三边长,且a,b,c满足等式|a﹣3|+(4﹣b)2+=0,△ABC是直角三角形吗?请说明理由.19.在△ABC中,以AB、AC为边向三角形外分别作等边△ABF、等边△ACD,以BC为边在同侧作等边△BCE,求证:四边形ADEF是平行四边形.20.如图,四边形ABCD中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,试求BC和CD的长.21.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.22.先化简,再求值:()÷,其中x=﹣1.23.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.24.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F 是AE的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.25.如图①,四边形ABCD与四边形CEFG都是矩形,点E,G分别在边CD,CB上,点F在AC 上,AB=3,BC=4(1)求的值;(2)把矩形CEFG绕点C顺时针旋转到图②的位置,P为AF,BG的交点,连接CP(Ⅰ)求的值;(Ⅱ)判断CP与AF的位置关系,并说明理由.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.在式子,,,,(x≤0)中,一定是二次根式的有()A.1个B.2个C.3个D.4个【分析】依据二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式求解可得.【解答】解:在所列式子中一定是二次根式的是,(x≤0)这2个,故选:B.【点评】本题考查了二次根式的定义.理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.2.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线BD的长等于()A.6米B.6米C.3米D.3米【分析】由四边形ABCD是菱形,∠BAD=60°,易得△ABD是等边三角形,继而求得答案.【解答】解:∵四边形ABCD是菱形,且周长为24米,∴AB=AD=6米,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=6米.故选:B.【点评】此题考查了菱形的性质以及等边三角形的判定与性质.注意证得△ABD是等边三角形是解此题的关键.3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=8【分析】根据二次根式的运算法则逐一计算即可得出答案.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、×==,此选项正确;C、÷===3,此选项正确;D、(2)2=8,此选项正确;故选:A.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.下列判断错误的是()A.有两个直角的四边形是矩形B.有一个直角的平行四边形是矩形C.对角线相等的平行四边形是矩形D.对角线互相垂直平分的四边形是菱形【分析】直接利用矩形与菱形的判定定理判定,即可求得答案.注意掌握排除法在选择题中的应用.【解答】解:A、有三个直角的四边形是矩形;故本选项错误;B、有一个直角的平行四边形是矩形;故本选项正确;C、对角线相等的平行四边形是矩形;故本选项正确;D、对角线互相垂直平分的四边形是菱形;故本选项正确.故选:A.【点评】此题考查了矩形的判定与菱形的判定.注意熟记矩形与菱形的判定定理是解此题的关键.5.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、是最简二次根式,正确;B、不是最简二次根式,错误;C、不是最简二次根式,错误;D、不是最简二次根式,错误;故选:A.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.6.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°【分析】连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=38°,可得∠E度数.【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=38°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=19°.故选:A.【点评】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.7.下列说法中的错误的是()A.一组邻边相等的矩形是正方形B.一组邻边相等的平行四边形是菱形C.一组对边相等且有一个角是直角的四边形是矩形D.一组对边平行且相等的四边形是平行四边形【分析】根据正方形的判定、菱形的判定、矩形的判定以及平行四边形的判定方法逐项分析即可.【解答】解:A、一组邻边相等的矩形是正方形,此说法正确,不符合题目的要求;B、一组邻边相等的平行四边形是菱形,此说法正确,不符合题目的要求;C、一组对边相等且有一个角是直角的四边形不一定是矩形,此说法错误,符合题目的要求;D、一组对边平行且相等的四边形是平行四边形,此说法正确,不符合题目的要求;故选:C.【点评】此题是一道几何结论开放题,全面地考查了矩形的判定定理,可以大大激发学生的思考兴趣,拓展学生的思维空间,培养学生求异、求变的创新精神.8.下列四组数中不是勾股数的是()A.3,4,5B.2,3,4C.5,12,13D.8,15.17【分析】求是否为勾股数,这里给出三个数,利用勾股定理,只要验证两小数的平方和等于最大数的平方即可.【解答】解:A、32+42=52,是勾股数的一组;B、22+32≠42,不是勾股数的一组;C、52+122=132,是勾股数的一组;D、82+152=172,是勾股数的一组.故选:B.【点评】考查了勾股数,理解勾股数的定义,并能够熟练运用.9.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3B.4C.15D.7.2【分析】首先根据勾股定理求出斜边AB的长,再根据三角形的面积为定值即可求出则点C到AB 的距离.【解答】解:在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵BC=12,AC=9,∴AB==15,∵S=AC•BC=AB•h,△ABC∴h==7.2,故选:D.【点评】本题考查了勾股定理在直角三角形中的应用,解本题的关键是正确的运用勾股定理,确定AB为斜边.10.下列命题中的假命题是()A.过直线外一点有且只有一条直线与这条直线平行B.平行于同一直线的两条直线平行C.直线y=2x﹣1与直线y=2x+3一定互相平行D.如果两个角的两边分别平行,那么这两个角相等【分析】根据平行公理即可判断A、根据两直线平行的判定可以判定B、C;根据平行线的性质即可判定D;【解答】解:A、过直线外一点有且只有一条直线与这条直线平行,正确.B、平行于同一直线的两条直线平行,正确;C、直线y=2x﹣1与直线y=2x+3一定互相平行,正确;D、如果两个角的两边分别平行,那么这两个角相等,错误;应该是如果两个角的两边分别平行,那么这两个角相等或互补;故选:D.【点评】本题考查命题与定理,解题的关键是熟练掌握基本概念,属于中考常考题型.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是1≤x≤2.【分析】直接根据二次根式的意义建立不等式组即可得出结论.【解答】解:根据二次根式的意义,得,∴1≤x≤2,故答案为1≤x≤2.【点评】此题主要考查了二次根式的意义,解不等式组,建立不等式组是解本题的关键.12.如图,P是▱ABCD的边AD上一点,E、F分别是PB、PC的中点,若▱ABCD的面积为16cm2,则△PEF的面积(阴影部分)是2cm2.【分析】先根据S▱ABCD=16cm2知S=S▱ABCD=8,再证△PEF∽△PBC得=()△PBC2,即=,据此可得答案.【解答】解:∵▱ABCD 的面积为16cm 2,∴S △PBC =S ▱ABCD =8,∵E 、F 分别是PB 、PC 的中点,∴EF ∥BC ,且EF =BC ,∴△PEF ∽△PBC , ∴=()2,即=,∴S △PEF =2,故答案为:2.【点评】本题主要考查平行四边形的性质,解题的关键是掌握平行四边形的性质与相似三角形的判定与性质.13.已知在△ABC 中,∠C =90°,AC =3,BC =4,分别以AC 、BC 、AB 为直径作半圆,如图所示,则阴影部分的面积是 6 .【分析】先利用勾股定理列式求出AB ,再根据阴影部分面积等于以AC 、BC 为直径的两个半圆的面积加上直角三角形ABC 的面积减去以AB 为直径的半圆的面积,列式计算即可得解.【解答】解:∵在Rt △ABC 中,∠ACB =90°,∴AC 2+BC 2=AB 2,∵BC =4,AC =3,∴AB =.S 阴影=直径为AC 的半圆的面积+直径为BC 的半圆的面积+S △ABC ﹣直径为AB 的半圆的面积 =π()2+π()2+AC ×BC ﹣π()2 =π(AC )2+π(BC )2﹣π(AB )2+AC ×BC=π(AC 2+BC 2﹣AB 2)+AC ×BC=AC×BC=×3×4=6.故答案为:6【点评】本题考查了勾股定理,半圆的面积,熟记定理并观察图形表示出阴影部分的面积是解题的关键.14.计算(+2)(﹣2)的结果是﹣1.【分析】利用平方差公式计算,再根据二次根式的性质计算可得.【解答】解:原式=()2﹣22=3﹣4=﹣1,故答案为:﹣1.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.15.如图,BD与CD分别平分∠ABC、∠ACB的外角∠EBC、∠FCB,若∠A=80°,则∠BDC=50°.【分析】先根据BD、CD分别是∠CBE、∠BCF的平分线可知∠DBC=∠EBC,∠BCD=∠BCF,再由∠CBE、∠BCF是△ABC的两个外角得出∠CBE+∠BCF=180°+∠A=260°,故∠DBC+∠BCD=(∠EBC+∠BCF)=130°,根据三角形内角和定理求出即可.【解答】证明:BD、CD分别是∠CBE、∠BCF的平分线∴∠DBC=∠EBC,∠BCD=∠BCF,∵∠CBE、∠BCF是△ABC的两个外角∴∠CBE+∠BCF=360°﹣(180°﹣∠A)=180°+∠A=260°,∴∠DBC+∠BCD=(∠EBC+∠BCF)=130°在△DBC中,∠BDC=180°﹣(∠DBC+∠BCD)=180°﹣130°=50°,故答案为:50°.【点评】本题考查的是三角形内角和定理及三角形外角的性质,熟知三角形的内角和等于180°是解答此题的关键.16.如图所示,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D,若OE=4,∠AOB=60°,则DE=2.【分析】利用角平分线的性质计算.【解答】解:∵OE平分∠AOB∴∠DOE=30°∴DE=OE=×4=2.【点评】本题主要考查平分线的性质和直角三角形的性质.三.解答题(共9小题,满分86分)17.化简:.【分析】利用二次根式的乘法法则运算.【解答】解:原式=﹣﹣=6﹣6﹣=6﹣7.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.若a,b,c为△ABC的三边长,且a,b,c满足等式|a﹣3|+(4﹣b)2+=0,△ABC是直角三角形吗?请说明理由.【分析】由非负数的性质可求得a、b、c的值,再利用勾股定理的逆定理进行判断即可.【解答】解:△ABC是直角三角形.理由是:∵|a﹣3|+(4﹣b)2+=0,∴a﹣3=0,4﹣b=0,c﹣5=0,∴a=3,b=4,c=5,∴a2+b2=32+42=25,c2=52=25,∴a2+b2=c2,由勾股定理的逆定理可知,△ABC是直角三角形.【点评】本题主要考查勾股定理的逆定理,利用非负数的性质求得a、b、c的值是解题的关键.19.在△ABC中,以AB、AC为边向三角形外分别作等边△ABF、等边△ACD,以BC为边在同侧作等边△BCE,求证:四边形ADEF是平行四边形.【分析】根据等边三角形的性质及平行四边形的判定(两组对边分别相等的四边形是平行边形)来证明四边形ADEF是平行四边形.【解答】证明:四边形ADEF是平行四边形,∵等边三角形BCE和等边三角形ABF,∴BE=BC,BF=BA.又∵∠FBE=60°﹣∠ABE,∠ABC=60°﹣∠ABE,∴∠FBE=∠ABC,在△BFE和△BCA中,∴△BFE≌△BCA(SAS),∴DE=AC∵在等边三角形ACD中,AC=AD,∴FE=AD,同理FA=ED.∴四边形ADEF是平行四边形.【点评】本题主要考查平行四边形的判定和性质,全等三角形的判定和性质,等边三角形的性质,掌握平行四边形的判定和性质是解题的关键20.如图,四边形ABCD中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,试求BC和CD的长.【分析】延长DC至E,构建直角△ADE,解直角△ADE求得DE,BE,根据BE解直角△CBE 可得BC,CE,可得CD=DE﹣CE,从而求解.【解答】解:如图,延长AB、DC相交于E,在Rt△ADE中,可求得AE2﹣DE2=AD2,且AE=2AD,计算得AE=16,DE=8,于是BE=AE﹣AB=9,在Rt△BEC中,可求得BC2+BE2=CE2,且CE=2BC,∴BC=3,CE=6,∴CD=DE﹣CE=2.【点评】本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ADE求BE,是解题的关键.21.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.【分析】(1)根据全等三角形的判定即可求出答案.(2)根据勾股定理可求出BC的长度,然后利用(1)的结论可知BE=DE,设BE=x,利用勾股定理列出方程即可求出x值.【解答】解:(1)∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°∵由翻折的性质可知∠F=∠A,BF=AB,∴BF=DC,∠F=∠C.在△DCE与△BEF中,∴△DCE≌△BFE.(2)在Rt△BDC中,由勾股定理得:BC==3.∵△DCE≌△BFE,∴BE=DE.设BE=DE=x,则EC=3﹣x.在Rt△CDE中,CE2+CD2=DE2,即(3﹣x)2+()2=x2.解得:x=2.∴BE=2.【点评】本题考查全等三角形的性质与判定,涉及全等三角形的性质与判定,矩形的性质,勾股定理,一元一次解法等知识,考查学生综合能力.22.先化简,再求值:()÷,其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=x+2,当x=﹣1时,原式=﹣1+2=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.【分析】(1)直接利用三角形中位线定理得出DE BC,进而得出DE=FC;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE BC,∵延长BC至点F,使CF=BC,∴DE=FC;(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.【点评】此题主要考查了等边三角形的性质以及平行四边形的判定与性质和三角形中位线定理等知识,得出DE BC是解题关键.24.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F 是AE的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.【分析】(1)结论:FD=FC,DF⊥CF.理由直角三角形斜边中线定理即可证明;(2)如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.想办法证明△ABN≌△MBE,推出AN=EM,再利用三角形中位线定理即可解决问题;(3)分别求出BF的最大值、最小值即可解决问题;【解答】解:(1)结论:FD=FC,DF⊥CF.理由:如图1中,∵∠ADE=∠ACE=90°,AF=FE,∴DF=AF=EF=CF,∴∠FAD=∠FDA,∠FAC=∠FCA,∴∠DFE=∠FDA+∠FAD=2∠FAD,∠EFC=∠FAC+∠FCA=2∠FAC,∵CA=CB,∠ACB=90°,∴∠BAC=45°,∴∠DFC=∠EFD+∠EFC=2(∠FAD+∠FAC)=90°,∴DF=FC,DF⊥FC.(2)结论不变.理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.∵BC⊥AM,AC=CM,∴BA=BM,同法BE=BN,∵∠ABM=∠EBN=90°,∴∠NBA=∠EBM,∴△ABN≌△MBE,∴AN=EM,∴∠BAN=∠BME,∵AF=FE,AC=CM,∴CF=EM,FC∥EM,同法FD=AN,FD∥AN,∴FD=FC,∵∠BME+∠BOM=90°,∠BOM=∠AOH,∴∠BAN+∠AOH=90°,∴∠AHO=90°,∴AN⊥MH,FD⊥FC.(3)如图3中,当点E落在AB上时,BF的长最大,最大值=3如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=.综上所述,≤BF.【点评】本题考查等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、直角三角形斜边中线的性质、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.25.如图①,四边形ABCD与四边形CEFG都是矩形,点E,G分别在边CD,CB上,点F在AC 上,AB=3,BC=4(1)求的值;(2)把矩形CEFG绕点C顺时针旋转到图②的位置,P为AF,BG的交点,连接CP(Ⅰ)求的值;(Ⅱ)判断CP与AF的位置关系,并说明理由.【分析】(1)根据矩形的性质得到∠B=90°,根据勾股定理得到AC=5,根据相似三角形的性质即可得到结论;(2)(Ⅰ)连接CF,根据旋转的性质得到∠BCG=∠ACF,根据相似三角形的判定和性质定理得到结论;(Ⅱ)根据相似三角形的性质得到∠BGC=∠AFC,推出点C,F,G,P四点共圆,根据圆周角定理得到∠CPF=∠CGF=90°,于是得到结论.【解答】解:(1)∵四边形ABCD是矩形,∴∠B=90°,∵AB=3,BC=4,∴AC=5,∴=,∵四边形CEFG是矩形,∴∠FGC=90°,∴GF∥AB,∴△CGF∽△CBA,∴==,∵FG∥AB,∴==;(2)(Ⅰ)连接CF,∵把矩形CEFG绕点C顺时针旋转到图②的位置,∴∠BCG=∠ACF,∵==,∴△BCG∽△ACF,∴==;(Ⅱ)CP⊥AF,理由:∵△BCG∽△ACF,∴∠BGC=∠AFC,∴点C,F,G,P四点共圆,∴∠CPF=∠CGF=90°,∴CP⊥AF.【点评】本题考查了相似三角形的判定和性质,矩形的性质,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定定理是解题的关键.。
2017-2018学年度第二学期八年级数学期中试卷一、填空题(共12题,每小题2分,共计24分)1.调查市场上某品牌酸奶的质量情况,采用调查方式是.(填“普查”或“抽样调查”)2.把一个正六边形绕着其对称中心旋转一定的角度,要使旋转后的图形与原来的图形重合,那么旋转的角度至少是°.3.在菱形ABCD中,AC=10,BD=24,则菱形的边长等于.4.如图,为某冷饮店一天售出各种口味雪糕数量的扇形统计图,其中售出红豆口味的雪糕200支,那么售出巧克力口味雪糕的数量是支.5.某种玉米种子在相同条件下发芽试验的结果如下:根据以上数据可以估计,该玉米种子发芽的概率为(精确到6.“平行四边形的对角线相等”是事件.(填“必然”、“随机”、“不可能”)7.在平行四边形ABCD中,AC、BD相交于点O,已知AC=10,BD=6,则边AB的取值范围是.8.如图,平行四边形ABCD与平行四边形DCFE周长相等,且∠BAD=60°,∠F=100°,则∠DAE的度数为°.9.如图,把∆ABC绕着点A顺时针旋转α后,得到∆AB,C,,若∠C=20°,点C、B,、C,共线,则∠α= °.10.已知,在矩形ABCD中,BE平分∠ABC交AD于E,CF平分∠BCD交边AD于F.若AB=3,EF=1,则AD= .11.如图,在正方形ABCD中,点F在边BC上,把∆ABF沿着AF折叠,点B落在正方形内一点E处,射线DE与射线AF交于点G,则∠AGD= .12.如图,在四边形ABCD中,∠A=90°,AB=9,AD=12,点E、F分别是AB、AD的中点,点H是线段EF上的一个动点,连接CH,点P是线段CH的中点,当点H从点E沿着EF向终点F运动的过程中,点P移动的路径长为.二、选择题(共6题,每小题3分,共计18分)13、下列图形中,既是轴对称图形又是中心对称图形的是()A B C D14、今年我市有近3500名考生参加中考,为了解这些考生的数学成绩,从中抽取800名考生的数学成绩进行统计分析,这个问题中样本是()A、每位考生的数学成绩B、3500名考生的数学成绩B、被抽取的800名考生的数学成绩D、被抽取的800名学生15、下列命题中正确的是()A、有一组邻边相等的四边形是菱形B、有一个角是直角的平行四边形是矩形C、对角线垂直的平行四边形是正方形D、一组对边平行的四边形是平行四边形16、顺次连接下列各四边形各边中点所得的四边形一定是矩形的是()A、等腰梯形B、矩形C、平行四边形D、对角线互相垂直的四边形17、如图,在菱形ABCD中,AB=2,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB,C,D,,则图中阴影部分的面积为()A、1+3B、2+3C、3D、3-318、如图,在矩形ABCD中,∠CAD=68°,将矩形ABCD绕点D逆时针旋转90°得到矩形DGEF,顶点G在边CD上,AC的对应边为GF,连接BE,则∠CBE的度数为()A、23°B、30°C、22°D、18°三、解答题(共8小题,共计78分)19、已知,在四边形ABCD中,AD=AC=BC,∠B=∠D=40°(1)求∠DAC的度数(2)求证:四边形ABCD是平行四边形(1)表中a=___,b=___,并补全直方图(2)若用扇形统计图描述此成绩分布情况,则分数段60⩽x<70对应扇形的圆心角度数是___;(3)请估计该年级分数良好(分数在80及80以上为良好)的学生有多少人?21.如图,在正方形网格中,每个小正方形的边长为1个单位长度,平面直角坐标系xoy 的原点O 在格点上,x 轴、y 轴都在网格线上,△ABC 的顶点A 、B 、C 都在格点上(1)将△ABC 向左平移两个单位得到△A 1B 1C 1,请在图中画出△A 1B 1C 1(2)△ABC 和△A 2B 2C 2关于原点O 成中心对称,请在图中画出△A 2B 2C 2(3)请写出C 2的坐标_________,并判断以点B 1、C 1、B 2、C 2为顶点的 .22、如图,在矩形ABCD 中,AB=3,E 在边AD 上,且AE=4,点F 是CD 的中点,EF 平分∠BED ,求DE 的长23. (本题满分10分)如图,在平面直角坐标系中,四边形ABCD 是正方形,点A ()a ,2、C 都在直线x y 21=上,且点C 在点A 的右侧,求点C 的坐标.24. (本题满分8分)我们数学上将内角度数小于0180的四边形叫做凹凸四边形,形如上图(1),(2),(4)是凸四边形,(3)不是凸四边形.操作:已知如图,两个全等的三角形纸片△ABC 和△DEF ,其中4,3,6===BC AC AB ,按照下列要求把这两个三角形纸片无缝拼接,且没有重叠,画出所有可能的示意图,并写出所拼出图形的周长.(1)拼接成轴对称的凸四边形,写出对应的周长.(2)拼接成中心对称的凸四边形,写出对应的周长.25.(本题满分12分)如图,在△ABC 中,∠C=90°,∠A=30°BC=4cm ,点D 从点B 出发沿BC 方向以每秒1个单位长的速度向点C 匀速运动,同时点E 从点A 出发沿AB 方向以每秒a 个单位长的速度向点B 匀速运动,当其中一个点到达终点时,两点同时停止.设点D 运动的时间是t 秒(t >0).过点E 作EF ⊥AC ,垂足为点F ,连接DF ,得到平行四边形BDFE .(1)求出a 的值;(2)分别连接BF 、DE ,在运动过程中,BF 能与DE 互相垂直吗?如果能,求出t 的值,如果不能,请说明理由.(3)当△DEF 为直角三角形,求t 的值.26. 如图(1),矩形OABC 的边OA 、OC 在坐标轴上,点B 坐标为(5,4),点P 是射线BA 上的一动点,把矩形OABC 沿着CP 折叠,点B 落在点D 处;(1)当点C 、D 、A 共线时,AD= ;(2)如图(2),当点P与点A重合时,CD与x轴交于点E,过点E作EF⊥AC,交BC于点F,请判断四边形CEAF的形状,并说明理由;(3)若点D正好落在x轴上,请直接写出点P的坐标.。
新人教版 2017-2018 学年八年级下期中考试数学试题含答案2018.4(考试时间:120 分钟总分150分)一、选择题(每小题 4 分,共 48 分)1.如图,下列哪组条件能判别四边形ABCD是平行四边形?()A.AB ∥ CD,AD= BCB.AB = CD, AD= BCC. ∠ A=∠ B,∠ C=∠ DD.AB= AD, CB= CD2. 三角形的三边为 a、b、 c,由下列条件不能判断它是直角三角形的是()A . a:b:c =13∶ 5∶12B. a 2-b 2=c22D. a:b:c=8 ∶16∶ 17C . a =(b+c )(b-c)3.在△ ABC中,∠ C=90°,周长为 60,斜边与一直角边比是13: 5,?则这个三角形三边分别是()A . 5, 4,3B . 13, 12, 5C . 10, 8, 6D . 26, 24,104.已知:如图,在矩形 ABCD中, E、 F、G、 H 分别为边 AB、BC、 CD、DA的中点.若 AB= 2,AD = 4,则图中阴影部分的面积为( )A.5B.4.5C.4D.3.5A DB C第 1题第4题第5题5.如图 ABCD是平行四边形,下列条件不一定使四边形ABCD是矩形的是()。
A.AC ⊥ BDB.∠ABC=90°C.OA=OB=OC=ODD.AC=BD6.如图,在由单位正方形组成的网格图中标有AB,CD,EF,GH 四条线段,其中能构成一个直角三角形三边的线段是()A . CD,EF,GH B.AB,EF,GH C.AB,CD,GH D.AB,CD,EF7.若a 2 b24b 4c2c10 ,则 b2a c =()4A . 4B. 2C. -2D. 111则ab(a b)8.若a1, bb) 的值为(2 2 1aA. 2B.-2C.2D.229.如图, D 是△ ABC内一点, BD⊥ CD,AD=6, BD=4,CD=3, E,F,G,H 分别是 AB,AC,CD,BD的中点,则四边形EFGH的周长是 ( )A . 7 B.9 C.10 D.1110.如图,边长为 6 的大正方形中有两个小正方形,若两个小正方形的面积分别为S1, S2,则 S +S 值为()12A . 16 B.17 C.18 D.19[来源 : 学科网 ZXXK]第 11 题第 12 题11.如图,在 Rt△ ABC中,∠ BAC=90°, D、E 分别是 AB、BC的中点, F 在 CA延长线上,∠ FDA=∠ B,AC=6, AB=8,则四边形 AEDF的周长为()A. 14 B.15 C.16 D.1812. 已知如图,矩形ABCD中, BD=5cm, BC=4cm, E 是边 AD上一点,且BE = ED, P是对角线上任意一点, PF⊥ BE, PG⊥ AD,垂足分别为F、 G。
2017-2018学年八年级下数学期中检测试题卷2018.04一、选择题(本题有10小题,每小题3分,共30分)1、 下列图形是中心对称图形而不是轴对称图形的是 ( )中·华.资*源%库 2、下列计算正确的是 ( )A5=± B4= C、(25=- D、=3有意义,则x 的取值范围是( ) A .2x >-B .2x -≥C .2x ≠-D .2x -≤4、下列条件中,不能判别四边形是平行四边形的是( )A .两组对边分别平行B .两组对边分别相等C .一组对边平行,另一组对边相等D .一组对边平行且相等5、.某多边形的内角和是其外角和的3倍,则此多边形的边数是 ( ). A .5 B .6 C .7 D .86、利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设( ) A 、直角三角形的每个锐角都小于45° B 、直角三角形有一个锐角大于45° C 、直角三角形的每个锐角都大于45° D 、直角三角形有一个锐角小于45°7、如果关于x的一元二次方程2k x 10-+=有两个不相等的实数根,那么k 的取值范围是( )A .k <12 B .k <12且k ≠0 C .﹣12≤k <12 D .﹣12≤k <12且k ≠0 8.如图在ABC 中,已知∠C=90°,AC=BC ,BC=2,若以AC 的 中点O 为旋转中心,将这个三角形旋转180°,点B 落在 点B ′处,则'B B =( )AB. CD.9.如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 最小的值是( ) A .2 B .3 C .4 D .5BC 'B 第8题第9题 第10题先阅读材料再回答问题:如图线段AB=4,AC=1,BD=2,且AC ⊥AB ,BD ⊥AB ,点P 在线段AB 上运动,当AP=a 时,则BP=4-a ,PC=21a +,PD=2)4(4a -+,由此可求得CP+DP 的最小值为5。
2017-2018学年度第二学期期中考试试卷八年级数学 2018.04本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分.考试用时120分钟. 注意事项:1.答题前,考生务必将学校、姓名、考场号、座位号、考试号填写在答题卷相应的位置上.2.答题必须用0.5mm 黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.)1.若分式1xx +有意义,则x 的取值范围是A. 1x ≠B. 1x ≠-C. 0x ≠D. 1x >-2.下列调查中,适宜采用普查方式的是A.了解一批灯泡的寿命B.了解全国八年级学生的睡眠时间C.考察人们保护环境的意识D.检查一枚用于发射卫星的运载火箭的各零部件3.如图,将右图的正方形图案绕中心O 旋转180︒后,得到的图案是4.反比例函数,6y x =的图像在A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限 5.下列性质中,矩形具有而平行四边形不一定具有的是 A.对角线互相平分 B.两组对角相等C.对角线相等D.两组对边平行且相等6.如图,四边形ABCD 是菱形,8,6,AC DB DH AB ==⊥于H , 则DH 等于A. 245B. 125 C. 5 D. 47.某工厂进行技术创新,现在每天比原来多生产50台机器,且现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设现在每天生产x 台机器,根据题意得方程为A. 6004505x x =+ B. 6004505x x =- C. 60045050x x =+ D. 60045050x x =- 8.已知1122(,),(,)A x y B x y 是反比例函数(0)ky k x =≠图象上的两个点,当120x x <<时,12y y >,那么一次函数y kx k =-的图象不经过A.第一象限B.第二象限C.第三象限D.第四象限 9.如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折 痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折 痕为BE .若AB 的长为2,则FM 的长为 A. 2 B.3 C. 2 D. 110.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA分别在x 轴、y 轴的正半轴上,反比例函数(0)ky x x =>与AB 相交于点D ,与BC 相交于点E ,若3BD AD =,且ODE ∆的面积是9, 则k 的值是A. 92B. 74C. 245 D. 12二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卷相对应的位置上)11.己知反比例函数(0)ky k x =≠的图像经过点(2,3)P -,k 的值为 .12.分式211a a -+的值为0,则a = .13.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.搅匀后从中随机地抽出1张卡片,则“该卡片上的数字大于163”的概率是 .14.如图,延长矩形ABCD 的边BC 至点E ,使CE BD =,如果30ADB ∠=︒,则E ∠=度.15.若解关于x 的方程2111x m x x ++=--产生增根,则m 的值为 . 16.已知反比例函数10y x =,当12x <<时,y 的取值范围是.17.如图,在正方形ABCD 中,对角线AC 与BD 相交于点,O E 为BC 上一点,5,CE F =为DE 的中点.若CEF ∆的周长为18,则OF 的长为 .18.如图,己知直线1y k x b =+与x 轴、y 轴相交于P 、Q 两点,与2k y x =的图像相交于是(2,)A m -、(1,)B n 两点,连接OA 、OB .给出下列结论:①120k k <;②12m n +=;③AOP BOQS S ∆∆=;④不等式21k k x b x +>的解集是2x <-或01x <<,其中正确的结论的序号是 .三、解答题:(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明).19.(本题满分5分)解方程: 32111x x x -=--20.(本题满分5分)已知222111x x xA x x ++=---,在1,0,1-选一个合适的数,求A 的值.21.(本题满分6分)己知1,6y x xy =-=,求111x y ++的值.22.(本题满分6分)为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题: (1)本次共调查了 名市民; (2)补全条形统计图;(3)该市共有480万市民,估计该市市民 晚饭后1小时内锻炼的人数.23.(本题满分6分)一纸箱中放有大小均匀的x 只白球和y 只黄球,从中随机地取出一只白球的概率是25.(1)试写出y 与x 的函数关系式;(2)当x =10时,再往箱中放进20只白球,求随机地取出一只黄球的概率P .24.(本题满分8分)如图,将平行四边形ABCD 的边AB 延长至 点E ,使AB BE =,连接,,DE EC DE 交BC 于点O . (1)求证: ABD BEC ∆≅∆;(2)连接BD ,若2BOD A ∠=∠,求证:四边形是矩形.25.(本题满分10分)如图,在ABC ∆中,点,,D E F 分别是,,AB BC CA 的中点,AH 是边BC 上的高. (1)求证:四边形ADEF 是平行四边形; (2)求证: DHF DEF ∠=∠.26.(本题满分10分)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:21教育网(1)观察表中数据,,x y 满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?27.(本题满分10分)己知四边形ABCD 是菱形,4,60,AB ABC EAF =∠=︒∠的两边分别与射线,CB DC 相交于点,E F ,且60EAF ∠=︒.(1)如图1,当点E 是线段CB 上任意一点时(点E 不与,B C 重合),求证: BE CF =; (2)如图2,当点E 在线段CB 的延长线上,且15EAB ∠=︒时,求CF 的长.28.(本题满分10分)如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点,A C 的坐标分别为(2, 0), (0, 2), D 是x 轴正半轴上的一点,且1AD = (点D 在点A 的右边),以BD 为边向外作正方形BDEF (,E F 两点在第一象限),连接FC 交AB 的延长线于点G .(1)侧点B 的坐标为 ,点E 的坐标为 . (2)求点F 的坐标;(3)是否存在反比例函ky x =的图像同时经过点E 、G 两点?若存在,求k 值;若不存在,请说明理由.。
2017—2018学年度第二学期期中教学质量评估测试八年级数学试卷题号一 二 三 总分 得分注意事项:全卷共120分,考试时间120分钟.一、选择题:(每小题3分,共30分)1.下列二次根式中,最简二次根式的是( )A .B .C .D . 2.下列计算正确的是( ).A.2(3)9=B .822÷=C .236⨯=D .2(2)2-=-3. 下列各组数中,能构成直角三角形的是( )A. 4,5,6B. 1,1,C. 6,8,11D. 5,12,23 4. 在Rt△ABC 中,△C =90°,△B =45°,c =10,则a 的长为( )A. B. C.5 D.5.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是( ) A. AB=BC,CD=DA B. AB//CD,AD=BC C. AB//CD,C A ∠=∠ D.D C B A ∠=∠∠=∠, 6.正方形面积为36,则对角线的长为( ) A.B .6C .9D. 7.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A. 10mB. 15mC. 18mD. 20m8.如图,在平行四边形ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分△BAD 交BC 边于点E ,则EC 等于( )A .1cmB .2cmC .3cmD .4cm9.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF=3,则菱形ABCD 的周长是( )A .12B .16C .20D .2410.如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点D′处,则重叠部分△AFC 的面积为( )A .6B .8C .10D .12二、填空题:(每小题3分,共30分)11. 木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 .(填“合格”或“不合格” ) 12.若式子 在实数范围内有意义,则 的取值范围是 .13.在数轴上表示实数a 的点如图所示,化简()2-a 5-a 2+的结果为______.14.计算()2252-的结果是________.15.一个直角三角形的两边长分别为4与5,则第三边长为________.16.平行四边形ABCD 中一条对角线分△A 为35°和45°,则△B= 度. 17. 如右图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则EF= cm . 18. 在△ABC 中,△C=90°,AC=12,BC=16,则AB 边上的中线CD 为 .19.在平面直角坐标系中,点A (﹣1,0)与点B (0,2)的距离是 . 20.对于任意不相等的两个数a ,b ,定义一种运算△如下:a△b = ,座号得 分 评卷人 题号1 2 3 4 5 6 7 8 9 10 答案得 分 评卷人学校 年级 姓名 学号密封线内不要答题八年级 数学 第1页 (共6页) 八年级 数学 第2页 (共6页)212510252612-+x x x 8.04529a b a b+-如3△2= =5.那么12△4= .三.解答题:(本大题共60分)21. (6分)(共2小题,每小题3分)(1) (2)22.(8分)若最简二次根式31025311x x y x y -+--+和是同类二次根式. (1)求x y 、的值; (5分) (2)求22y x +的值.(3分)23.(7分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. ( 4分)(2)求这块地的面积.(3分)24. (8分)如图,四边形ABCD 中,AC ,BD 相交于点O ,O 是AC 的中点,AD △BC ,AC =8,BD =6.(1)求证:四边形ABCD 是平行四边形; (4分) (2)若AC △BD ,求平行四边形ABCD 的面积. (4分)25 . (8分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 的中点,连接OE .过点C 作CF △BD 交线段OE 的延长线于点F ,连接DF . 求证:(1)△ODE △△FCE (4分)(2)四边形ODFC 是菱形 (4分)得 分 评卷人DACB八年级 数学 第3页 (共6页) 八年级 数学 第4页 (共6页)3232+-)227(328--+5232232⨯÷26.(8分)已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形). (1)四边形EFGH 的形状是 ,证明你的结论;(4分)(2)当四边形ABCD 的对角线满足 条件时,四边形EFGH 是矩形(不证明)(2分) (3)你学过的哪种特殊四边形的中点四边形是矩形? (不证明)(2分)27.(6分)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口 小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?28.(9分)观察下列等式: △ △ + = △……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2分) (2)利用你观察到的规律,化简:(3分)(3)计算: + + +……+(4分)八年级 数学 第5页 (共6页) 八年级 数学 第6页 (共6页)23321+211+231+34)34)(34(34341-=-+-=+231+1031+)23)(23(23-+-23-2017—2018学年度第二学期期中教学质量评估测试八年级数学参考答案一、选择题1.D 2.B 3. B 4.A 5.C 6. A 7.C 8.B 9.D 10. C 二、填空题11.合格 12.x ≥﹣2且x ≠1 13. 3 14. 15.3或41 16.100 17 . 2.5 18. 10 19. . 20.1.2三、解答题:(共60分)21(1)解: + 2 ﹣(﹣ ) =2 +2 ﹣3 + ------(2分) =3 ﹣ ------(3分) (2)解: ÷ ×== ------(2分)= -------(3分) 22.(1)x=4,y=3;(5分) (2)5 (3分) 解:(1)由题意得:3x-10=2 , ---------(2分)2x+y-5=x-3y+11 ----------(4分)解得x=4 y=3 --------(5分)(2)当x=4 , y=3时22y x += =5 -----(3分) 23.解(1)以点A 、点B 、点C 为顶点的三角形是直角三角形(4分)(2)这块地的面积24m 2. (3分) 解:(1)连接AC . -------(1分) 由勾股定理可知:AC=---(2分)又∵AC 2+BC 2=52+122=132=AB 2--------(3分) ∴△ABC 是直角三角形 --------(4分) (2)这块地的面积=△ABC 的面积-△ACD 的面积 ----(1分)=×5×12- ×3×4 --- (2分) =24(m 2). ----(3分)24. (1)证明:∵O 是AC 的中点,∴OA =OC. ------(1分) ∵AD ∥BC ,∴∠DAO =∠BCO. -------(2分) 又∵∠AOD =∠COB ,∴△AOD ≌△COB ,(ASA ) -----------------(3分) ∴OD =OB ,∴四边形ABCD 是平行四边形 --------------(4分) (2)∵四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形 ---------------(2分)∴ ABCD 的面积= AC •BD = ×8×6=24 ---------------(4分)25 .证明:(1)∵CF ∥BD ∴∠ODE=∠FCE----------------(1分)∵E 是CD 中点 ∴CE=DE , -------------------(2分) 在△ODE 和△FCE 中2222435AD CD +=+=12121222410.-1.232322528528332⨯⨯10110102234+32722332235∴△ODE ≌△FCE (ASA ) --------------(4分) (2)∵△ODE ≌△FCE ∴OD=FC , -------------(1分) 又∵CF ∥BD , ∴四边形ODFC 是平行四边形-----(2分)∵矩形ABCD ∴AC=BD OC= AC,OD= BD ∴ OC=OD ----------------(3分)∴四边形ODFC 是菱形. -----------------------(4分) 26(1)平行四边形;(4分)(2)互相垂直(2分)(3)菱形.(2分)(1)证明:连结BD . -------------------- (1分)∵E 、H 分别是AB 、AD 中点,∴EH ∥BD ,EH= BD , ----------------------(2分)同理FG ∥BD ,FG= BD , ---------------------(3分)∴EH ∥FG ,EH=FG ,∴四边形EFGH 是平行四边形 --------------------------(4分) 27. 解:根据题意,得PQ=16×1.5=24(海里) - -----------(1分)PR=12×1.5=18(海里) -----------(2分) QR=30(海里)∵242+182=302, 即PQ 2+PR 2=QR 2∴∠QPR=90°. ----------------(4分) 由“远洋号”沿东北方向航行可知∠QPS=45°,则∠SPR=45°(5分) 即“海天”号沿西北方向航行. -------(6分)28. (1)(2)2311- (3)解:(1)第n 个等式 (2分)(2)原式=1121123111211=-=-+. (3分)原式=2-1+3-2+4-3+……+10-9=10-1 ( 4分)12121212=-+++=++)1)(1(11n n n n n n 101nn -+1=-+++=++)1)(1(11n n n n n n nn -+1n n -+1n n -+1。
河南省驻马店市确山县2017-2018学年八年级数学下学期期中试题(注:请在答题卷上答题)一、选择题(每小题3分,共36分.下列各小题均有四个答案,其中只有一个是正确的.)1.函数y=中的自变量x的取值范围是 ( )A. B. C. D.2.在下列长度的线段中,能构成直角三角形的是 ( )A.3,5,9 B.4,6,8 C.1,,2 D.,,3.在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是 ( )A.+= B.+= C.= D.以上都有可能4.如图,在Rt△ABC中,∠A=30,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为 ( ) A.1 B.2 C. D.1+5.如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,可添加的条件不正确的是( )A.AB=CDB.BC∥ADC.BC=ADD.∠A=∠C6.下列命题中,真命题是 ( )A.对角线相等的四边形是矩形 C.对角线亘相平分的四边形是平行四边形C.对角线互相垂直的四边形是菱形 D.对角线互相垂直平分的四边形是正方形7.有下列四个条件:①AB=BC,②∠ABC=90,③AC=BD,④AC⊥B D.从中选取两个作为补充条件,使□BCD为正方形(如图).现有下列四种选法,其中错误的是 ( )A.②③ B.②④ C.①② D.①③8.在□ABCD中,已知AB=3, BC=4,当□ABCD的面积最大时,结论:①AC=5,②∠A+∠C=180,③AC⊥BD,④AC=BD中,正确的是 ( )A.①②③ B.①②④ C.①③④ D.②③④9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )A.0.7米 B.1.5米 C.2.2米 D.2.4米10.星期六早晨蕊蕊妈妈从家里出发去公园锻炼,她连续匀速走了60min后回到家.图中的折线段OA→AB→BC是她出发后所在位置离家的距离S(km)与行走时间t(min)之间的函数关系.则下列图形中可以大致描述蕊蕊妈妈行走的路线是 ( )11.用四个全等的直角三角形镶嵌而成的正方形如图所示,已知大正方形的面积为49,小正方形的面积为4,若x,y表示直角三角形的两直角边长(x>y),给出下列四个结论:①+= 49;②x-y=2;③2xy=45;④x+y=9.其中正确的结论是 ( )A.①②③ B.①②③④ C.①③ D.②④12.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为 ( )A. B.2 C.3 D.6二、填空题(每小题3分,共24分)13.当x= 时,函数y=-2x+l的值是-5.14.在平行四边形ABCD中,∠B+∠D=20,则∠A的度数为.15.如图,阴影部分(阴影部分为正方形)的面积是____.16.如图,在平面直角坐标系中,四边形AOBC是菱形.若点A的坐标是(3,4),则点C的坐标是____. 17.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5, AD=12,则四边形ABOM的周长为____.18.如图,Rt△ABC中,AB=9, BC=6,∠B=90,将△ABC折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为____.19.如图,在菱形ABCD中,∠BAD=80,AB的垂直平分线交对角线AC于点F,垂足为点E,连接DF,则∠CDF的度数是____.20.如图①,在四边形ABCD 中,AB//CD ,AB ⊥BC ,动点P 从点B 出发,沿B →C →D →A 的方向运动,到达点A 停止,设点P 运动的路程为x ,△ABP 的面积为少,如果y 与x 的函数图像如图②所示,那么AB 边的长度为____.三、解答题(本大题共6个小题,满分60分)21.(9分)在一次实验中,小强把一根弹簧的上端固定,在其下端悬挂物体.下面是他测得的弹簧的长度y 与所挂物体的质量石的一组对应值:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)填空:①当所挂的物体为3kg 时,弹簧长是____.不挂重物时,弹簧长是____. ②当所挂物体的质量为8kg (在弹簧的弹性限度范围内)时,弹簧长度是____.22.(9分)如图,反映的过程是小涛从家出发,去菜地浇水,又去玉米地锄草,然后回家.其中x 表示时间,y 表示小涛离家的距离.(1)菜地离小涛家的距离是____km ,小涛走到菜地用了____min ,小涛给菜地浇水用了____min .(2)菜地离玉米地的距离是____km ,小涛给玉米地锄草用了____min.(3)玉米地离小涛家的距离是____km ,小涛从玉米地走回家的平均速度是____.23.(10分)如图,在中,,,,求的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.24.(10分)如图所示,己知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形:(2)请添加一个条件使矩形ABCD为正方形.(不证明)25.(10分)如图,矩形ABCD中∠ABD,∠CDB的平分线BE, DF分别交边AD,BC于点E,F.(1)求证:四边形BEDF为平行四边形:(2)当∠ABE的度数是时,四边形BEDF是菱形.26.(12分)从下列A、B两题中任选一题解之.A:如图l,BD是矩形ABCD的对角线,∠ABD=30,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB’,C'D,AD’,BC’,如图2.(1)求证:四边形AB'C'D是菱形:(2)四边形ABC'D'的周长为____:(3)将四边形ABC'D’沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出可能拼成的矩形的周长.B:如图,在等腰直角三角形ABC中,∠ACB=90,AC=BC=4,D起AB的中点,E,F分别是AV, BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE, GE, GF.(1)求证:四边形EDFG是正方形:(2)真接写出四边形EDFG面积的最小值和E点所在的位置.我选作题.八年级数学答案一、选择题(每小题3分,共36分) 1—12 DCDA CBAB CBAC 二、填空题(每小题3分,共24分)13. 3 14. 80°(或80) 15. 100 16.(8,4) 17. 20 18. 4 19. 60°(或60) 20. 6 三、解答题(本大题共6个小题,满分60分)21.(9分)(1)反映了弹簧长度y 与所挂物体质量x 之间的关系,所挂物体的质量是自变量,弹簧的长度是因变量.………………(3分)(2)①26cm 20cm ……………(7分) ②36cm………………(9分)22.(9分)(1)1.1, 15, 10………………(3分)(2)0.9, 12, 18…………(6分) (3)2………………(7分),80m/min (或0.8km/min )………………(9分) 23.(10分)过点A 作AD⊥BC 于点D ,设BD= x ,则CD=14-x 由勾股定理得AD 2=AB 2-BD 2=152-x 2,AD 2=AC 2-CD 2=132-(14-x )2∴152-x 2=132-(14-x )2解得x =9……………………(6分)∴AD=129152222=-=-BD AB ……………………(8分) ∴S △ABC =21BC·AD=21×14×12=84………………(10分) 24.(10分)解:(1)证明:∵四边形ABCD 是平行四边形. ∴AD∥BC. ∴∠DAO=∠OCB, ∠ADO=∠OBC. 又∵∠OBC=∠OCB, ∴∠DAO=∠ADO,∴OB=OC, OA=OD. ∴OB+OA=OC+OD, 即AC=BD. ∴平行四边形ABCD 是矩形……(7分) (2)AB=AD (答案不唯一)………………(10分)25.(10分)(1)证明:∵四边形ABCD 是矩形,∴AB∥DC, AD∥BC. ∴∠A BD=∠CDB.∵BE 平分∠ABD, DF 平分∠CDB, ∴∠EBD=21∠ABD, ∠FDB=21∠CDB. ∴∠EBD=∠FDB, ∴DF∥EB. 又∵AD∥BC, ∴四边形BEDF 是平行四边形……(7分) (2)30°……………………(10分)26.(12分)A :解(1)证明:∵四边形ABCD 是矩形,∴AD∥BC, AD=BC.由平移可知AD∥B´C´,AD= B´C´. ∴四边形AB´C´D´为平行四边形.…………(3分) ∵∠DAB=90°, ∠ABD=30°, ∴AD =21BD, ∵B´为BD 中点,∴AB´=21BD. ∴AD=AB´,………………(4分)∴四边形AB´C´D´为菱形………………(5分) (2)43……………………(8分)(3)3+32或6+3……………………(12分)B :(1)证明:∵O 是EF 的中点,GO=OD. ∴四边形EDFG 是平行四边形.………(2分) 连接CD ,∵△ABC 为等腰直角三角形,∠ACB=90°,D 是AB 的中点, ∴∠A=∠DCF=45°, AD=CD在△ADE 和△CDF 中,⎪⎩⎪⎨⎧=∠=∠=CD AD DCF A CFAE ,∴△ADE≌△CDF.∴DE=DF, ∠AD E =∠CDF. ……………………(5分)由DE=DF 及四边形EDFG 是平行四边形知,四边形EDFG 是菱形…………………(7分) ∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°. ∴四边形EDFG 是正方形.………………(9分)(2)四边形EDFG 的最小值是4,此时,E 为线段AC 的中点.………………(12分)。