职业高中数学第二章不等式测试卷
- 格式:docx
- 大小:53.20 KB
- 文档页数:2
第二章:不等式测试题 姓名 班级 分数一、填空题:(每题3分,共30分)1、设72<-x ,则<x 。
2、设732<-x ,则<x 。
3、设b a <,则2+a 2+b ,a 2 b 2。
4、不等式042<+x 的解集为: 。
5、不等式231>-x 的解集为: 。
6、已知集合)6,2(=A ,集合(]7,1-=B ,则=B A I ,=B A Y7、已知集合)4,0(=A ,集合(]2,2-=B ,则=B A I ,=B A Y8、不等式组⎩⎨⎧<->+4453x x 的解集为: 。
9、不等式062<--x x 的解集为: 。
10、不等式43>+x 的解集为: 。
二、选择题(每题3分,共30分)1、不等式732>-x 的解集为( )。
A .5>x B.5<x C.2>x D.2<x2、不等式02142≤-+x x 的解集为( )。
A .(][)+∞-∞-,37,Y B. []3,7-C. (][)+∞-∞-,73,YD. []7,3-3、不等式123>-x 的解集为( )。
A .()+∞⎪⎭⎫ ⎝⎛-∞-,131,Y B. ⎪⎭⎫ ⎝⎛-1,31 C. ()+∞⎪⎭⎫ ⎝⎛∞-,131,Y D. ⎪⎭⎫ ⎝⎛1,31 4、不等式组⎩⎨⎧<->+0302x x 的解集为( ).A .()3,2- B. ()2,3- C. φ D. R5、已知集合()2,2-=A ,集合()4,0=B ,则=B A I ( )。
A .()4,2- B. ()0,2- C. ()4,2 D. ()2,06、要使函数42-=x y 有意义,则x 的取值范围是( )。
A .[)+∞,2 B.(][)+∞-∞-,22,Y C.[]2,2- D. R7、不等式0122≥++x x 的解集是( )。
A .{}1- B.R C.φ D. ()()+∞--∞-,11,Y8、不等式()()043<-+x x 的解集为( )。
职业技术高中第二章:《不等式》测试卷班级______________姓名_________________一、选择题(每题4分,共32分)1. 若a b >,则下列不等式一定成立的是( )。
A. a + 2 < b +2B. a + 2 > b +2C. a + 2 = b +2D. a + 2≈b +22. 若a b >,c ∈R ,则下列不等式一定成立的是()。
A. c a c b ->- B. --a c b c > C. 22ac bc > D. a b > 3. 已知集合A=(-1,4),集合B=[0,5],则A B =U ( )A 、(-1,0]B 、(-1,5]C 、[4,5]D 、[0,4)4. 不等式321x ->的解集为( )。
A.()1(,)1,3-∞-+∞U B.1(, 1)3- C.()1(, )1,3-∞+∞U D.1(, 1)35. 要使函数y =x 的取值范围是( )。
A .(][),22,-∞-+∞U B. []2, 2- C. [)2, +∞ D. R6. 不等式x 2-2x -3>0的解集是( )。
A .(-1,3) B. (-∞,-1)∪(3,+∞)C. ∅D. {-1,3} 7. 下列不等式组的{022723>+<-x x 解集是( )。
A .(-1,3) B. (-1,+∞) C.(-∞,3) D.(-1,+∞)∪(-∞,3)8. 设全集为R ,集合(]1, 5A =-,则C A R ( )。
A .(](),15,-∞-+∞U B. (],1-∞- C. ()(),15,-∞-+∞UD. ()5,+∞ 一、填空题:(每题4分,共28分)9. 设b a <,则2a - 2b -,3a 3b 。
(填“<”或“>”)10. 已知集合(3, 6)A =,集合(]2,5B =-,则A ∩B= 。
中职数学第二章不等式单元测验试卷班级 姓名 学号 得分一、选择题:(每题3分,共30分)1、设,a b c d >>,则下列不等式中正确的是 ( )A .a c b d ->-B .a c b d +>+C .ac bd >D .a d b c +>+2、290x ->的解集是 ( )A .(3,)±+∞B .(3,)+∞C .(,3)(3,)-∞-⋃+∞D .(3,)-+∞3、不等式2210x x ++≤的解集是 ( )A .{}1x x ≤-B .RC .∅D .{}1x x =-4、不等式22x +<的解集是 ( )A .(,1)-∞-B .(1,3)-C .51(,)22--D .5(,)2-+∞5、已知0,0a b b +><则 ( )A .a b a b >>->-B .a a b b >->>-C .a b b a >->>-D .a b a b ->->>6、若二次函数223y x x =--,则使0y <的自变量x 的取值范围是 ( )A .{}13x x -<<B .{}13x x x =-=或C .{}13x x x <->或D .R7、不等式(1)(31)0x x ++≤的解集是 ( )A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎡⎫-+∞⎪⎢⎣⎭C .11,3⎡⎤--⎢⎥⎣⎦D .(]1,1,3⎡⎫-∞-⋃-+∞⎪⎢⎣⎭8、若不等式2104x mx ++≤的解集是∅,则实数m 的取值范围是 ( ) A .1m < B .11m m >-<或 C .11m -<< D .11m m ><-或9、已知{}23,A x x x Z =-<≤∈,12a =,则下列关系正确的是 ( ) A .a A ∈ B .a A ∉ C .a A ≥ D .a A ≤10、不等式226101x x x --<+的解集为 ( )A .13x x ⎧⎫>-⎨⎬⎩⎭ B .12x x ⎧⎫<⎨⎬⎩⎭ C .1132x x ⎧⎫-<<⎨⎬⎩⎭ D .1132x x x ⎧⎫<->⎨⎬⎩⎭或二、填空题:(每题2分,共16分)11、若a b >,且10c +<,则2ac 2bc12、设集合{}80A x x =+>,{}30B x x =-<,{}83C x x =-<<,则集合A ,B,C 的关系为13、不等式20x x -≥的解集为14、已知集合{}{}201,3x x bx c ++==-,则不等式20x bx c ++<的解集为 15、已知不等式220kx kx +->的解集是∅,则k 的取值范围是16、集合{}2x x ≤用区间表示为17、设集合{}80A x x =+<,{}10B x x =+<,则A B ⋂=18、已知集合[]0,M a =,[]0,10N =,如果M N ⊆,则a ∈三、简答题:(共54分)19、解下列不等式:(本题每小题5分,共20分)(1)22150x x --≥ (2)260x x --+>(3)231x -≥ (4)345x -<20、制作一个高为20cm 的长方形容器,底面矩形的长比宽多10cm ,并且容积不少于40003cm .问:底面矩形的宽至少应为多少? (本题8分)21、已知不等式210ax bx +->的解集是{}34x x <<,求实数,a b 的值。
1中职数学第二章不等式测验题一、选择题(每小题5分,共50分) 1、如果a>3,那么( );A. 3<a-2B. 3<a+2C. –a>-3D. a>5 2、不等式x 2+x-6<0的解集( )A.(2,3)B.(-3,2)C.(-∞,2)D. (-∞,-3)∪(2,+∞)3.一元一次不等式x+1>2的解集( ) A (1,+∞) B (2,+∞) C [2,+∞) D [1,+∞)4.绝对值不等式∣x ∣-2≤0解集( )A 、 (2,+∞)B 、 (-2,2)C 、 [-2,2]D 、(-∞,2) ∪(2,+∞)5、下面4个式子中正确的是( )A 、3a >2aB 、3+ a >2 +aC 、3+ a>3- aD 、3/ a>2/ a6、不等式︱x-1︱<3的解集( )A 、[-2,4]B 、(-2,4)C 、 (-∞,2) ∪(4,+∞)D 、R 7、不等式x(x-2)>0的解集为( )A 、 (2,+∞)B 、 (0,2)C 、 [0,2]D 、(-∞,0) ∪(2,+∞)8、3︱x-2︱-2≥7A 、[5,+∞)B 、 (-∞,-1]C 、 [-1,5]D 、(-∞,-1] ∪[5,+∞)9、下列命题中正确的是( )A.若ac>0,则a>0且c>0 B .若2ac >2bc 则a>b C .若a-b>0 ,则ab>0 D .若a>b 则ab>0 10、不等式(2-x)(3-x)<0的解集为( )A (-∞,2) ∪(3,+∞)B (-∞,2] ∪[3,+∞)C (2,3)D [2,3]二.填空题(每空5分,共50分)1如果a>b, 则 b+2 , -2a -2b, 3a 3b2、设x-2<7, 则x<3、不等式x 2+x+3>0的解集 。
高中数学第二章一元二次函数方程和不等式经典知识题库单选题1、若对任意实数x >0,y >0,不等式x +√xy ≤a(x +y)恒成立,则实数a 的最小值为( ) A .√2−12B .√2−1C .√2+1D .√2+12答案:D分析:分离变量将问题转化为a ≥x+√xy x+y对于任意实数x >0,y >0恒成立,进而求出x+√xy x+y的最大值,设√yx=t(t >0)及1+t =m(m >1),然后通过基本不等式求得答案.由题意可得,a ≥x+√xy x+y对于任意实数x >0,y >0恒成立,则只需求x+√xy x+y的最大值即可,x+√xy x+y=1+√y x 1+y x,设√yx =t(t >0),则1+√y x 1+y x=1+t1+t 2,再设1+t =m(m >1),则1+√y x 1+y x=1+t 1+t 2=m 1+(m−1)2=m m 2−2m+2=1m+2m−2≤2√m⋅m−2=2√2−2=√2+12,当且仅当m =2m⇒√y x=√2−1时取得“=”.所以a ≥√2+12,即实数a 的最小值为√2+12. 故选:D.2、已知函数y =ax 2+2bx −c(a >0)的图象与x 轴交于A (2,0)、B (6,0)两点,则不等式cx 2+2bx −a <0 的解集为( )A .(−6,−2)B .(−∞,16)∪(12,+∞) C .(−12,−16)D .(−∞,−12)∪(−16,+∞) 答案:D解析:利用函数图象与x 的交点,可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6,再利用根与系数的关系,转化为b =−4a ,c =−12a ,最后代入不等式cx 2+2bx −a <0,求解集. 由条件可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6, 则2+6=−2ba,2×6=−ca ,得b =−4a ,c =−12a , ∴cx 2+2bx −a <0⇔−12ax 2−8ax −a <0,整理为:12x 2+8x +1>0⇔(2x +1)(6x +1)>0, 解得:x >−16或x <−12,所以不等式的解集是(−∞,−12)∪(−16,+∞). 故选:D小提示:思路点睛:本题的关键是利用根与系数的关系表示b =−4a ,c =−12a ,再代入不等式cx 2+2bx −a <0化简后就容易求解. 3、已知a >b >c >0,则( ) A .2a <b +c B .a (b −c )>b (a −c ) C .1a−c >1b−c D .(a −c )3>(b −c )3 答案:D分析:由不等式的性质判断ACD ;取特殊值判断B.解:对于A ,因为a >b >c >0,所以a +a >b +a >b +c ,即2a >b +c ,故错误; 对于B ,取a =3>b =2>c =1>0,则a (b −c )=3<b (a −c )=4,故错误; 对于C ,由a >b >c >0,得a −c >b −c >0,所以1a−c<1b−c,故错误;对于D ,由a >b >c >0,得a −c >b −c >0,所以(a −c )3>(b −c )3,故正确. 故选:D.4、《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A .a+b 2≥√ab(a >0,b >0)B .a 2+b 2≥2√ab(a >0,b >0)C .2aba+b ≤√ab(a >0,b >0)D .a+b 2≤√a 2+b 22(a >0,b >0)答案:D分析:根据图形,求出圆的半径以及OC .再利用勾股定理求得FC ,结合直角三角形的直角边长小于斜边长,可得答案.设AC=a,BC=b,可得圆O的半径为r=OF=12AB=a+b2,又由OC=OB−BC=a+b2−b=a−b2,在直角△OCF中,可得FC2=OC2+OF2=(a−b2)2+(a+b2)2=a2+b22,因为FO≤FC,所以a+b2≤√a2+b22,当且仅当a=b时取等号.故选:D.5、已知a>1,则a+4a−1的最小值是()A.5B.6C.3√2D.2√2答案:A分析:由于a>1,所以a−1>0,则a+4a−1=(a−1)+4a−1+1,然后利用基本不等式可求出其最小值由于a>1,所以a−1>0所以a+4a−1=a−1+4a−1+1≥2√(a−1)⋅4(a−1)+1=5,当且仅当a−1=4a−1,即a=3时取等号.故选:A.6、不等式1+x1−x≥0的解集为()A.{x|x≥1或x≤−1}B.{x∣−1≤x≤1} C.{x|x≥1或x<−1}D.{x|−1≤x<1}答案:D分析:不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,由此求得不等式的解集.不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,解得−1≤x<1,故不等式的解集为{x|−1≤x<1},故选:D.7、已知关于x 的不等式mx 2−6x +3m <0在(0,2]上有解,则实数m 的取值范围是( ) A .(−∞,√3)B .(−∞,127)C .(√3,+∞)D .(127,+∞) 答案:A分析:分离参数,将问题转换为m <6xx 2+3在(0,2]上有解,设函数g(x)=6xx 2+3,x ∈(0,2],求出函数g(x)=6x x 2+3的最大值,即可求得答案.由题意得,mx 2−6x +3m <0,x ∈(0,2],即m <6xx 2+3,故问题转化为m <6xx 2+3在(0,2]上有解,设g(x)=6xx 2+3,则g(x)=6xx 2+3=6x+3x,x ∈(0,2],对于x +3x≥2√3 ,当且仅当x =√3∈(0,2]时取等号,则g(x)max =2√3=√3,故m <√3 , 故选:A8、已知a,b 为正实数且a +b =2,则b a+2b的最小值为( )A .32B .√2+1C .52D .3 答案:D分析:由题知ba +2b =2(1a +1b )−1,再结合基本不等式求解即可. 解:因为a,b 为正实数且a +b =2, 所以b =2−a , 所以,ba+2b=2−a a +2b =2a +2b −1=2(1a +1b)−1 因为2a +2b =2(1a +1b )=(a +b )(1a +1b )=2+ba +ab ≥2+2=4,当且仅当a =b =1时等号成立; 所以ba +2b =2−a a+2b =2a +2b −1≥3,当且仅当a =b =1时等号成立;故选:D 多选题9、已知正数a,b满足a2+b2=2a+2b,若a+b∈Z,则a+b的值可以是()A.2B.3C.4D.5答案:BC分析:利用基本不等式构造关于a+b的一元二次不等式,即可求解.解:2(a+b)=a2+b2=12(a2+b2+a2+b2)≥12(a+b)2(当且仅当a=b时,取等号),即(a+b)2−4(a+b)≤0,解得:0≤a+b≤4,又a+b=2时,ab=0,不合题意,故选:BC10、某辆汽车以xkm/ℎ的速度在高速公路上匀速行驶(考虑到高速公路行车安全,要求60≤x≤120)时,每小时的油耗(所需要的汽油量)为15(x−k+4500x)L,其中k为常数.若汽车以120km/h的速度行驶时,每小时的油耗为11.5L,欲使每小时的油耗不超过...9L,则速度x的值可为()A.60B.80C.100D.120答案:ABC解析:先利用120km/h时的油耗,计算出k的值,然后根据题意“油耗不超过9L”列不等式,解不等式求得x的取值范围.由汽车以120km/h的速度行驶时,每小时的油耗为11.5L,∴15(120−k+4500120)=11.5,解得:k=100,故每小时油耗为15(x+4500x)−20,由题意得15(x+4500x)−20≤9,解得:45≤x≤100,又60≤x≤120,故60≤x≤100,所以速度x的取值范围为[60,100].故选:ABC小提示:关键点点睛:本题考查利用待定系数法求解析式,考查一元二次不等式的解法,解题的关键是先利用120km/h时的油耗,计算出k的值,然后代入根据题意解不等式,考查实际应用问题,属于中档题.11、下列结论正确的是()A.当x>0时,√x√x≥2B.当x>2时,x+1x的最小值是2C.当x<54时,4x−2+14x−5的最小值是5D.设x>0,y>0,且x+y=2,则1x +4y的最小值是92答案:AD分析:由已知结合基本不等式检验各选项即可判断.解:x>0时,√x+√x⩾2,当且仅当x=1时取等号,A正确;当x>2时,x+1x >52,没有最小值,B错误;当x<54时,4x−2+14x−5=4x−5+14x−5+3=−(5−4x+15−4x)+3⩽−2√(5−4x)15−4x+3=1,有最大值,没有最小值,C错误;x>0,y>0,x+y=2,则1x +4y=(1x+4y)(x+y)×12=12(5+yx+4xy)⩾12(5+4)=92,当且仅当yx =4xy且x+y=2即x=23,y=43时取等号,故选:AD.12、2022年1月,在世界田联公布的2022赛季首期各项世界排名中,我国一运动员以1325分排名男子100米世界第八名,极大地激励了学生对百米赛跑的热爱.甲、乙、丙三名学生同时参加了一次百米赛跑,所用时间(单位:秒)分别为T1,T2,T3.甲有一半的时间以速度(单位:米/秒)V1奔跑,另一半的时间以速度V2奔跑;乙全程以速度√V1V2奔跑;丙有一半的路程以速度V1奔跑,另一半的路程以速度V2奔跑.其中V1>0,V2>0.则下列结论中一定成立的是()A.T1≤T2≤T3B.T1≥T2≥T3C.T1T3=T22D.1T1+1T3=1T2答案:AC分析:首先利用时间和速度的关系表示三人的时间,再利用不等式的关系,结合选项,比较大小,即可判断选项.由题意12T1V1+12T1V2=100,所以T1=100V1+V22,T2=V1V2,T3=50V1+50V2=1002V1V2V1+V2,根据基本不等式可知V 1+V 22≥√V 1V 2≥2V 1V 2V 1+V 2>0,故T 1≤T 2≤T 3,当且仅当V 1=V 2时等号全部成立,故A 选项正确,B 选项错误; T 1T 3=100V 1+V 22×1002V 1V 2V 1+V 2=1002V 1V 2=T 22,故C 选项正确;1T 1+1T 3=V 1+V 22100+2V 1V 2V 1+V 2100≠√V 1V 2100=1T 2,故D 选项错误.故选:AC .13、十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈里奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a ,b ,c ∈R ,则下列命题正确的是( )A .若a >b >0,则1a<1b B .若a,b,∈R ,则3a 2+b 2≥2√3abC .若a >b >0,c >0,则ac −bc >0D .若a <b ,则|a |<|b | 答案:ABC分析:根据不等式的性质,或者做差法,即可判断选项. 对于A ,因为a >b >0,所以1a −1b =b−a ab <0,故A 正确;对于B ,3a 2+b 2−2√3ab =(√3a −b)2≥0,故B 正确;对于C ,若a >b >0,c >0,则ac >bc ,即ac −bc >0,故C 正确; 对于D ,当a =−2,b =1时,满足a <b ,但|a |>|b |,故D 不正确. 故选:ABC . 填空题 14、函数f(x)=√ax 2+3ax+1的定义域是R ,则实数a 的取值范围为________.答案:[0,49)分析:由题知不等式ax 2+3ax +1>0恒成立,进而分a =0和a ≠0两种情况讨论求解即可. 解:因为函数f (x )的定义域是R . 所以不等式ax 2+3ax +1>0恒成立.所以,当a =0时,不等式等价于1>0,显然恒成立;当a ≠0时,则有{a >0Δ<0,即{a >09a 2−4a <0,解得0<a <49.综上,实数a的取值范围为[0,49).故答案为: [0,49)15、若实数a,b满足a2+b2=1,则1a2+4b2+1的最小值为_________.答案:92##4.5分析:根据实数a,b满足a2+b2=1,利用“1”的代换得到1a2+4b2+1=12(1a2+4b2+1)⋅(a2+b2+1)=1 2(5+b2+1a2+4a2b2+1),再利用基本不等式求解.因为实数a,b满足a2+b2=1,所以1a2+4b2+1=12(1a2+4b2+1)⋅(a2+b2+1)=12(5+b2+1a2+4a2b2+1),≥12(5+2√(b2+1a2)⋅(4a2b2+1))=92,当且仅当{b2+1a2=4a2b2+1a2+b2+1=2,即a=√63,b=√33时,等号成立,所以1a2+4b2+1的最小值为92,所以答案是:9216、若实数a>b,则下列说法正确的是__________.(1)a+c>b+c;(2)ac<bc;(3)1a <1b;(4)a2>b2答案:(1)分析:根据不等式的性质以及特殊值验证法,对四个说法逐一分析,由此确定正确的说法. 根据不等式的性质(1)正确;(2)中如果c≥0时不成立,故错误;(3)若a=1,b=−1时,1a <1b不成立,故错误;(4)若a=1,b=−1,a2>b2不成立,故错误.故答案为:(1)小提示:本小题主要考查不等式的性质,属于基础题.解答题17、在△ABC 中,2B =A +C .(1)当AC =12时,求S △ABC 的最大值; (2)当S △ABC =4√3时,求△ABC 周长的最小值. 答案:(1)36√3;(2)12.分析:(1)由题意,B =60°,b =12,由余弦定理、基本不等式,即可求S △ABC 的最大值; (2)当S △ABC =4√3时,求出ac ,利用余弦定理、基本不等式,即可求出△ABC 周长的最小值. 解:(1)由题意,B =60°,b =12,∴由余弦定理可得122=a 2+c 2−2accos60°≥ac , ∴ac ≤144,∴S △ABC =12acsinB ≤36√3, ∴S △ABC 的最大值为36√3; (2)S △ABC =4√3=12ac ×√32, ∴ac =16,又b 2=a 2+c 2−2accos60°=(a +c)2−48, b 2=a 2+c 2−2accos60°≥ac , ∴a +c =√b 2+48,b ≥4∴△ABC 周长为a +b +c ≥8+4=12当且仅当时,△ABC 周长的最小值为12.小提示:本题考查了余弦定理、基本不等式,考查三角形面积、周长的求解,考查学生分析解决问题的能力,属于较难题.18、(1)若x >1,求y =x +4x−1的最小值及对应x 的值; (2)若0<x <2,求4x +12−x 的最小值及对应x 的值. 答案:(1)最小值为5,x =3;(2)最小值为92,x =43. 分析:(1)化简y =x −1+4x−1+1,再利用基本不等式求解;a b c ==(2)化简y=12(4x+12−x)×2=12(4x+12−x)×[x+(2−x)],再利用基本不等式求解.(1)因为x>1,所以x−1>0,4x−1>0,y=x−1+4x−1+1≥2√(x−1)(4x−1)+1=5当且仅当x−1=4x−1(x>1)即x=3时等号成立,函数取最小值5;(2)y=12(4x+12−x)×2=12(4x+12−x)×[x+(2−x)]=12[5+4(2−x)x+x2−x]≥12(5+2√4(2−x)x×x2−x)=92当且仅当4(2−x)x =x2−x(0<x<2)即x=43时等号成立,函数取最小值92.。
2.1不等式的基本性质习题练习2.1 不等式的基本性质1、用符号“>”或“<”填空:(1)67 78 76π 78π (2)431 17 431- 17- (3),2a b a <+设则 2,1b a +- 1,1b a -- 1b +;(4),a b a <设则2 2,2b a - 2,31b a -- 31b -。
2、比较两式的大小:2211(0)x x x x ++->与参考答案:1、(1)<,<(2)<,>(3)<,<,<(4)<,>,>2、2211x x x ++>-2.2区间习题练习2.2.1 有限区间1、已知集合()[)2,7,1,9,A B A B =-=⋂=则2、已知集合[][)2,3,5,1,A B A B =-=-⋃=则3、已知全集[]()1,11,1I I A =--=,集合A=,则C 参考答案:1、[)1,72、 [)-5,33、 {}-1,1, 练习2.2.2 无限区间1、 已知集合()[),6,2,+,A B A B =-∞=∞⋂=则2、不等式378x -<的解集是3、已知{A x x =≤,用区间可以表示A 为 参考答案:1、 [)2,62、 (),5-∞3、 (-∞2.3一元二次不等式习题练习2.3 一元二次不等式1、不等式2320x x -+>的解集是2、不等式2560x x +-≤的解集是3、不等式(1)(3)0x x --≤的解集是4、不等式2340x x -++≥的解集是参考答案:1、()(),12,-∞⋃+∞2、[]6,1-3、[]1,34、41,3⎡⎤-⎢⎥⎣⎦2.4含绝对值的不等式习题练习2.4.1 不等式x a x a <>或1、不等式2x ≤的解集为2、不等式235x -+<-的解集为3、不等式39x <的解集为参考答案:1、[][],22,-∞-⋃+∞2、()(),44,-∞-⋃+∞3、()3,3-练习2.4.2 不等式ax b c ax b c +<+>或1、不等式22x -<的解集为2、不等式30x ->的解集为3、不等式212x +≤的解集为4、不等式823x -≤的解集为参考答案:1、()0,42、()(),33,-∞-⋃+∞3、31,22⎡⎤-⎢⎥⎣⎦4、511,22⎡⎤⎢⎥⎣⎦。
一、选择题1.若正数,,m n p 满足4m n p ++=,且()()()222222mn mn p n pn m p mp mnp λ+++++≥,则实数λ的取值范围为( )A .(],6-∞B .(],4-∞C .(],12-∞D .(],8-∞2.已知,,a b c R +∈ ,则()()()222222a abc b b ac c c ab -+-+- 的正负情况是( )A .大于零B .大于等于零C .小于零D .小于等于零3.函数y 的最大值是( )A B C .3D .54.已知,,x y z ∈R ,若234x y z -+=,则222(5)(1)(3)x y z ++-++的最小值为( ) A .37200B .2007C .36D .405.在平面内,已知向量(1,0)a =,(0,1)b =,(1,1)c =,若非负实数,,x y z 满足1x y z ++=,且23p xa yb zc =++,则( )A .p 的最小值为B .p 的最大值为C .p 的最小值为D .p 的最大值为6.设m,n 为正整数,m>1,n>1,且log 3m·log 3n≥4,则m+n 的最小值为( ) A .15 B .16 C .17D .187.已知x,y,z ∈(0,+∞),且1231,x y z ++=则y zx 23++的最小值为( ) A .5 B .6 C .8D .98.若5x 1+6x 2-7x 3+4x 4=1,则222212343x 2x 5x x +++的最小值是( ) A .78215B .15782C .3D .2539.已知a +b +c =1,且a , b , c >0,则 222a b b c a c+++++ 的最小值为( ) A .1B .3C .6D .910.若实数x +y +z =1,则2x 2+y 2+3z 2 的最小值为( ) A .1B .6C .11D .61111.设a ,b ,c ,x ,y ,z 是正数,且2a +2b +2c =10, 2x +2y +2z =40, ax +by +cz =20,则a b cx y z++++=( )A .14B .13C .12D .3412.已知,,(0,1)a b c ∈,且1ab bc ac ++=,则111111a b c++---的最小值为( ) A .332- B .932- C .632- D .9332+ 二、填空题13.函数2121y x x =-++的最大值为______. 14.函数()25f x x x =+-的最大值为___________. 15.设x ,y ,z 均为实数,则22222x y z x y z +-++的最大值是________.16.若x y z R ∈、、,且226x y z ++=,则222x y z ++的最小值为______.17.已知实数,,,x y a b 满足:221a b +≤,2224x x y x y ≤⎧⎪+≥⎨⎪+≤⎩,则ax by +的最大值为__________ . 18.已知、、是三角形三个角的弧度数,则的最小值____.19.若正数,,a b c 满足41a b c ++=,2a b c _________ 20.已知a ,b ,c ∈R ,a +2b +3c =6,则a 2+4b 2+9c 2的最小值为________.三、解答题21.(1)已知,a b +∈R ,且23a b +=,则2212a b +的最小值; (2)已知,x y +∈R ,且491x y +=,求22492x x y y+++的最小值. 22.已知关于x 的函数()|1|||f x x x a =++-.(1)若存在x 使得不等式()31f x a -成立,求实数a 的取值范围; (2)若()|3|f x x +的解集包含1[,2]2-,求a 的取值范围. (3)若(2)中a 的最大值为m ,2352,x y z m ++=求213456y x y z +++.23.已知222x y +=,且x y ≠,求()()2211x y x y ++-的最小值.24.已知:a ,b ,c +∈R 且231a b c ++=,求证:222114a b c ++≥. 25.已知x ,y ,z 均为正实数,且222111149x y z ++=. 证明:(1)1111263xy yz xz++≤; (2)222499x y z ++≥.26.已知函数()|23||23|.f x x x =-++ (1)解不等式()8f x ≤;(2)设x ∈R 时,()f x 的最小值为M .若实数,,a b c 满足2a b c M ++=,求222a b c ++的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】不等式化为222222m n p n m p p m nλ+++++≥,左边()222222444m n p n m p m n p p m n ⎛⎫+++=++++ ⎪⎝⎭,利用柯西不等式求出最小值即可求解.【详解】不等式化为222222m n p n m p p m nλ+++++≥, 左边()222222444m n p n m p m n p p m n ⎛⎫+++=++++ ⎪⎝⎭()()()()222888m n p n m p m n p p m n ⎛⎫+++≥++++ ⎪ ⎪⎝⎭ ()218m n p n m p ≥+++++ 16488=⨯=, 所以8λ≤,实数λ的取值范围为(],8-∞. 故选:D2.B解析:B 【分析】设0a b c >,所以333a b c ,根据排序不等式即可得出答案. 【详解】设0a b c >,所以333a b c根据排序不等式得333333a a b b c c a b b c c a ⋅+⋅+⋅++又ab ac bc ,222a b c ,所以333222a b b c c a a bc b ca c ab ++++. 所以444222a b c a bc b ca c ab ++++ 即()()()2222220aabc b b ac c c ab-+-+-.故选:B 【点睛】本题主要考查了排序不等式的应用,属于中档题.3.B解析:B 【分析】利用柯西不等式求解. 【详解】因为y ===,即265x =时,取等号.故选:B 【点睛】本题主要考查柯西不等式的应用,还考查了转化化归的思想和运算求解的能力,属于基础题.4.B解析:B 【分析】根据柯西不等式得到不等式关系,进而求解. 【详解】根据柯西不等式得到()()()()()()2222221(2)352135313x y z x y z ⎡⎤+-+≥++-+++--++⎡⎤⎣⎦⎣⎦()()()()2222511423164030x y z x y z ⎡⎤++-++≥-++=⎣⎦进而得到最小值是:2007故答案为B. 【点睛】这个题目考查了柯西不等式的应用,比较基础.5.A解析:A 【分析】求出p 的坐标,表示p ,即:p=柯西不等式即可求得其最小值,问题得解. 【详解】因为()1,0a =,()0,1b =,()1,1c =, 所以23p xa yb zc =++=()3,23x z y z ++, 又非负实数,,x y z 满足1x y z ++=,所以01z ≤≤, 所以p==5≥=≥=, 当且仅当()()31232,0x z y z z +⨯=+⨯=时,等号成立. 即:当且仅当41,,055x y z ===时,等号成立.所以p 的最小值为 , 故选A. 【点睛】本题主要考查了柯西不等式的应用,还考查了向量的模及坐标运算,考查构造能力,属于中档题.6.D解析:D 【解析】 【分析】由题意结合均值不等式的结论可得mn ≥34,据此可得m +n 的最小值为18. 【详解】∵4≤log 3m ·log 3n≤22333(),24log m log n log mn +⎛⎫= ⎪⎝⎭∴(log 3mn )2≥16,∴mn ≥34.∴m+n ≥×32=18,当且仅当m=n 时等号成立. 则m +n 的最小值为18. 本题选择D 选项. 【点睛】本题主要考查对数的运算法则,基本不等式求最值的方法等知识,意在考查学生的转化能力和计算求解能力.7.D解析:D 【解析】 【分析】由题意结合柯西不等式的结论求解23y zx ++的最小值即可. 【详解】 x 1232323y z y z x x y z ⎛⎫⎛⎫++=++++ ⎪⎪⎝⎭⎝⎭≥2⎛ =9.当且仅当x=3,y=6,z=9时等号成立. 即23y zx ++的最小值为9. 本题选择D 选项. 【点睛】本题主要考查柯西不等式求最值的方法及其应用,意在考查学生的转化能力和计算求解能力.8.B解析:B 【解析】 【分析】由题意结合柯西不等式的结论整理计算即可求得最终结果. 【详解】由题意结合柯西不等式有:()222212342549325181635xx x x ⎛⎫+++⨯+++ ⎪⎝⎭()212345674x x x x ≥+++()2123456741x x x x ≥+-+=.故2222123415325782x x x x +++≥. 本题选择B 选项. 【点睛】本题主要考查柯西不等式其最值的方法,意在考查学生的转化能力和计算求解能力.9.D解析:D 【解析】2221,a b c a b b c c a ++=∴+++++()1112++a b c a b b c c a ⎛⎫=⋅++ ⎪+++⎝⎭()()()()21111119a b b c c a a b b c c a ⎛⎫⎡⎤=+++++⋅++≥++= ⎪⎣⎦+++⎝⎭,当且仅当13a b c ===时等号成立,故选D.【易错点晴】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).10.D解析:D 【解析】()22221123123xy z y ⎛⎫++++≥ ⎪⎝⎭()2222161,231111123x y z x y z =++=∴++≥=++,当且仅当362,,111111x y z ===时等号成立,22223x y z ∴++的最小值611,故选D.11.C解析:C 【解析】 由柯西不等式得()2222222111111444222a b c x y z ax by cz ⎛⎫⎛⎫++++≥++ ⎪ ⎪⎝⎭⎝⎭当且仅当111222a b c x y z ==时等号成立,2222221040a b c x y z ++=++=,,20ax by cz ++=∴等号成立 111222a b c x y z ∴== 12a b c x y z ++∴=++故答案选C12.D解析:D 【解析】21110,,1,()3()33,()111a b c a b c ab bc ca a b c a b c<<∴++≥++=∴++≥++---(1a -+11)b c -+-2111111[(1)(1)(1)]9,111111a b c a b c a b c-+-+-=∴++≥------9(111)a b c -+-+-92+≥=D.,故选 【点睛】本题考查柯西不等式,涉及转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于中档题.本题想用基本不等式公式求得a b c ++≥利用柯西不等式公式求得111()(111)111a b c a b c++-+-+----9,≥从而求得1119111(111)a b c a b c ++≥≥=----+-+- 二、填空题13.3【分析】化简函数利用柯西不等式即可求解【详解】由题意函数当且仅当取等号即即时取等号所以函数的最大值为3故答案为:3【点睛】本题主要考查了利用柯西不等式求最值问题其中解答中合理变形熟练应用柯西不等式解析:3 【分析】化简函数1y ==. 【详解】由题意,函数1y =3≤==1=12242x x -=+,即0x =时取等号, 所以函数的最大值为3. 故答案为:3. 【点睛】本题主要考查了利用柯西不等式求最值问题,其中解答中合理变形,熟练应用柯西不等式求解是解答的关键,着重考查了推理与运算能力.14.5【分析】利用柯西不等式变形为求解【详解】由柯西不等式得当且仅当即时等号成立故答案为:5【点睛】本题主要考查了根式函数求最值问题还考查了转化化归运算求解的能力属于中档题解析:5 【分析】利用柯西不等式,变形为(()222222125⎡⎤≤+⋅+=⎢⎥⎣⎦求解.【详解】 由柯西不等式得(()222222125⎡⎤≤+⋅+=⎢⎥⎣⎦.()5f x ∴=≤,当且仅当21=,即4x =时,等号成立. 故答案为:5 【点睛】本题主要考查了根式函数求最值问题,还考查了转化化归,运算求解的能力,属于中档题.15.【分析】首先利用柯西不等式可以得到从而求得两边开放得到从而求得其最大值【详解】由柯西不等式知所以所以当且仅当时等号成立故答案为:【点睛】该题考查的是有关式子的最值问题涉及到的知识点有柯西不等式在解题解析:2【分析】首先利用柯西不等式可以得到2222222(2)[2(1)](2)x y z x y z ++++-≥+-,从而求得2222(2)1122x y z x y z +-≤++2≤,从而求得其最大值. 【详解】由柯西不等式知2222222(2)[2(1)](2)x y z x y z ++++-≥+-,所以2222(2)1122x y z x y z +-≤++,2≤,当且仅当202xy z ==->时等号成立,故答案为:2. 【点睛】该题考查的是有关式子的最值问题,涉及到的知识点有柯西不等式,在解题的过程中,注意对柯西不等式形式的配凑,属于较难题目.16.4【分析】由条件利用柯西不等式可得由此求得的最小值【详解】解:由于即即的最小值为4故答案为:4【点睛】本题主要考查柯西不等式的应用属于基础题解析:4 【分析】由条件利用柯西不等式可得222222(212)()(22)36x y z x y ++++++=,由此求得222x y z ++ 的最小值.【详解】解:由于222222(212)()(22)36x y z x y ++++++=,即2229()36x y z ++,2224x y z ∴++,即222x y z ++ 的最小值为4, 故答案为:4. 【点睛】本题主要考查柯西不等式的应用,属于基础题.17.【解析】分析:根据线性规划先求出的范围再根据柯西不等式求解详解:画出不等式组表示的可行域如图阴影部分所示表示可行域内的点到原点的距离结合图形可得点A 到原点的距离最大由解得故∴由柯西不等式得当且仅当时【解析】的范围,再根据柯西不等式求解. 详解:画出不等式组表示的可行域如图阴影部分所示.22x y +表示可行域内的点到原点的距离,结合图形可得点A 到原点的距离最大,由224x x y =⎧⎨+=⎩,解得21x y =⎧⎨=⎩,故()2,1A ,∴225x y +≤.由柯西不等式得2222225ax by a b x y x y +≤++≤+≤,当且仅当x ya b=时等号成立.∴ax by +的最大值为5.点睛:在应用柯西不等式求最大值时,要注意等号成立的条件,柯西不等式在排列上规律明显,具有简洁、对称的美感,运用柯西不等式求解时,可按照“一看、二构造、三判断、四运用”的步骤求解.18.【解析】试题分析:所以原式转化为根据基本不等式所以原式等号成立的条件是所以求原式的最小值转化为求的最小值令当时函数单调递减当函数单调递减所以当时函数取得最小值当时取得最小值最小值等于考点:1基本不等 解析:【解析】 试题分析:,所以,原式转化为,根据基本不等式,,所以原式,等号成立的条件是,所以求原式的最小值转化为求的最小值,,令,,,当时,,函数单调递减,当,,函数单调递减,所以当时,函数取得最小值,当时,,取得最小值,最小值等于.考点:1.基本不等式;2.导数研究函数的极值与最值.19.【分析】直接利用柯西不等式列式化简后可求得最大值【详解】由柯西不等式得即即【点睛】本小题主要考查利用利用柯西不等式求最大值考查化归与转化的数学思想方法属于基础题 10【分析】直接利用柯西不等式列式,化简后可求得最大值. 【详解】 由柯西不等式得((222222214111142a b c a b c ⎡⎤⎫⎡⎤⎢⎥++++≥⎪⎢⎥⎣⎦⎢⎥⎭⎝⎭⎣⎦,即()25422a b c a b c ++≥1022a b c ≤.【点睛】本小题主要考查利用利用柯西不等式求最大值,考查化归与转化的数学思想方法,属于基础题.20.12【解析】试题分析:由题∵a+2b+3c=6∴根据柯西不等式得;(a+2b+3c )2=(1×a+1×2b+1×3c )2≤(12+12+12)a2+(2b )2+(3c )2化简得62≤3(a2+4b2解析:12 【解析】试题分析:由题∵a+2b+3c=6,∴根据柯西不等式,得;(a+2b+3c )2=(1×a+1×2b+1×3c )2≤(12+12+12)[a 2+(2b )2+(3c )2] 化简得62≤3(a 2+4b 2+9c 2),即36≤3(a 2+4b 2+9c 2) ∴a 2+4b 2+9c 2≥12,当且仅当a :2b :3c=1:1:1时, 即22,1,3a b c ===,时等号成立,a 2+4b 2+9c 2的最小值为12. 考点:柯西不等式的应用.三、解答题21.(1)3;(2)118. 【分析】(1)由已知得32a b =+≥,即201ab <≤,则2222212111a b a b b+=++,利用基本不等式可得结果.(2)利用柯西不等式进行求解即可. 【详解】因为,a b +∈R,32a b a b b =+=++≥201ab <≤当且仅当23a b a b =⎧⎨+=⎩,即11a b =⎧⎨=⎩时取“=”.(1)∵23a b +=,∴201ab <≤,可得211ab ≥,∵22222121113a b a b b +=++≥ 当且仅当1a b ==时,取到最小值3. (2)因为x ,y 是正数,且491x y+=,所以,2222228191644949289y x x x y y x y ⎛⎫⎛⎫⎪ ⎪+=+=+++++222294118⎡⎤⎛⎫⎛⎫⎢⎥⎪ ⎪⎡⎤⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦294111818⎛⎫⎪≥=⎝,94=时,即944989y x x y =++,即2y x =时,取等号.又491x y +=,所以当172x =,17y =时,22492x x y y +++取到最小值118. 【点睛】本题考查利用基本不等式和柯西不等式求最值,考查计算能力,属于基础题.22.(1)[1,)+∞;(2)3[0,]2;(3 【分析】(1)根据绝对值三角不等式求()f x 最小值,再解含绝对值不等式得结果;(2)先根据范围化简不等式,再根据变量分离法解决不等式恒成立问题,即得结果; (3)根据柯西不等式直接可得最大值. 【详解】(1)对x ∈R ,()|1||||(1)()||1|f x x x a x x a a =++-+--=+,当且仅当(1)()0x x a +-时,等号成立,故原条件等价于|1|31a a +-,即3113 1.310a a a a -++--,解得1a , 故实数a 的取值范围为[1,)+∞;(2)当1[,2]2x ∈-时,()|1|||1|||3|3f x x x a x x a x x =++-=++-+=+,||2x a ∴-,即22x a --,则22x a x -+,又()|3|f x x +的解集包含1[,2]2-,()|3|f x x ∴+在1[,2]2-恒成立, ∴当1[,2]2x ∈-时,(2)(2)max min x a x -+,又3(2)0,(2)2max min x x -=+=, ∴302a,即实数a 的取值范围为3[0,]2.(3)由(2)知3,2m =则2353,x y z ++=由柯西不等式得, ()()()()2213456111x y z +++++++≥⎡⎤⎣⎦,()23113≤+⨯==1124,,6915x y z ===-即时,等号成立.【点睛】本题考查绝对值三角不等式、不等式恒成立、利用柯西不等式求最值,考查综合分析求解能力,属中档题. 23.1 【分析】令,u x y v x y =+=-,得224u v ,利用柯西不等式可以求出.【详解】令,u x y v x y =+=-,则,22u vu vxy , 222x y +=,22()()8u v u v ∴++-=,得224u v ,由柯西不等式可得2222211114u v u v ,即22111u v ,当且仅当222u v ==,即2,0x y 或0,2x y 时,等号成立,故()()2211x y x y ++-的最小值为1.【点睛】本题考查柯西不等式的应用,考查考生分析问题、解决问题的能力. 24.证明见解析. 【分析】构造柯西不等式,即可得出结果. 【详解】由柯西不等式,得()()()22222221231231a b ca b c ++⋅++≥⋅+⋅+⋅=,∴222114a b c ++≥. 当且仅当123a b c ==, 即114=a ,214=b ,314=c 时取等号. 【点睛】本题考查了柯西不等式的应用,考查了运算求解能力,属于一般题目. 25.(1)证明见解析;(2)证明见解析. 【分析】(1)运用基本不等式,可得221114x y xy +≥,22111493y z yz +≥,2211293x z xz+≥三式相加,结合题设条件,即可求解;(2)由乘“1”法,结合柯西不等式证明,即可证明. 【详解】(1)由基本不等式,可得221114x y xy +≥,22111493y z yz +≥,2211293x z xz+≥, 所以22211111224933x y z xy yz xz⎛⎫++≥++⎪⎝⎭.当且仅当11123x y z==时等号成立,即22211111149263x y z xy yz xz ++≥++,又由222111149x y z ++=,所以1111263xy yz xz++≤. (2)由题意知222111149x y z++=, 可得()22222249491x y z x y z ++=++⨯()2222221114949x y z x y z ⎛⎫=++⋅++ ⎪⎝⎭()21119≥++=.当且仅当23x y z ==时等号成立,所以222499x y z ++≥. 【点睛】本题主要考查了不等式的证明,其中解答中合理运用均值不等式和柯西不等式是解答的关键,属于中档题.26.(1){|22}x x -≤;(2)6 【分析】(1)利用零点分段讨论求解不等式;(2)利用绝对值三角不等式求得6M =,利用柯西不等式求解最值. 【详解】(1)322x x ⎧≤-⎪⎨⎪≥-⎩或332268x ⎧-<<⎪⎨⎪-≤⎩或322x x ⎧⎪⎨⎪≤⎩∴{|22}x x -≤, (2)∵()()()|2323|66x x x f M --+=∴=()()()2222222112236,a b c a b c ++++++=当且仅当22a b c ==时“=”成立,所以2226,a b c ++所以最小值为6. 【点睛】此题考查解绝对值不等式,利用零点分段讨论求解,利用绝对值三角不等式求解最值,结合柯西不等式求最值,需要注意考虑等号成立的条件.。
一、选择题1.若222494x y z ++=,则3x y z ++的最大值( )A .9B .3C .1D .62.对于0c >,当非零实数a 、b 满足224240a ab b c -+-=,且使2a b +最大时,345a b c-+的最小值为( ) A .12- B .12C .2-D .23.用数学归纳法证明不等式11111312324n n n n n +++⋯+++++>的过程中,由n k =推导1n k =+时,不等式的左边增加的式子是( ) A .()()12121k k -+ B .()()12122k k ++C .()()12223k k ++D .()()12324k k ++4.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的最大值是( )A 1- BC 1D5.用数学归纳法证明32331n n n >++这一不等式时,应注意n 必须为( ) A .*n N ∈B .*n N ∈,2n ≥C .*n N ∈,3n ≥D .*n N ∈,4n ≥6.已知,,x y z R +∈,且1x y z ++=,则222x y z ++的最小值是( ) A .1B .13C .12D .37.m 个互不相同的正偶数与n 个互不相同的正奇数的和为117,对所有这样的m 与n,3m+2n 的最大值是( ) A .35 B .37 C .38D .418.已知x,y,z ∈(0,+∞),且1231,x y z ++=则y zx 23++的最小值为( ) A .5 B .6 C .8D .99.已知2x+3y+4z=10,则x 2+y 2+z 2取到最小值时的x,y,z 的值为( ) A .5105,,396B .203040,,292929C .111,,23D .11,4910.y=x 21-x +的最大值是 ( ) A . 1B .2C .2D .411.函数()122f x x x =-+-的最大值为( )A .5B .5C .1D .212.已知22111a b b a -+-=,则以下式子成立的是 A .221a b +> B .221a b += C .221a b +<D .221a b =二、填空题13.设,,a b c 为正实数,则a b c b c c a a b+++++的最小值为________. 14.已知实数,x y 满足()22241,x y y -+=则2x y +的最大值为________. 15.已知,,,,,(0,)x y z R αβγπ+∈∈,且222346,2x y z αβγπ++=++=,则sin sin sin xy xz yz αβγ++的最大值为________.16.若,,x y z R ∈,且226x y z ++=,则222x y z ++的最小值为________. 17.已知238x y z ++=,则222x y z ++取得最小值时,x ,y ,z 形成的点(,,)x y z =________.18.已知实数,,,x y a b 满足:221a b +≤,2224x x y x y ≤⎧⎪+≥⎨⎪+≤⎩,则ax by +的最大值为__________ .19.若实数1x y z ++=,则22223x y z ++的最小值为__________. 20.设、、,,试求的最大值_________.三、解答题21.已知0,2x y x y >>=,证明:(1)222x y +≥;(2111x y +++. 22.已知函数()|2||21|f x x x =-++. (1)求不等式()3f x 的解集;(2)已知222(1)(1)6a b c +-++=,证明:824a b c --+.23.已知函数f (x )=|2x ﹣1|﹣|x +1|. (1)求不等式f (x )≤﹣1的解集M ;(2)结合(1),若m 是集合M 中最大的元素,且a +b =m (a >0,b >0),求24.已知函数()2||f x x =.(1)求不等式()1f x >的解集; (2)若正数,,a b c 满足24923a b c f ⎛⎫++=+⎪⎝⎭,求149a b c ++的最小值. 25.已知a ,b ,c 均为正实数,函数222111()4f x x x a b c =+-++的最小值为1.证明: (1)22249a b c ++≥;(2)111122ab bc ac++≤. 26.已知函数()|1||2|f x x x =+--.(1)若()1f x ≤,求x 的取值范围;(2)若()f x 最大值为M ,且a b c M ++=,求证:2223a b c ++≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用条件构造柯西不等式()22222221(3)49112x y z x y z ⎛⎤⎛⎫++≤++++ ⎥ ⎪ ⎝⎭⎥⎝⎦即可 【详解】解:由题得()()()()22222221231132x y z x y z ⎡⎤⎛⎫⎡⎤++++≥++⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦,所以()29434x y z ⨯≥++,所以333x y z -≤++≤, 所以3x y z ++的最大值为3故选:B. 【点睛】考查柯西不等式求最值,基础题.2.C解析:C 【分析】首先将等式224240a ab b c -+-=变形为22154416c b a b ⎛⎫=-+ ⎪⎝⎭,再由柯西不等式得到22a b +,分别用b 表示a 、c ,再代入到345a b c-+得到关于1b 的二次函数,求得其最小值即可. 【详解】224240a ab b c -+-=,22221542416c ab b a b a b ⎛⎫∴=-+=-+ ⎪⎝⎭,由柯西不等式可得2222215224164b b a b a ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫-+⋅+≥-⎢⎥⎢⎥⎢ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎣⎦⎣⎦22a b =+, 故当2a b +最大时,有4462b a -=,则32a b =,210c b =,222345345121122310222a b c b b b b b b ⎛⎫∴-+=-+=-=-- ⎪⎝⎭, 所以,当12b =时,345a b c-+取得最小值2-. 故选:C. 【点睛】本题考查代数式最值的求解,考查了柯西不等式的应用,考查计算能力,属于中等题.3.B解析:B 【分析】准确写出当n k =时,左边的代数式,当1n k =+时,左边的代数式,相减可得结果.注意分母及项数的变化. 【详解】解:当n k =时,左边的代数式为111122k k k++⋯+++, 当1n k =+时,左边的代数式为1112322k k k ++⋯++++, 故用1n k =+时左边的代数式减去n k =时左边的代数式的结果,即()()21121122122k k k k -=++++为不等式的左边增加的项, 故选:B . 【点睛】数学归纳法常常用来证明一个与自然数集N 相关的性质,其步骤为:设()P n 是关于自然数n 的命题,若①(奠基)()P n 在1n =时成立;②(归纳) 在()(P k k 为任意自然数)成立的假设下可以推出(1)P k +成立,则()P n 对一切自然数n 都成立,属于基础题.4.C解析:C 【分析】设(),B x y ,利用两点间的距离公式可得221x y ax cy +=++,再利用柯西不等式进行放. 【详解】设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++11≤+=+取等号条件:ay cx =;令OB d ==,则212d d ≤+,得1d ≤.故选:C. 【点睛】本题考查两点间的距离公式,勾股定理、柯西不等式的应用,考查转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意不等式放缩时等号成立的条件.5.D解析:D 【分析】根据题意验证1n =,2n =,3n =时,不等式不成立,当4n =时,不等式成立,即可得出答案. 【详解】解:当1n =,2n =,3n =时,显然不等式不成立, 当4n =时,6461>不等式成立,故用数学归纳法证明32331n n n >++这一不等式时,应注意n 必须为4n ≥,*n N ∈ 故选:D . 【点睛】本题考查数学归纳法的应用,属于基础题.6.B解析:B 【解析】 【分析】利用柯西不等式得出()()()2222222111xy z x y z ++++≥++,于此可得出222x y z ++的最小值。
高一数学不等式测试题姓名 得分一.选择题(本大题有15小题,每小题3分,共36分)1、若且,则下列不等式一定成立的是( )b a >0≠c (A ) (B ) (C ) (D )c b c a ->-bc ac >22b a >||||b a >2、 已知a ,b ,c ,d∈R,若a >b ,c >d ,则 ( )(A) a -c >b -d (B) a +c >b +d (C) ac >bd (D) db c a >3.不等式的解集是( )(21)(31)0x x -+>A . B . C . D .}2131|{>-<x x x 或}2131|{<<-x x }21|{>x x }31|{->x x 4、若,则下列正确的是( )213x -<(A)-1<x<2 (B)x<2 (C)x<-1或x>2 (D)x<-15、若的解集是( )323x x-< (A) (B) (C) (D) (,9]-∞(,18)-∞(18,)+∞(9,)+∞6、若,则0<<b a A . B . C . D .22b a <ab a <21>baabb >27、已知不等式的解集是,则实数a 的取值范围是( )⎩⎨⎧>≤--a x 02x x 2∅ (A) a >2 (B)a <-1 (C)a ≥2 (D)a ≤-18有意义,则x 的取值范围是( )(A )[-1,3](B )(2,3)(C )[2,3](D )(-1,3)9、 已知,那么( )12x ->- A 、x>1B 、x<1C 、x 取任意实数 D 、x φ∈10、若的最小值为( )211x +≤A 、-1 B .-1/2 C .-3/2 D .-311、设,的解集是( )23112x x ->⎧⎨-<⎩A 、x>-1B 、x>2C 、x<-1D 、x<212、(1-x )(x+3)<0,的解集是( )A 、1<x<-3B 、x<-3 或x>1C 、x<1D 、x>3二、填空题(本大题有8小题,每小题3分,共15分)13、 不等式的解集是 .01452≤-+x x 14.不等式的解集是__________________.0x ≥15、已知关于x 的不等式x 2+ax -3≤0,它的解集是[-1,3],则实数a =_________16、设,则(填“<”或“>”)1>x 1______22+-x x x 17、不等式 对一切实数x 都成立,则实数a 的取值范围是a 2x 4x -x 2+>__________三、解下列各题18、解下列不等式:(20分)1)220x x -+≥ 2)03252<--x x3)2215x ≤+≤4)21220x x x x +>⎧⎨--<⎩19、已知集合U=R , A =[-2,8 ), B = (-∞,3) , 求 C u A∩B (6分)20、已知 {}021≥-+=))((|x x x A {}432≥+=x x x B |(1)化简A ,B(2)求 (8分)B A ⋂21、关于x 的一元二次=0有两个不相等的实数根,试求m 的222-+--m x m x )(范围?(8分)22、比较x 2-1与3x-4的大小 (7分)。
(名师选题)2023年人教版高中数学第二章一元二次函数方程和不等式专项训练题单选题1、设a<b<0,则下列不等式中不一定正确的是( ) A .2a >2b B .ac <bc C .|a|>-b D .√−a >√−b 答案:B分析:利用不等式的性质对四个选项一一验证: 对于A ,利用不等式的可乘性进行证明; 对于B ,利用不等式的可乘性进行判断; 对于C ,直接证明;对于D ,由开方性质进行证明.对于A ,因为a<b<0,所以2ab >0,对a<b 同乘以2ab ,则有2a >2b ,故A 成立; 对于B ,当c>0时选项B 成立,其余情况不成立,则选项B 不成立; 对于C ,|a|=-a>-b ,则选项C 成立;对于D ,由-a>-b>0,可得√−a >√−b ,则选项D 成立. 故选:B2、不等式1+5x −6x 2>0的解集为( )A .{x|x >1或x <−16}B .{x |−16<x <1 }C .{x|x >1或x <−3}D .{x |−3<x <2 } 答案:B分析:解一元二次不等式,首先确保二次项系数为正,两边同时乘−1,再利用十字相乘法,可得答案, 法一:原不等式即为6x 2−5x −1<0,即(6x +1)(x −1)<0,解得−16<x <1,故原不等式的解集为{x |−16<x <1 }.法二:当x =2时,不等式不成立,排除A ,C ;当x =1时,不等式不成立,排除D . 故选:B .3、已知a >b >0,下列不等式中正确的是( ) A .ca>cb B .ab <b 2C .a −b +1a−b≥2D .1a−1<1b−1答案:C分析:由a >b >0,结合不等式的性质及基本不等式即可判断出结论. 解:对于选项A ,因为a >b >0,0<1a<1b,而c 的正负不确定,故A 错误;对于选项B ,因为a >b >0,所以ab >b 2,故B 错误;对于选项C ,依题意a >b >0,所以a −b >0,1a−b >0,所以a −b +1a−b ≥2√(a −b )×1a−b =2,故C 正确; 对于选项D ,因为a >b >0,a −1>b −1>−1,1a−1与1b−1正负不确定,故大小不确定,故D 错误; 故选:C.4、已知x >2,则x +4x−2的最小值为( )A .6B .4C .3D .2 答案:A分析:利用基本不等式可得答案. ∵x >2,∴x −2>0,∴x +4x−2= x −2+4x−2+2≥2√(x −2)⋅4x−2+2=6,当且仅当x −2=4x−2即x =4时, x +4x−2取最小值6,故选:A .5、若关于x 的不等式x 2−6x +11−a <0在区间(2,5)内有解,则实数a 的取值范围是( ) A .(−2,+∞)B .(3,+∞)C .(6,+∞)D .(2,+∞) 答案:D分析:设f(x)=x 2−6x +11,由题意可得a >f(x)min ,从而可求出实数a 的取值范围 设f(x)=x 2−6x +11,开口向上,对称轴为直线x =3,所以要使不等式x 2−6x +11−a <0在区间(2,5)内有解,只要a >f(x)min 即可, 即a >f(3)=2,得a >2, 所以实数a 的取值范围为(2,+∞), 故选:D6、若正实数a,b ,满足a +b =1,则b3a+3b的最小值为( )A .2B .2√6C .5D .4√3 答案:C 分析:化简b3a+3b=b 3a+3a+3b b=b 3a+3a b+3,然后利用基本不等式求解即可根据题意,若正实数a,b ,满足a +b =1,则b3a +3b =b3a +3a+3b b=b3a +3a b+3≥2√b3a ⋅3a b+3=5,当且仅当b =3a =34时等号成立, 即b3a +3b 的最小值为5; 故选:C小提示:此题考查基本不等式的应用,属于基础题7、已知a,b 为正实数,且a +b =6+1a +9b ,则a +b 的最小值为( )A .6B .8C .9D .12 答案:B分析:根据题意,化简得到(a +b )2=(6+1a +9b )(a +b )=6(a +b )+10+ba +9a b,结合基本不等式,即可求解.由题意,可得(a +b )2=(6+1a +9b )(a +b )=6(a +b )+10+ba +9a b≥6(a +b )+16,则有(a +b )2−6(a +b )−16≥0,解得a +b ≥8, 当且仅当a =2,b =6取到最小值8. 故选:B.8、设实数x 满足x >0,函数y =2+3x +4x+1的最小值为( )A .4√3−1B .4√3+2C .4√2+1D .6 答案:A解析:将函数变形为y =3(x +1)+4x+1−1,再根据基本不等式求解即可得答案.解:由题意x >0,所以x +1>0,所以y =2+3x +4x+1=2+3(x +1)−3+4x+1=3(x +1)+4x+1−1≥2√3(x +1)⋅4x+1−1=4√3−1, 当且仅当3(x +1)=4x+1,即x =2√33−1>0时等号成立,所以函数y =2+3x +4x+1的最小值为4√3−1.故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方9、已知−1≤x +y ≤1,1≤x −y ≤5,则3x −2y 的取值范围是( ) A .[2,13]B .[3,13]C .[2,10]D .[5,10] 答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2 ,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A.10、若对任意实数x >0,y >0,不等式x +√xy ≤a(x +y)恒成立,则实数a 的最小值为( ) A .√2−12B .√2−1C .√2+1D .√2+12答案:D分析:分离变量将问题转化为a ≥x+√xy x+y对于任意实数x >0,y >0恒成立,进而求出x+√xy x+y的最大值,设√yx =t(t >0)及1+t =m(m >1),然后通过基本不等式求得答案.由题意可得,a ≥x+√xy x+y对于任意实数x >0,y >0恒成立,则只需求x+√xy x+y的最大值即可,x+√xy x+y=1+√yx 1+y x,设√yx =t(t >0),则1+√y x 1+y x=1+t1+t 2,再设1+t =m(m >1),则1+√y x 1+y x=1+t 1+t 2=m 1+(m−1)2= m m 2−2m+2=1m+2m−2≤2√m⋅2m−2=2√2−2=√2+12,当且仅当m =2m ⇒√yx =√2−1时取得“=”.所以a ≥√2+12,即实数a 的最小值为√2+12.故选:D.11、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为( )A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞)答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可. 不等式ax 2+bx +2>0的解集是{x |−12<x <13}则根据对应方程的韦达定理得到:{(−12)+13=−ba(−12)⋅13=2a , 解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16) 故选:A12、已知二次函数y =ax 2+bx +c 的图象如图所示,则不等式ax 2+bx +c >0的解集是( )A .{x|−2<x <1}B .{x|x <−2或x >1}C .{x|−2≤x ≤1}D .{x|x ≤−2或x ≥1} 答案:A分析:由二次函数与一元二次不等式关系,结合函数图象确定不等式解集. 由二次函数图象知:ax 2+bx +c >0有−2<x <1. 故选:A 双空题13、一批货物随17列货车从A 市以v km/h 匀速直达B 市,已知两地铁路线长400km,为了安全,两列货车间距离不得小于(v20)2km,那么这批物资全部运到B市,最快需要___________小时,(不计货车的车身长),此时列车的速度是___________km/h.答案:8100分析:根据题意设出把货物全部运到乙市的时间为y,表示出y的解析式,利用基本不等式求出y的最小值即可.设这批物资全部运到乙市用的时间为y小时因为不计货车的身长,所以设列车为一个点,可知最前的点与最后的点之间距离最小值为16×(v20)2千米时,时间最快.则y=(v20)2×16+400v=v25+400v⩾2√v25×400v=8,当且仅当v25=400v即v=100千米/小时时,时间y min=8小时.所以答案是:8;100.14、某项研究表明,在考虑行车安全的情况下,某路段车流量F(单位时间内测量点的车辆数,单位:辆/小时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒)平均车长l(单位:米)的值有关,其公式为F=76000vv2+18v+20l(1)如果不限定车型,l=6.05,则最大车流量为_______辆/小时;(2)如果限定车型,l=5,则最大车流量比(1)中的最大车流量增加______辆/小时.答案: 1900 100分析:分别把l代入,分子分母同时除以v,利用基本不等式求得F的最大值即可.解:因为F=76000vv2+18v+20l当l=6.05时F=76000vv2+18v+121=76000v+18+121v⩽18+2√v⋅121v =7600018+22=1900当且仅当v =121v即v =11时取等号,当l =5时,F =76000v v 2+18v+100=76000v+100v+18,∵v +100v⩾2√100=20,∴F ≤7600020+18=2000,∴l =5,最大车流量为2000辆/小时.又2000−1900=100,最大车流量比(1)中的最大车流量增加100辆/小时; 所以答案是:1900;100 15、已知(2a +√4a 2+1)(b+√b 2+1)=1,则2a +b +22√4a 2+1−√b 2+1_______, 此时a +b =__________. 答案: -2 0 分析:将2a +b +22√4a 2+1−√b 2+1化为2a+√4a 2+1−b+√b 2+1,由条件利用均值不等式可得出答案. 2a +b b 2−4a 2√4a 2+1−√b 2+1=2a +b (b 2−4a 2)(√4a 2+1+√b 2+1)(√4a 2+1−√b 2+1)(√4a 2+1+√b 2+1)=2a +b +(b 2−4a 2)(√4a 2+1+√b 2+1)4a 2−b 2=2a +b −(√4a 2+1+√b 2+1)=(2a −√4a 2+1)+(b −√b 2+1)=−(2a+√4a 2+1b+√b 2+1)≤−2√2a+√4a 2+1b+√b 2+1=−2当且仅当{2a+√4a 2+1=b+√b 2+1(2a +√4a 2+1)(b +√b 2+1)=1,即(2a +√4a 2+1)2=1,b +√b 2+1=1时等号成立.由√4a 2+1>√4a 2=2|a |≥2a ,则2a +√4a 2+1>0, 所以2a +√4a 2+1=1,解得a =0 由b +√b 2+1=1,可得b =0故a +b =0 所以答案是:−2 ;016、若对任意实数x ,等式ax +2=3x +b 恒成立,则a =______,b =______. 答案: 3 2分析:对应系数相等即可直接求出结果. 对应系数相等可得{a =3b =2,所以答案是:3;2. 17、已知正数x ,y 满足x+y 2xy=3,则当x =______时,x +y 的最小值是______.答案: 121分析:首先根据正数x ,y 满足x+y 2xy=3,得到x =y 23y−1>0,求得y >13,之后对式子进行变形x +y =y 23y−1+y =4y 2−y 3y−1,令t =3y −1换元,将式子化简求得x +y =19(4t +1t+5),之后利用基本不等式求得结果.正数x ,y 满足x+y 2xy=3,所以x =y 23y−1>0,可得y >13, 所以x +y =y 23y−1+y =4y 2−y 3y−1,令t =3y −1则y =1+t 3且t >0,x +y =4(t+13)2−t+13t=4t 2+5t+19t=19(4t +1t +5)≥19(5+2√4t ⋅1t )=1,当且仅当4t =1t 即t =12,此时x =y =12取最小值1, 所以答案是:①12;②1.小提示:该题考查的是有关不等式的问题,涉及到的知识点有利用基本不等式求最值,属于简单题目. 解答题18、已知函数f (x )=x 2+ax −2,f (x )>0的解集为{x |x <−1 或x >b }. (1)求实数a 、b 的值;(2)若x ∈(0,+∞)时,求函数g (x )=f (x )+4x的最小值.答案:(1)a =−1,b =2 (2)2√2−1分析:(1)分析可知−1、b 是方程x 2+ax −2=0的两个根,利用一元二次方程根与系数的关系可求得a 、b 的值;(2)求得g (x )=x +2x −1,利用基本不等式可求得g (x )在(0,+∞)上的最小值.(1)解:因为关于x 的不等式x 2+ax −2>0的解集为{x |x <−1 或x >b },所以,−1、b 是方程x 2+ax −2=0的两个根,所以,{1−a −2=0−1⋅b =−2 ,解得{a =−1b =2.(2)解:由题意知g (x )=f (x )+4x=x 2−x+2x=x +2x −1,因为x >0,由基本不等式可得g (x )=x +2x−1≥2√x ⋅2x−1=2√2−1,当且仅当x =2x 时,即x =√2时,等号成立 故函数g (x )的最小值为2√2−1. 19、已知正数a 、b 满足1a +1b =1. (1)求a +b 的最小值; (2)求4aa−1+9bb−1的最小值.答案:(1)4;(2)25.分析:(1)利用乘1法a +b =(a +b )(1a+1b ),展开后结合基本不等式即可求解;(2)先对已知式子进行变形,结合已知条件可得(a ﹣1)(b ﹣1)=1,利用基本不等式可求. (1)因为a 、b 是正数,所以a +b =(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ×ba =4,当且仅当a =b =2时等号成立,故a +b 的最小值为4.(2)由1a +1b =1⇒ab =a +b ⇒(a −1)(b −1)=1 因为a >1,b >1,所以a ﹣1>0,b ﹣1>0, 则4a a−1+9b b−1=4+4a−1+9+9b−1≥13+2√4a−1⋅9b−1=25, 当且仅当a =53、b =52时等号成立,故4a a−1+9b b−1的最小值为25.20、实数a 、b 满足-3≤a +b ≤2,-1≤a -b ≤4.(1)求实数a 、b 的取值范围;(2)求3a -2b 的取值范围.答案:(1)a ∈[-2,3],b ∈[-72,32] (2)[-4,11]分析:(1)由a =12[(a +b )+(a -b)],b =12[(a +b )-(a -b)]根据不等式的性质计算可得;(2)求出3a -2b =12(a +b )+52(a -b ),再利用不等式的性质得解.(1)解:由-3≤a +b ≤2,-1≤a -b ≤4,则a =12[(a +b )+(a -b)],所以-4≤(a +b )+(a -b)≤6,所以-2≤12[(a +b )+(a -b)]≤3,即-2≤a ≤3, 即实数a 的取值范围为[-2,3].因为b =12[(a +b )-(a -b)], 由-1≤a -b ≤4,所以-4≤b -a ≤1,所以-7≤(a +b )-(a -b)≤3, 所以-72≤12[(a +b )-(a -b)]≤32,∴-72≤b ≤32,即实数b 的取值范围为[-72,32].(2)解:设3a -2b =m (a +b )+n(a -b)=(m +n )a +(m -n)b ,则{m +n =3m -n =-2 ,解得{m =12n =52 , ∴3a -2b =12(a +b )+52(a -b ),∵-3≤a +b ≤2,-1≤a -b ≤4.∴-32≤12(a +b )≤1,-52≤52(a -b )≤10,∴-4≤3a -2b ≤11,即3a -2b 的取值范围为[-4,11].。