【精品】2017年山东省聊城市冠县九年级上学期期中数学试卷带解析答案
- 格式:doc
- 大小:484.00 KB
- 文档页数:23
聊城九年级期中试卷数学【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()A. -5B. 3C. 0D. 72. 如果 a > b,那么下列哪个式子成立?()A. a b > 0B. a + b > 0C. a b > 0D. a / b > 03. 下列哪个数是偶数?()A. 21B. 34C. 47D. 504. 下列哪个数是无理数?()A. √9B. √16C. √25D. √25. 下列哪个数是质数?()A. 12B. 17C. 20D. 21二、判断题1. 方程 x + 5 = 10 的解是 x = 5。
()2. 两个负数相乘的结果是正数。
()3. 任何数乘以0都等于0。
()4. 1 是最小的正整数。
()5. 0 是最小的自然数。
()三、填空题1. 5 的平方是______。
2. 36 的平方根是______。
3. 1 的倒数是______。
4. 两个质数相乘得到 35,这两个质数是______和______。
5. 下列数中,最大的负整数是______。
四、简答题1. 解释什么是无理数?2. 解释什么是因数?3. 解释什么是质数?4. 解释什么是方程?5. 解释什么是函数?五、应用题1. 解方程 2x + 3 = 11。
2. 计算下列表达式的值:3^2 + 4^2。
3. 找出能被 2 和 3 同时整除的最小的正整数。
4. 如果一个正方形的边长是 6 厘米,那么它的面积是多少平方厘米?5. 如果一辆汽车以每小时 60 公里的速度行驶,那么它需要多少时间才能行驶 300 公里?六、分析题1. 分析下列数列的规律:2, 4, 8, 16, 32,2. 分析下列图形的面积计算方法:正方形、长方形、三角形。
七、实践操作题1. 使用尺子和圆规画一个边长为 5 厘米的正方形。
2. 使用计算器计算下列表达式的值:√(2^2 + 3^2)。
八、专业设计题1. 设计一个实验来验证牛顿第一定律。
2017年山东省聊城市中考数学试卷(含答案解析版)2017年山东省聊城市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)1.(3分)64的立方根是()A.4 B.8 C.±4 D.±82.(3分)在Rt△ABC中,cosA=,那么sinA的值是()A.B.C.D.3.(3分)下列计算错误的是()A.=4 B.32×3﹣1=3C.20÷2﹣2=D.(﹣3×102)3=﹣2.7×1074.(3分)如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC5.(3分)纽约、悉尼与北京时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市悉尼纽约时差/时+2﹣13当北京6月15日23时,悉尼、纽约的时间分别是()A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时6.(3分)如图是由若干小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是()A.B.C.D.7.(3分)如果解关于x的分式方程﹣=1时出现增根,那么m的值为()A.﹣2 B.2 C.4 D.﹣48.(3分)计算(5﹣2)÷(﹣)的结果为()A.5 B.﹣5 C.7 D.﹣79.(3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个10.(3分)为了满足顾客的需求,某商场将5kg奶糖,3kg酥心糖和2kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克()A.25元B.28.5元 C.29元D.34.5元11.(3分)如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′12.(3分)端午节前夕,在东昌湖举行第七届全民健身运动会龙舟比赛中,甲、乙两队在500米的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示,下列说法错误的是()A.乙队比甲队提前0.25min到达终点B.当乙队划行110m时,此时落后甲队15mC.0.5min后,乙队比甲队每分钟快40mD.自 1.5min开始,甲队若要与乙队同时到达终点,甲队的速度需要提高到255m/min二、填空题(每小题3分,共15分)13.(3分)因式分解:2x2﹣32x4= .14.(3分)已知圆锥形工件的底面直径是40cm,母线长30cm,其侧面展开图圆心角的度数为.15.(3分)不等式组的解集是.16.(3分)如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是.17.(3分)如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…21.(8分)耸立在临清市城北大运河东岸的舍利宝塔,是“运河四大名塔”之一(如图1).数学兴趣小组的小亮同学在塔上观景点P处,利用测角仪测得运河两岸上的A,B两点的俯角分别为17.9°,22°,并测得塔底点C到点B的距离为142米(A、B、C在同一直线上,如图2),求运河两岸上的A、B两点的距离(精确到1米).(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin17.9°≈0.31,cos17.9°≈0.95,tan17.9°≈0.32)22.(8分)在推进城乡义务教育均衡发展工作中,我市某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生电脑55台和教师用笔记本电脑24台,共花费17.65万元.(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少万元?(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的少90台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?23.(8分)如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.24.(10分)如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.25.(12分)如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)当点P移动到抛物线的什么位置时,使得∠PAB=75°,求出此时点P的坐标;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P 的横坐标以每秒1个单位长度的速度变动,与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止,当两个移点移动t 秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?2017年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)1.(3分)(2017•聊城)64的立方根是()A.4 B.8 C.±4 D.±8【考点】24:立方根.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵4的立方是64,∴64的立方根是4.故选A.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(2017•聊城)在Rt△ABC中,cosA=,那么sinA的值是()A.B.C.D.【考点】T3:同角三角函数的关系;T5:特殊角的三角函数值.【专题】11 :计算题;511:实数.【分析】利用同角三角函数间的基本关系求出sinA的值即可.【解答】解:∵Rt△ABC中,cosA=,∴sinA==,故选B【点评】此题考查了同角三角函数的关系,以及特殊角的三角函数值,熟练掌握同角三角函数的关系是解本题的关键.3.(3分)(2017•聊城)下列计算错误的是()A.=4 B.32×3﹣1=3C.20÷2﹣2=D.(﹣3×102)3=﹣2.7×107【考点】47:幂的乘方与积的乘方;6E:零指数幂;6F:负整数指数幂.【分析】根据幂的乘方和积的乘方以及零指数幂和负指数幂进行计算即可.【解答】解:A、=4,正确,故A不合题意;B、32×3﹣1=3,正确,故B不合题意;C、20÷2﹣2=4,不正确,故C合题意;D、(﹣3×102)3=﹣2.7×107,正确,故D不合题意;故选C.【点评】本题考查了积的乘方和幂的乘方,以及零指数幂和负指数幂,掌握运算法则是解题的关键.4.(3分)(2017•聊城)如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE 是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC【考点】L9:菱形的判定.【分析】当BE平分∠ABE时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE即可解决问题.【解答】解:当BE平分∠ABE时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBEF是平行四边形,∵BD=DE,∴四边形DBEF是菱形.其余选项均无法判断四边形DBEF是菱形,故选D.【点评】本题考查菱形的判定、平行四边形的判定和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.(3分)(2017•聊城)纽约、悉尼与北京时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市悉尼纽约时差/时+2﹣13当北京6月15日23时,悉尼、纽约的时间分别是()A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时【考点】11:正数和负数.【分析】由统计表得出:悉尼时间比北京时间早2小时,悉尼比北京的时间要早2个小时,也就是6月16日1时.纽约比北京时间要晚13个小时,也就是6月15日10时.【解答】解:悉尼的时间是:6月15日23时+2小时=6月16日1时,纽约时间是:6月15日23时﹣13小时=6月15日10时.故选:A.【点评】本题考查了正数和负数.解决本题的关键是根据图表得出正确信息,再结合题意计算.6.(3分)(2017•聊城)如图是由若干小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是()A.B.C.D.【考点】U3:由三视图判断几何体;U2:简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一列有2个正方形,第二列有3个正方形,第三列有1个正方形..故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.(3分)(2017•聊城)如果解关于x的分式方程﹣=1时出现增根,那么m的值为()A.﹣2 B.2 C.4 D.﹣4【考点】B5:分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【解答】解:﹣=1,去分母,方程两边同时乘以x﹣2,得:m+2x=x﹣2,由分母可知,分式方程的增根可能是2,当x=2时,m+4=2﹣2,m=﹣4,故选D.【点评】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.(3分)(2017•聊城)计算(5﹣2)÷(﹣)的结果为()A.5 B.﹣5 C.7 D.﹣7【考点】79:二次根式的混合运算.【专题】11 :计算题.【分析】先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:原式=(﹣6)÷(﹣)=(﹣5)÷(﹣)=5.故选A.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9.(3分)(2017•聊城)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个【考点】KW:等腰直角三角形.【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.10.(3分)(2017•聊城)为了满足顾客的需求,某商场将5kg奶糖,3kg酥心糖和2kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克()A.25元B.28.5元 C.29元D.34.5元【考点】W2:加权平均数.【分析】先求出买5kg奶糖,3kg酥心糖和2kg水果糖的总钱数,再除以总的斤数,即可得出混合后什锦糖的售价.【解答】解:根据题意得:(40×5+20×3+15×2)÷(5+3+2)=29(元),答:混合后什锦糖的售价应为每千克29元.故选C.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.11.(3分)(2017•聊城)如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′【考点】R2:旋转的性质.【分析】根据旋转的性质得到∠BCB′=∠ACA′,故A正确,根据等腰三角形的性质得到∠B=∠BB'C,根据三角形的外角的性质得到∠A'CB'=2∠B,等量代换得到∠ACB=2∠B,故B正确;等量代换得到∠A′B′C=∠BB′C,于是得到B′C 平分∠BB′A′,故D正确.【解答】解:根据旋转的性质得,∠BCB'和∠ACA'都是旋转角,则∠BCB′=∠ACA′,故A正确,∵CB=CB',∴∠B=∠BB'C,又∵∠A'CB'=∠B+∠BB'C,∴∠A'CB'=2∠B,又∵∠ACB=∠A'CB',∴∠ACB=2∠B,故B正确;∵∠A′B′C=∠B,∴∠A′B′C=∠BB′C,∴B′C平分∠BB′A′,故D正确;故选C.【点评】本题考查了旋转的性质,角平分线的定义,等腰三角形的性质,正确的识别图形是解题的关键.12.(3分)(2017•聊城)端午节前夕,在东昌湖举行第七届全民健身运动会龙舟比赛中,甲、乙两队在500米的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示,下列说法错误的是()A.乙队比甲队提前0.25min到达终点B.当乙队划行110m时,此时落后甲队15mC.0.5min后,乙队比甲队每分钟快40mD.自 1.5min开始,甲队若要与乙队同时到达终点,甲队的速度需要提高到255m/min【考点】E6:函数的图象.【分析】观察函数图象可知,函数的横坐标表示时间,纵坐标表示路程,根据图象上特殊点的意义即可求出答案.【解答】解:A、由横坐标看出乙队比甲队提前0.25min到达终点,故A不符合题意;B、乙AB段的解析式为y=240x﹣40,当y=110时,x=;甲的解析式为y=200x,当x=时,y=125,当乙队划行110m时,此时落后甲队15m,故B不符合题意;C、乙AB段的解析式为y=240x﹣40乙的速度是240m/min;甲的解析式为y=200x,甲的速度是200m/min,0.5min后,乙队比甲队每分钟快40m,故C不符合题意;D、甲的解析式为y=200x,当x=1.5时,y=300,甲乙同时到达(500﹣300)÷(2.25﹣1.5)=266m/min,故D符合题意;故选:D.【点评】此题主要考查了函数图象的性质,读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.二、填空题(每小题3分,共15分)13.(3分)(2017•聊城)因式分解:2x2﹣32x4= 2x2(1+4x)(1﹣4x).【考点】55:提公因式法与公式法的综合运用.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.【解答】解:2x2﹣32x4=2x2(1﹣16x2)=2x2(1+4x)(1﹣4x).故答案为:2x2(1+4x)(1﹣4x).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.(3分)(2017•聊城)已知圆锥形工件的底面直径是40cm,母线长30cm,其侧面展开图圆心角的度数为240°.【考点】MP:圆锥的计算.【分析】设圆锥的侧面展开图的圆心角的度数为n°,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到40π=,然后解方程即可.【解答】解:设圆锥的侧面展开图的圆心角的度数为n°,根据题意得40π=,解得n=240.故答案为240°.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.(3分)(2017•聊城)不等式组的解集是4<x≤5 .【考点】CB:解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤5,解不等式②得:x>4,∴不等式组的解集为4<x≤5,故答案为:4<x≤5.【点评】本题考查了解一元一次不等式和解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.16.(3分)(2017•聊城)如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是.【考点】X6:列表法与树状图法;AA:根的判别式.【分析】首先确定m、n的值,推出有序整数(m,n)共有:3×7=21(种),由方程x2+nx+m=0有两个相等实数根,则需:△=n2﹣4m=0,有(0,0),(1,2),(1,﹣2)三种可能,由此即可解决问题、【解答】解:m=0,±1,n=0,±1,±2,±3∴有序整数(m,n)共有:3×7=21(种),∵方程x2+nx+m=0有两个相等实数根,则需:△=n2﹣4m=0,有(0,0),(1,2),(1,﹣2)三种可能,∴关于x的方程x2+nx+m=0有两个相等实数根的概率是=,故答案为.【点评】此题考查了概率、根的判别式以及根与系数的关系、绝对值不等式等知识,此题难度适中,注意掌握概率=所求情况数与总情况数之比.17.(3分)(2017•聊城)如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为22015π..【考点】MN:弧长的计算;F8:一次函数图象上点的坐标特征.【分析】连接P1O1,P2O2,P3O3,易求得PnOn垂直于x轴,可得为圆的周长,再找出圆半径的规律即可解题.【解答】解:连接P1O1,P2O2,P3O3…∵P1是⊙O2上的点,∴P1O1=OO1,∵直线l解析式为y=x,∴∠P1OO1=45°,∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,同理,Pn On垂直于x轴,∴为圆的周长,∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,∴OOn=2n﹣1,∴=•2π•OOn=π•2n﹣1=2n﹣2π,当n=2017时,=22015π.故答案为 22015π.【点评】本题考查了圆周长的计算,考查了从图中找到圆半径规律的能力,本题中准确找到圆半径的规律是解题的关键.三、解答题(本题共8个小题,满分69分)18.(7分)(2017•聊城)先化简,再求值:2﹣÷,其中x=3,y=﹣4.【考点】6D:分式的化简求值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x、y的值代入即可解答本题.【解答】解:2﹣÷=2﹣=2﹣===,当x=3,y=﹣4时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(8分)(2017•聊城)如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.【考点】KD:全等三角形的判定与性质.【分析】首先由BE=CF可以得到BC=EF,然后利用边边边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.【解答】证明:∵AB∥CD,∴∠ABC=∠DEF,又∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.【点评】本题主要考查了全等三角形的性质与判定,同时也考查了平行线的判定,解题的关键是证明△ABC≌△DEF,此题有一点的综合性,难度不大.20.(8分)(2017•聊城)为了绿化环境,育英中学八年级三班同学都积极参加植树活动,今年植树节时,该班同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题:(1)八年级三班共有多少名同学?(2)条形统计图中,m= 7 ,n= 10 .(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)根据植4株的有11人,所占百分比为22%,求出总人数;(2)根据植树5棵人数所占的比例来求n的值;用总人数减去其它植树的人数,就是m的值,从而补全统计图;(3)根据植树2棵的人数所占比例,即可得出圆心角的比例相同,即可求出圆心角的度数.【解答】解:(1)由两图可知,植树4棵的人数是11人,占全班人数的22%,所以八年级三班共有人数为:11÷22%=50(人).(2)由扇形统计图可知,植树5棵人数占全班人数的14%,所以n=50×14%=7(人).m=50﹣(4+18+11+7)=10(人).故答案是:7;10;(3)所求扇形圆心角的度数为:360×=72°.【点评】此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.21.(8分)(2017•聊城)耸立在临清市城北大运河东岸的舍利宝塔,是“运河四大名塔”之一(如图1).数学兴趣小组的小亮同学在塔上观景点P处,利用测角仪测得运河两岸上的A,B两点的俯角分别为17.9°,22°,并测得塔底点C到点B的距离为142米(A、B、C在同一直线上,如图2),求运河两岸上的A、B两点的距离(精确到1米).(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin17.9°≈0.31,cos17.9°≈0.95,tan17.9°≈0.32)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】在Rt△PBC中,求出BC,在Rt△PAC中,求出AC,根据AB=AC﹣BC计算即可.【解答】解:根据题意,BC=142米,∠PBC=22°,∠PAC=17.9°,在Rt△PBC中,tan∠PBC=,∴PC=BCtan∠PBC=142•tan22°,在Rt△PAC中,tan∠PAC=,∴AC==≈≈177.5,∴AB=AC﹣BC=177.5﹣142≈36米.答:运河两岸上的A、B两点的距离为36米.【点评】解直角三角形的应用﹣仰角俯角问题、锐角三角函数等知识,解题的关键是正确寻找直角三角形,利用三角函数解决问题,属于中考常考题型.22.(8分)(2017•聊城)在推进城乡义务教育均衡发展工作中,我市某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生电脑55台和教师用笔记本电脑24台,共花费17.65万元.(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少万元?(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的少90台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设该型号的学生用电脑的单价为x万元,教师用笔记本电脑的单价为y万元,根据题意列出方程组,求出方程组的解得到x与y的值,即可得到结果;(2)设能购进的学生用电脑m台,则能购进的教师用笔记本电脑为(m﹣90)台,根据“两种电脑的总费用不超过预算438万元”列出不等式,求出不等式的解集.【解答】解:(1)设该型号的学生用电脑的单价为x万元,教师用笔记本电脑的单价为y万元,依题意得:,解得,经检验,方程组的解符合题意.答:该型号的学生用电脑的单价为0.19万元,教师用笔记本电脑的单价为0.3万元;(2)设能购进的学生用电脑m台,则能购进的教师用笔记本电脑为(m﹣90)台,依题意得:0.19m+0.3×(m﹣90)≤438,解得m≤1860.所以m﹣90=×1860﹣90=282(台).答:能购进的学生用电脑1860台,则能购进的教师用笔记本电脑为282台.【点评】此题考查了一元一次不等式组的应用,以及二元一次方程组的应用,找出题中的等量关系是解本题的关键.23.(8分)(2017•聊城)如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.【考点】G7:待定系数法求反比例函数解析式;G5:反比例函数系数k的几何意义.【分析】(1)作AE、BF分别垂直于x轴,垂足为E、F,根据△AOE∽△BOF,则设A的横坐标是m,则可利用m表示出A和B的坐标,利用待定系数法求得k的值;(2)根据AC∥x轴,则可利用m表示出C的坐标,利用三角形的面积公式求解.【解答】解:(1)作AE、BF分别垂直于x轴,垂足为E、F.∵△AOE∽△BOF,又=,∴===.由点A在函数y=的图象上,设A的坐标是(m,),∴==,==,∴OF=3m,BF=,即B的坐标是(3m,).又点B在y=的图象上,∴=,解得k=9,则反比例函数y=的表达式是y=;(2)由(1)可知,A(m,),B(3m,),又已知过A作x轴的平行线交y=的图象于点C.∴C的纵坐标是,把y=代入y=得x=9m,∴C的坐标是(9m,),∴AC=9m﹣m=8m.=×8m×=8.∴S△ABC【点评】本题考查了待定系数法确定函数关系式以及相似三角形的判定与性质,正确利用m表示出个点的坐标是关键.24.(10分)(2017•聊城)如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC 的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.【考点】S9:相似三角形的判定与性质;ME:切线的判定与性质.【专题】11 :计算题;55A:与圆有关的位置关系.【分析】(1)由直径所对的圆周角为直角得到∠BAC为直角,再由AD为角平分线,得到一对角相等,根据同弧所对的圆心角等于圆周角的2倍及等量代换确定出∠DOC为直角,与平行线中的一条垂直,与另一条也垂直得到OD与PD垂直,即可得证;(2)由PD与BC平行,得到一对同位角相等,再由同弧所对的圆周角相等及等量代换得到∠P=∠ACD,根据同角的补角相等得到一对角相等,利用两对角相等的三角形相似即可得证;(3)由三角形ABC为直角三角形,利用勾股定理求出BC的长,再由OD垂直平分BC,得到DB=DC,根据(2)的相似,得比例,求出所求即可.【解答】(1)证明:∵圆心O在BC上,∴BC是圆O的直径,∴∠BAC=90°,连接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD为圆O的半径,∴PD是圆O的切线;(2)证明:∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA;(3)解:∵△ABC为直角三角形,∴BC2=AB2+AC2=62+82=100,∴BC=10,∵OD垂直平分BC,∴DB=DC,∵BC为圆O的直径,∴∠BDC=90°,在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=100,∴DC=DB=5,∵△PBD∽△DCA,∴=,则PB===.【点评】此题考查了相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键.25.(12分)(2017•聊城)如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)当点P移动到抛物线的什么位置时,使得∠PAB=75°,求出此时点P的坐标;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P 的横坐标以每秒1个单位长度的速度变动,与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止,当两个移点移动t 秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?。
九年级(上)期中数学试卷副标题一、选择题(本大题共12小题,共36.0分)1.下列说法:①有一个锐角相等的两个直角三角形相似;②顶角相等的两个等腰三角形相似;③任意两个菱形一定相似;④位似图形一定是相似图形;其中正确的个数是()A. 1个B. 2个C. 3个D. 4个2.已知直角梯形一腰长为10,此腰与底成45°角,那么另一腰长是()A. 10B.C.D.3.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()A. B. 1 C. 2 D. 44.如图,AB、CD都是⊙O的弦,且AB⊥CD.若∠CDB=62°,则∠ACD的大小为()A.B.C.D.5.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O到弦CD的距离为()A.B. 3cmC.D. 6cm6.如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD的长度为()A. 26米B. 28米C. 30米D. 46米7.如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A. 60mB. 40mC. 30mD. 20m8.已知,如图,E(-4,2),F(-1,-1).以O为位似中心,按比例尺1:2把△EFO缩小,点E的对应点的坐标()A.B.C. 或D. 或9.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=2,AB=2,设∠BCD=α,那么cosα的值是()A.B.C.D.10.如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D、E、F分别是OA、OB、OC的中点,则△DEF与△ABC的面积比是()A. 1:2B. 1:4C. 1:5D. 1:611.已知⊙O的半径为3cm,点P是直线l上一点,OP长为5cm,则直线l与⊙O的位置关系为()A. 相交B. 相切C. 相离D. 相交、相切、相离都有可能12.已知:如图,AB、AC分别切⊙O于B、C,D是⊙O上一点,∠D=40°,则∠A的度数等于()A.B.C.D.二、填空题(本大题共5小题,共15.0分)13.△ABC中,∠C=90°,AB=8,cos A=,则BC的长______.14.已知扇形的圆心角为120°,弧长为2π,则它的半径为______.15.直角三角形的两直角边长分别为12和16,则此直角三角形的内切圆半径是______.16.一条弦把圆分成2:4两部分,则这条弦所对的圆周角的度数是______.17.如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的______.三、计算题(本大题共2小题,共14.0分)18.计算(1)2sin30°+cos60°-tan60°•tan30°+cos245°(2)cos30°+sin45°+sin60°•cos60°.19.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC、BC,若∠BAC=30°,CD=6cm.(1)求∠BCD的度数;(2)求⊙O的直径.四、解答题(本大题共6小题,共55.0分)20.如图,AE与BD交于点C,∠DME=∠A=∠B,且DM交AC于F,ME交BC于G求证:△AMF∽△BGM.21.如图,身高1.5米的人站在两棵树之间,距较高的树5米,距较矮的树3米,若此人观察的树梢所成的视线的夹角是90°,且较矮的树高4米,那么较高的树有多少米?22.如图,PA、PB分别切⊙O于A、B,连接PO与⊙O相交于C,连接AC、BC,求证:AC=BC.23.周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)24.如图,矩形ABCD中,E为BC上一点,DF⊥AE于点F.(1)证明△ABE∽△DFA;(2)若AB=3,AD=6,BE=4,求DF的长.连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.答案和解析1.【答案】C【解析】解:①中两个角对应相等,为相似三角形,①对;②顶点相等且为等腰三角形,即底角也相等,是相似三角形,②对;③菱形的角不确定,所以不一定相似,③错;④如果两个图形是位似图形,那么这两个图形必是相似图形,但是相似的两个图形不一定是位似图形,题中所述正确,④对;所以①②④正确,故选C.考查三角形及多边形的相似问题,相似三角形的对应角相等即可;而对于菱形,矩形等多边形,即使角度可以确定,边长的比例不确定,所以多边形一般情况下不能判断其相似.熟练掌握相似三角形及相似多边形的性质及判定.2.【答案】B【解析】解:过D作DE⊥BC于E,∵∠C=45°,∴△DEC是等腰直角三角形,∵DC=10,∴DE=EC==5,∵AD∥BC,AB⊥BC,∴AB=DE=5;故选B.作梯形的高线DE,根据等腰直角三角形求直角边DE=EC=5,再由两平行线的距离相等得:AB=5.本题考查了直角梯形的性质、等腰直角三角形的性质和判定、平行线的距离和勾股定理,得出△DEC是等腰直角三角形是本题的关键.3.【答案】B【解析】解:设半径为r,过O作OE⊥AB交AB于点D,连接OA、OB,则AD=AB=×0.8=0.4米,设OA=r,则OD=r-DE=r-0.2,在Rt△OAD中,OA2=AD2+OD2,即r2=0.42+(r-0.2)2,解得r=0.5米,故此输水管道的直径=2r=2×0.5=1米.故选B.根据题意知,已知弦长和弓形高,求半径(直径).根据垂径定理和勾股定理求解.本题考查的是垂径定理,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解,常见辅助线是过圆心作弦的垂线.4.【答案】A【解析】解:∵AB⊥CD,∴∠DPB=90°,∵∠CDB=62°,∴∠B=180°-90°-62°=28°,∴∠ACD=∠B=28°.故选A.利用垂直的定义得到∠DPB=90°,再根据三角形内角和定理求出∠B=180°-90°-62°=28°,然后根据圆周角定理即可得到∠ACD的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.5.【答案】A【解析】解:连接CB.∵AB是⊙O的直径,弦CD⊥AB于点E,∴圆心O到弦CD的距离为OE;∵∠COB=2∠CDB(同弧所对的圆周角是所对的圆心角的一半),∠CDB=30°,∴∠COB=60°;在Rt△OCE中,OC=5cm,OE=OC•cos∠COB,∴OE=cm.故选:A.根据垂径定理知圆心O到弦CD的距离为OE;由圆周角定理知∠COB=2∠CDB=60°,已知半径OC的长,即可在Rt△OCE中求OE的长度.本题考查了垂径定理、圆周角定理及解直角三角形的综合应用.解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解.6.【答案】D【解析】解:∵坝高12米,斜坡AB的坡度i=1:1.5,∴AE=1.5BE=18米,∵BC=10米,∴AD=2AE+BC=2×18+10=46米,故选:D.先根据坡比求得AE的长,已知CB=10m,即可求得AD.此题考查了解直角三角形的应用中的坡度坡角的问题及等腰梯形的性质的掌握情况,将相关的知识点相结合更利于解题.7.【答案】B【解析】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴∵BE=20m,CE=10m,CD=20m,∴解得:AB=40,故选:B.由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.考查相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.8.【答案】D【解析】解:∵E(-4,2),以O为位似中心,按比例尺1:2把△EFO缩小,∴点E的对应点的坐标为:(-2,1)或(2,-1).故选D.由E(-4,2),F(-1,-1).以O为位似中心,按比例尺1:2把△EFO缩小,根据位似图形的性质,即可求得点E的对应点的坐标.此题考查了位似图形的性质.此题比较简单,注意位似图形有两个.9.【答案】D【解析】解:∵Rt△ABC中,∠ACB=90°,CD⊥AB于D,∴∠B+∠A=90°,∠B+∠BCD=90°,∴∠A=∠BCD=α,∴cosα===.故选D.求出∠A=α,将求cosα的问题转化为求cos∠A的问题解答.此题考查了直角三角形的性质:直角三角形的两锐角互余;还考查了三角函数的定义以及转化思想.10.【答案】B【解析】解:∵D、F分别是OA、OC的中点,∴DF=AC,∴△DEF与△ABC的相似比是1:2,∴△DEF与△ABC的面积比是1:4.故选:B.图形的位似就是特殊的相似,满足相似的性质,且位似图形上任意一对对应点到位似中心的距离之比等于相似比.因为D、E、F分别是OA、OB、OC的中点,根据三角形的中位线定理可知:DF=AC,即△DEF与△ABC的相似比是1:2,所以面积的比是1:4.本题主要考查了三角形中位线定理,位似的定义及性质:面积的比等于相似比的平方.11.【答案】D【解析】解:因为垂线段最短,所以圆心到直线的距离小于等于5.此时和半径3的大小不确定,则直线和圆相交、相切、相离都有可能.故选D.直线和圆的位置关系与数量之间的联系:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.判断直线和圆的位置关系,必须明确圆心到直线的距离.特别注意:这里的5不一定是圆心到直线的距离.12.【答案】C【解析】解:连接OB,OC,∵∠BOC=2∠D=80°,∴∠OBA=∠OCA=90°,∴∠A=100°.故选C.连接OB、OC,根据圆周角定理得∠BOC=2∠=80°,根据切线的性质得∠OBA=∠OCA=90°,再根据四边形的内角和定理可得∠A=100°.此题涉及到了切线的性质定理、圆周角定理以及四边形的内角和定理.13.【答案】2【解析】解:∵cosA=,∴AC=AB•cosA=8×=6,∴BC===2.故答案是:2.首先利用余弦函数的定义求得AC的长,然后利用勾股定理即可求得BC的长.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.14.【答案】3【解析】解:∵l=,∴R==3.故答案为:3.根据弧长公式代入求解即可.本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=.15.【答案】4【解析】解:∵直角三角形的两直角边长分别为12和16,∴直角三角形的斜边长为:=20,∴直角三角形的内切圆半径是:=4,故答案为:4.根据勾股定理求出斜边长,根据求直角三角形的内切圆的半径的公式计算即可.本题考查的是三角形的内切圆和内心的概念,掌握勾股定理、直角三角形的内切圆的半径的求法是解题的关键.16.【答案】60°或120°【解析】解:∵一条弦把圆分成2:4两部分,∴这条弦所对的两个圆心角的比为2:4,而它们的和为360°,∴这条弦所对的圆心角为360°×=120°或360°×=240°,∴这条弦所对的圆周角的度数分别为60°或120°.故答案为60°或120°.利用圆心角、弧、弦的关系得到这条弦所对的两个圆心角的比为2:4,则利用它们的和为360°可计算出这条弦所对的圆心角为120°或240°,然后根据圆周角定理可得到这条弦所对的圆周角的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.17.【答案】【解析】解:∵AB被截成三等分,∴△AEH∽△AFG∽△ABC,∴,,∴S△AFG:S△ABC=4:9,S△AEH:S△ABC=1:9,∴S=S△ABC-S△ABC=S△ABC.阴影部分的面积故答案为.根据题意,易证△AEH∽△AFG∽△ABC,利用相似比,可求出S△AEH、S△AFG 面积比,再求出S△ABC.本题主要考查了利用三等分点求得各相似三角形的相似比,从而求出面积比计算阴影部分的面积,难度适中.18.【答案】解:(1)原式=2×+-×+=1+-1+=1;(2)原式=×+×+×=+1+=+1.【解析】(1)原式利用特殊角的三角函数值计算即可得到结果;(2)原式利用特殊角的三角函数值计算即可得到结果.此题考查了实数的运算,以及特殊角的三角函数值,牢记特殊角的三角函数值是解本题的关键.19.【答案】解:(1)∵直径AB⊥CD,∴,∴∠DCB=∠CAB=30度;(2)∵直径AB⊥CD,CD=6cm,∴CE=3cm,在Rt△ACE中,∠A=30°,∴AC=6cm,∵AB是直径,∴∠ACB=90°,在Rt△ACB中,AB===4(cm).【解析】(1)由垂径定理知,,∴∠DCB=∠CAB=30°;(2)由垂径定理知,点E是CD的中点,有CE=CD=3,AB是直径,∴∠ACB=90°,再求出AC的长,利用∠A的余弦即可求解.本题利用了垂径定理和圆周角定理及锐角三角函数的概念求解.20.【答案】解:∵∠DMB是△AMF的外角,∴∠DMB=∠AFM+∠A∵∠DMB=∠BMG+∠DME,且∠A=∠DME∴∠AFM=∠BMG∵∠A=∠B∴△AMF∽△BGM【解析】由于∠DMB是△AMF的外角,所以∠DMB=∠AFM+∠A,又因为∠DMB=∠BMG+∠DME,所以∠AFM=∠BMG,从而可证明△AMF∽△BGM 本题考查相似三角形的判定,解题的关键是找出两对对应角相等,本题属于中等题型.21.【答案】解:过点E作EH⊥AB,EM⊥CD,H、M为垂足,则∠A+∠AEH=90°.∵∠AEC=90°,∴∠AEH+∠CEM=90°,∴∠A=∠CEM.∴=,即=,解得CM=6,∴CD=CM+DM=6+1.5=7.5(米).【解析】过点E作EH⊥AB,EM⊥CD,H、M为垂足,根据相似三角形的判定定理得出△AHE∽△EMC,由相似三角形的对应边成比例求出CM的长,进而可得出结论.本题考查的是相似三角形的应用,根据题意作出辅助线,构造出相似三角形是解答此题的关键.22.【答案】证明:∵PA、PB分别切⊙O于A、B,∴PA=PB,∠APC=∠BPC.又∵PC=PC,∴△APC≌△BPC.∴AC=BC.【解析】由切线长定理知,PA=PB,∠APC=∠BPC,又有PC=PC,故由SAS证得△APC≌△BPC,可得AC=BC.本题利用了切线长定理,全等三角形的判定和性质求解.23.【答案】解:作PD⊥AB于点D,由已知得PA=200米,∠APD=30°,∠B=37°,在Rt△PAD中,由cos30°=,得PD=PA cos30°=200×=100米,在Rt△PBD中,由sin37°=,得PB=≈≈288米.答:小亮与妈妈的距离约为288米.【解析】作PD⊥AB于点D,分别在直角三角形PAD和直角三角形PBD中求得PD和PB即可求得结论.本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并求解.24.【答案】解:(1)∵四边形ABCD是矩形,∵DF⊥AE∴∠ADF=∠EAB∴△ABE∽△DFA;(2)∵AB=3,BE=4,∴由勾股定理得AE=5,∵△ABE∽△DFA;∴即:∴DF=3.6【解析】(1)利用矩形和直角三角形的性质得到∠AEB=∠EAD、∠ADF=∠EAB,从而证得两个三角形相似.(2)首先利用勾股定理求得线段AE的长,然后利用相似三角形的性质:对应边成比例即可求得DF的长.本题考查了相似三角形的判定与性质、勾股定理及矩形的性质的知识,综合性比较强,但难度不是很大.25.【答案】(1)证明:连结OC,如图,∵=,∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∵==,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=2,∴AC=2CD=4,∴AB=2BC=8,∴⊙O的半径为4.【解析】(1)连结OC,由=,根据圆周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,则∠FAC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连结BC,由AB为直径得∠ACB=90°,由==得∠BOC=60°,则∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三边的关系得AC=2CD=4,在Rt△ACB中,利用含30度的直角三角形三边的关系得BC=AC=4,AB=2BC=8,所以⊙O的半径为4.本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和含30度的直角三角形三边的关系.。
山东省聊城市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)已知抛物线y=ax2+bx+c如图所示,则下列结论中,正确的是()A . a>0B . a-b+c>0C . b2-4ac<0D . 2a+b=02. (2分) (2016九上·萧山期中) 已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A . 点P在⊙O内B . 点P在⊙O上C . 点P在⊙O外D . 无法判断3. (2分)如图,点A、B、C都在圆O上,若∠AOB=72°,则∠ACB的度数为()A . 18°B . 30°C . 36°D . 72°4. (2分)某电视台每播放18分钟节目便插播2分钟广告,打开电视收看该台恰好遇到广告的概率是()A .B .C .D .5. (2分)(2011·衢州) 如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A . a2﹣πB . (4﹣π)a2C . πD . 4﹣π6. (2分)如图,AB、AC是⊙O的弦,直径AD平分∠BAC,给出下列结论:①AB=AC;②=;③AD⊥BC;④AB⊥AC.其中正确结论的个数有()A . 1个B . 2个C . 3个D . 4个7. (2分) (2017九上·亳州期末) 抛物线y=﹣(x﹣2)2+3的顶点坐标是()A . (﹣2,3)B . (2,3)C . (﹣2,﹣3)D . (2,﹣3)8. (2分)如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0 ②2a+b=0;③a+b+c>0;④当x>0.5时,y随x的增大而增大;⑤对于任意x均有ax2+ax≥a+b,正确的说法有A . 5个B . 4个C . 3个D . 2个9. (2分) (2019九上·宜兴期中) 下列说法正确的是()A . 等弧所对的圆心角相等B . 优弧一定大于劣弧C . 经过三点可以作一个圆D . 相等的圆心角所对的弧相等10. (2分)某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是,则下列结论:(1)柱子OA的高度为3m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是4m;(4)水池的半径至少要3m才能使喷出的水流不至于落在池外.其中正确的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共7分)11. (2分)从2,3,4这三个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是________.12. (1分) (2018九上·通州期末) 二次函数的部分图象如图所示,由图象可知,不等式的解集为________.13. (1分)(2020·松江模拟) 如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米.那么斜面AB的坡度为________.14. (1分) (2019九上·宜兴期末) 如图,AB是的直径,弦于点E,,,则 ________cm.15. (1分) (2017九上·鄞州月考) 一圆的半径是10cm,圆内的两条平行弦长分别为12cm和16cm,则这两条平行弦之间的距离为________.16. (1分) (2017八下·长春期末) 如图,在平面直角坐标系中,直线与轴、轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则值为________.三、解答题 (共7题;共75分)17. (5分)已知二次函数的顶点坐标为(3,-1),且其图象经过点(4,1),求此二次函数的解析式.18. (5分) (2018八上·上杭期中) 如图,在中,,,过B作于D,求的度数.19. (15分)(2018·毕节模拟) 已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3) a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.20. (15分) (2016九上·常熟期末) 九年级某班同学在庆祝2015年元旦晚会上进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树形图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.21. (10分)(2018·葫芦岛) 如图,AB是⊙O的直径,,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.(1)求证:直线BF是⊙O的切线;(2)若OB=2,求BD的长.22. (15分)(2019·南充模拟) 如图,抛物线y=ax2+bx+c经过A(-2,0),B(4,0),C(0,-4)三点.点P 是抛物线BC段上一动点(不含端点B,C),BD⊥BC与CP的延长线交于点D(1)求抛物线的解析式.(2)当PC=PD时,求点P的坐标。
山东省聊城市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016九上·永嘉月考) 已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+1上的点,则()A . y1<y2<y3B . y3<y2<y1C . y3<y1<y2D . y2<y3<y12. (2分)(2017·天水) 下列给出的函数中,其图象是中心对称图形的是()①函数y=x;②函数y=x2;③函数y= .A . ①②B . ②③C . ①③D . 都不是3. (2分)(2018·衡阳) 下列命题是假命题的是A . 正五边形的内角和为540°B . 矩形的对角线相等C . 对角线互相垂直的四边形是菱形D . 圆内接四边形的对角互补4. (2分) (2016九上·南昌期中) 如图,四边形ABCD为圆内接四边形,AB是直径,MN切⊙O于C点,∠BCM=38°,那么∠ABC的度数是()A . 38°B . 52°C . 68°D . 42°5. (2分)当m不为何值时,函数y=(m﹣2)x2+4x﹣5(m是常数)是二次函数()A . ﹣2B . 2C . 3D . ﹣36. (2分) (2019九上·吉林月考) 一个二次函数y=ax2+bx+c的图像如图所示,该二次函数二次项系数a的值可能是()A . -2B . 3C .D . 2.37. (2分)下列函数:①;②;③;④中,y随x的增大而减小的函数有()A . 1个B . 2个C . 3个D . 4个8. (2分) (2018九上·兴义期末) 下列运动属于旋转的是()A . 足球在草地上滚动B . 火箭升空的运动C . 汽车在急刹车时向前滑行D . 钟表的钟摆动的过程9. (2分) (2017九上·上城期中) 如图,抛物线与轴交于,两点,与轴交于点,顶点为,连结,.在轴上是否存在点,使以,,为顶点的三角形与相似,则满足条件的所有点的坐标为()A . ,B . ,C . ,,D . ,10. (2分)已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是()A . a>0B . 3是方程ax²+bx+c=0的一个根C . a+b+c=0D . 当x<1时,y随x的增大而减小11. (2分) (2015九下·武平期中) 如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2+DC2=DE2 .其中一定正确的是()A . ②④B . ①③C . ①④D . ②③12. (2分)(2017·商水模拟) 如图,已知抛物线y=x2+2x﹣3,把此抛物线沿y轴向上平移,平移后的抛物线和原抛物线与经过点(﹣2,0),(2,0)且平行于y轴的两条直线所围成的阴影部分的面积为s,平移的距离为m,则下列图象中,能表示s与m的函数关系的图象大致是()A .B .C .D .二、填空题 (共6题;共10分)13. (1分) (2015七下·农安期中) 如图所示的花朵图案,至少要旋转________度后,才能与原来的图形重合.14. (1分)将二次函数y=﹣x2+2x﹣3配方化为形如y=a(x+h)2+k的形式是________15. (1分)(2018·南京模拟) 如图,在⊙O的内接五边形ABCDE中,∠B+∠E=210°,则∠CAD=________°.16. (1分)(2020·拉萨模拟) 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AB=25cm,BC=15cm,则BD的长为________cm.17. (1分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为________ cm.18. (5分) (2017九上·西城期中) 如图,有一个圆形工具,请利用直尺和圆规,确定这个圆形工具的圆心.三、解答题 (共7题;共82分)19. (11分) (2018八上·许昌期末) 如图,在边长为1的小正方形网格中,点A,B,C均落在格点上.(1)直接写出△ABC的面积________.(2)画出△ABC关于直线的轴对称图形△A1B1C1.(3)判断△A1B1C1的形状,并说明理由.20. (5分) (2018九上·西湖期末) 求半径为3的圆的内接正方形的边长.21. (15分)已知二次函数y=ax2+bx的图象经过点(2,0)、(﹣1,6).(1)求二次函数的解析式;(2)画出它的图象;(3)写出它的对称轴和顶点坐标.22. (10分)(2017·大连模拟) 如图,四边形ABCD是⊙O的内接四边形,∠ABD=∠CBD=60°,AC与BD相交于点E,过点C作⊙O的切线,与AB的延长线相交于点F.(1)判断△ACD的形状,并加以证明(2)若CF=2,DE=4,求弦CD的长.23. (15分)(2014·绍兴) 如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.24. (15分) (2017八下·东台期中) 在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.25. (11分)如图,在平面直角坐标系xOy中,抛物线y=x2+ 与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是________;(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共10分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共82分) 19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。
2017-2018学年山东省聊城市冠县九年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠B B.∠APC=∠ACB C.D.2.(3分)△ABC中,∠A,∠B均为锐角,且有|tan2B﹣3|+(2sinA﹣)2=0,则△ABC是()A.直角(不等腰)三角形B.等边三角形C.等腰(不等边)三角形D.等腰直角三角形3.(3分)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A.6,3B.6,3 C.3,3 D.6,34.(3分)如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是()A.B.C. D.5.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,下列式子正确的是()A.sinA= B.cosA=C.tanA=D.cosB=6.(3分)如图,扇形OAB的圆心角为90°,点C,D是弧AB的三等分点,半径OC,OD分别与弦AB交于点E,F,下列说法错误的是()A.AE=EF=FB B.AC=CD=DB C.EC=FD D.∠DFB=75°7.(3分)如图,将△ABC的高AD三等分,过每个分点作底边的平行线,把△ABC的面积分成三部分S1,S2,S3,则S1:S2:S3=()A.1:2:3 B.1:4:9 C.1:3:5 D.1:9:258.(3分)在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点10千米的C地去,先沿北偏东70°方向走了8千米到达B地,然后再从B地走了6千米到达目的地C,此时小霞在B地的()A.北偏东20°方向上B.北偏西20°方向上C.北偏西30°方向上D.北偏西40°方向上9.(3分)如图,扇形AOB是直角扇形,以OA、OB为直径在扇形内作半圆,M、N分别表示两个阴影部分的面积,那么M、N的大小关系是()A.M>N B.M=N C.M<N D.无法确定10.(3分)如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是()A.4或4.8 B.3或4.8 C.2或4 D.1或611.(3分)如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C 作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A.1 B.C.3 D.12.(3分)已知:如图,AB是⊙O的直径,弦AD、BC相交于P点,那么的值为()A.sin∠APC B.cos∠APC C.tan∠APC D.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)如图,△ABC中,∠AED=∠B,AD=2,DB=4,AE=3,则EC=.14.(4分)如图,在顶角为30°的等腰三角形ABC中,AB=AC,若过点C作CD ⊥AB于点D,则∠BCD=15°.根据图形计算tan15°=.15.(4分)如图,A、B、C是⊙O上的三个点,若∠AOC=110°,则∠ABC=.16.(4分)如图所示,铁路的路基横断面是等腰梯形,斜坡AB的坡度为,斜坡AB的水平宽度,那么斜坡AB长为m.17.(4分)如图,△ABC内接于⊙O,若⊙O的半径为4,∠A=60°,则BC的长为.18.(4分)如图,在△ABC中,DE∥BC,EF∥AB,下列各式中:①=;②=;③=;④=;⑤=,正确的是.三、解答题(本大题共6小题,共60分)19.(9分)如图,在13x13的网格图中,已知△ABC的顶点坐标分别为A(2,4)、B(3,2)、C(6,3).(1)以点M(1,2)为位似中心,在第一象限把△ABC按相似比2:1放大,得△A'B'C',画出△ABC的位似图形;(2)写出△A'B'C'的各顶点坐标.20.(8分)如图,△ABC中,cosB=,sinC=,AC=5,求△ABC的面积.21.(10分)已知:如图,在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;=5,BC=10,求DE的长.(2)若S△FCD22.(11分)已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠DAE=∠BAF.23.(10分)如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°,CD⊥AB 与点E,E、B、A在一条直线上.请你帮李明同学计算出信号塔CD的高度(结果保留整数,≈1.7,≈1.4 )24.(12分)如图,AB是⊙O的直径,点D在⊙O上,OC⊥AD,垂足为F,且∠C=∠BED.(1)判断AC与⊙O的位置关系,并说明理由;(2)若OA=10,AD=16,求AC的长.2017-2018学年山东省聊城市冠县九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠B B.∠APC=∠ACB C.D.【解答】解:A、∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;B、∵∠A=∠A,∠APC=∠ACB,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;C、∵,当∠ACP=∠B时,△ACP∽△ABC,所以此选项的条件不能判定△ACP∽△ABC;D、∵,又∠A=∠A,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC,本题选择不能判定△ACP∽△ABC的条件,故选:C.2.(3分)△ABC中,∠A,∠B均为锐角,且有|tan2B﹣3|+(2sinA﹣)2=0,则△ABC是()A.直角(不等腰)三角形B.等边三角形C.等腰(不等边)三角形D.等腰直角三角形【解答】解:由|tan2B﹣3|+(2sinA﹣)2=0,得tan2B﹣3=0,2sinA﹣=0,由∠A,∠B均为锐角,得tanB=,sinA=,A=60°,B=60°,∠C=180°﹣∠A﹣∠B=60°,∴∠C=∠A=∠B=60°,∴△ABC是等边三角形,故选:B.3.(3分)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A.6,3B.6,3 C.3,3 D.6,3【解答】解:∵正方形的边长为6,∴AB=3,∵∠AOB=45°,∴OB=3∴AO==3,即外接圆半径为3,内切圆半径为3.故选:C.4.(3分)如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是()A.B.C. D.【解答】解:∵小正方形的边长为1,∴在△ABC中,EG=,FG=2,EF=,A中,一边=3,一边=,一边=,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故A错误;B中,一边=1,一边=,一边=,有,即三边与△ABC中的三边对应成比例,故两三角形相似.故B 正确;C中,一边=1,一边=,一边=2,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故C错误;D中,一边=2,一边=,一边=,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故D错误.故选:B.5.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,下列式子正确的是()A.sinA= B.cosA=C.tanA=D.cosB=【解答】解:∵∠ACB=90°,CD⊥AB,∴∠A+∠DCA=90°,∠DCA+∠BCD=90°,∴∠A=∠BCD,∴sinA=sin∠BCD=,故选:A.6.(3分)如图,扇形OAB的圆心角为90°,点C,D是弧AB的三等分点,半径OC,OD分别与弦AB交于点E,F,下列说法错误的是()A.AE=EF=FB B.AC=CD=DB C.EC=FD D.∠DFB=75°【解答】解:∵点C,D是弧AB的三等分点,∴AC=CD=DB,∴选项B正确;∵OA=OB,∴∠OAB=∠OBA=45°,∵∠AOC=∠BOD=30°,∴∠OEF=∠OAB+∠AOC=45°+30°=75°,同理∠OFE=75°,∴OE=OF,∵OC=OD,∴CE=DF,选项C正确;连接AC,BD,∵由选项C知,OC=OD,OE=OF,∴EF∥CD,∴EF<CD,∵C,D是的三等分点,∴AC=CD=BD,∵∠AOC=∠COD,OA=OC=OD,∴△ACO≌△DCO.∴∠ACO=∠OCD.∵∠OEF=∠OAE+∠AOE=45°+30°=75°,故选项D正确;∠OCD==75°,∴∠OEF=∠OCD,∴CD∥AB,∴∠AEC=∠OCD,∴∠ACO=∠AEC.故AC=AE,同理,BF=BD.又∵AC=CD=BD∴CD=AE=BF≠EF,故选项A错误;故选:A.7.(3分)如图,将△ABC的高AD三等分,过每个分点作底边的平行线,把△ABC的面积分成三部分S1,S2,S3,则S1:S2:S3=()A.1:2:3 B.1:4:9 C.1:3:5 D.1:9:25【解答】解:如图,两平行线分别为GH、PQ,与AD交于E、F两点,∵GH∥PQ∥BC,∴△AGH∽△APQ∽△ABC,∵E、F把AD三等分,∴==,==,∴=,=,解得S2=3S1,S3=5S1,∴S1:S2:S3=1:3:5,故选:C.8.(3分)在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点10千米的C地去,先沿北偏东70°方向走了8千米到达B地,然后再从B地走了6千米到达目的地C,此时小霞在B地的()A.北偏东20°方向上B.北偏西20°方向上C.北偏西30°方向上D.北偏西40°方向上【解答】解:如图,∵AC=10千米,AB=8千米,BC=6千米,∴AC2=AB2+BC2,∴△ABC为直角三角形,即∠ABC=90°,又∵B点在A的北偏东70°方向,∴∠1=90°﹣70°=20°,∴∠2=∠1=20°,即C点在B的北偏西20°的方向上.故选:B.9.(3分)如图,扇形AOB是直角扇形,以OA、OB为直径在扇形内作半圆,M、N分别表示两个阴影部分的面积,那么M、N的大小关系是()A.M>N B.M=N C.M<N D.无法确定【解答】解:∵扇形OAB的圆心角为90°,假设扇形半径为a,∴扇形OAB面积为:=,半圆面积为:×π×()2=,∵M=﹣2×+N,∴M=N.故选:B.10.(3分)如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是()A.4或4.8 B.3或4.8 C.2或4 D.1或6【解答】解:根据题意得:设当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是x秒,①若△ADE∽△ABC,则AD:AB=AE:AC,即x:12﹣2x=x:6,解得:x=3;②若△ADE∽△ACB,则AD:AC=AE:AB,即x:12=12﹣2x:6,解得:x=4.8;所以当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是3秒或4.8秒.故选:B.11.(3分)如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C 作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A.1 B.C.3 D.【解答】解:∵AB为直径,∴∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠B=∠ACD,∵cos∠ACD=,∴cos∠B=,∴tan∠B=,∵BC=4,∴tan∠B=,∴=,∴AC=.故选:D.12.(3分)已知:如图,AB是⊙O的直径,弦AD、BC相交于P点,那么的值为()A.sin∠APC B.cos∠APC C.tan∠APC D.【解答】解:连接AC.∵∠D=∠B,∠CPD=∠APB,∴△CPD∽△APB.∴.∵AB是⊙O的直径,∴∠ACB=90°.∴=cos∠APC.∴.故选:B.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)如图,△ABC中,∠AED=∠B,AD=2,DB=4,AE=3,则EC=1.【解答】解:∵∠A=∠A,∠AED=∠B,∴△ADE∽△ACB,∴AE:AB=AD:AC,又∵AD=2,DB=4,AE=3,∴AB=AD+BD=6,∴AC=2×6÷3=4.∴CE=AC﹣AE=1.故答案为:1.14.(4分)如图,在顶角为30°的等腰三角形ABC中,AB=AC,若过点C作CD ⊥AB于点D,则∠BCD=15°.根据图形计算tan15°=2﹣.【解答】解:由已知设AB=AC=2x,∵∠A=30°,CD⊥AB,∴CD=AC=x,则AD2=AC2﹣CD2=(2x)2﹣x2=3x2,∴AD=x,∴BD=AB﹣AD=2x﹣x=(2﹣)x,∴tan15°===2﹣.故答案为:2﹣.15.(4分)如图,A、B、C是⊙O上的三个点,若∠AOC=110°,则∠ABC=125°.【解答】解:如图,在优弧AC上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC=∠AOC=55°,∴∠ABC=180°﹣∠ADC=125°.故答案为:125°.16.(4分)如图所示,铁路的路基横断面是等腰梯形,斜坡AB的坡度为,斜坡AB的水平宽度,那么斜坡AB长为6m.【解答】解:∵斜坡AB的坡度为,∴tanB=,∴∠B=30°.∵cosB=,∴AB==6(m).17.(4分)如图,△ABC内接于⊙O,若⊙O的半径为4,∠A=60°,则BC的长为4.【解答】解:∵△ABC内接于⊙O,若⊙O的半径为4,∠A=60°,∴,即,解得,BC=4,故答案为:4.18.(4分)如图,在△ABC中,DE∥BC,EF∥AB,下列各式中:①=;②=;③=;④=;⑤=,正确的是②④.【解答】解:∵DE∥BC,∴=,∵EF∥AB,∴=,所以①、⑤选项的结论错误,∵DE∥BC,∴∠ADE=∠B,∠A=∠A∴△ADE∽△ABC,∴=;所以选项④的结论正确,∵EF∥AB,∴∠CEF=∠A,∠C=∠C,∴△CEF∽△CAB,∴=,=;所以选项②的结论正确,选项③的结论错误;所以结论正确是②④.故答案为②④.三、解答题(本大题共6小题,共60分)19.(9分)如图,在13x13的网格图中,已知△ABC的顶点坐标分别为A(2,4)、B(3,2)、C(6,3).(1)以点M(1,2)为位似中心,在第一象限把△ABC按相似比2:1放大,得△A'B'C',画出△ABC的位似图形;(2)写出△A'B'C'的各顶点坐标.【解答】解:(1)如图,△A′B′C′为所作;(2)A′(3,6),B′(5,2),C′(11,4).20.(8分)如图,△ABC中,cosB=,sinC=,AC=5,求△ABC的面积.【解答】解:过点A作AD⊥BC于D.∵在直角△ACD中,∠ADC=90°,sinC=,AC=5,∴AD=AC•sinC=5×=3,CD==4.在直角△ABD中,∠ADB=90°,cosB=,∴BD=AD=3,∴BC=BD+CD=3+4=7.∴△ABC的面积是:×AD×BC=×3×7=10.5.21.(10分)已知:如图,在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;=5,BC=10,求DE的长.(2)若S△FCD【解答】(1)证明:∵AD=AC,∴∠ADC=∠ACD.∵D是BC边上的中点,DE⊥BC,∴EB=EC,∴∠EBC=∠ECB.∴△ABC∽△FCD;(2)解:过A作AM⊥CD,垂足为M.∵△ABC∽△FCD,BC=2CD,∴=.=5,∵S△FCD=20.∴S△ABC又∵S=×BC×AM,BC=10,△ABC∴AM=4.又DM=CM=CD,DE∥AM,∴DE:AM=BD:BM=,∴DE=.22.(11分)已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠DAE=∠BAF.【解答】解:(1)连接OC,∵直线l与⊙O相切于点C,∴OC⊥CD;又∵AD⊥CD,∴AD∥OC,∴∠DAC=∠ACO;又∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)如图②,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°﹣∠B,∴∠AEF=∠ADE+∠DAE,在⊙O中,四边形ABFE是圆的内接四边形,∴∠AEF+∠B=180°,∴∠BAF=∠DAE.23.(10分)如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°,CD⊥AB 与点E,E、B、A在一条直线上.请你帮李明同学计算出信号塔CD的高度(结果保留整数,≈1.7,≈1.4 )【解答】解:根据题意得:AB=18,DE=18,∠A=30°,∠EBC=60°,在R t△ADE中,AE===18∴BE=AE﹣AB=18﹣18,在R t△BCE中,CE=BE•tan60°=(18﹣18)=54﹣18,∴CD=CE﹣DE=54﹣18﹣18≈5米.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,OC⊥AD,垂足为F,且∠C=∠BED.(1)判断AC与⊙O的位置关系,并说明理由;(2)若OA=10,AD=16,求AC的长.【解答】解:(1)AC与⊙O相切.理由:∵∠C=∠BED,∠BAD=∠BED,∴∠C=∠BAD,∵OC⊥AD,∴∠C+∠CAF=90°,∴∠BAD+∠CAF=90°,∴∠OAC=90°,即OA⊥AC,∴AC是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADB=∠OAC,∵OA=10,AD=16,∴AB=2OA=20,∴BD==12,∵∠C=∠BAD,∴△ABD∽△COA,∴AD :AC=BD :OA , ∴=, 解:AC=.。
2017-2018学年山东省聊城市度假区九年级(上)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.2.(3分)如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=3.(3分)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:14.(3分)在平面直角坐标系中,△ABC顶点A(2,3).若以原点O为位似中心,画三角形ABC的位似图形△A′B′C′,使△ABC与△A′B′C′的相似比为,则A′的坐标为()A. B. C.D.5.(3分)如图,在△ABC中,∠C=90°,AB=5,BC=3,则tanA的值是()A.B.C.D.6.(3分)一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡AB的坡度是10°B.斜坡AB的坡度是tan10°C.AC=1.2tan10°米D.AB=米7.(3分)如图,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1) B.20(﹣1)C.200 D.3008.(3分)如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是()A.2 B.3 C.4 D.59.(3分)如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°10.(3分)如图,在△ABC中,∠A=66°,点I是内心,则∠BIC的大小为()A.114°B.122°C.123° D.123°11.(3分)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣12.(3分)如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③BC平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF ≌△BED,其中一定成立的是()A.②④⑤⑥B.①③⑤⑥C.②③④⑥D.①③④⑤二、填空题(每小题3分,满分15分,将答案填在答题纸上)13.(3分)一副三角板叠放如图,则△AOB与△DOC的面积之比为.14.(3分)已知圆的半径是2,则该圆的内接正六边形的面积是.15.(3分)在△ABC中,AB=,AC=1,∠B=30°,则△ABC的面积是.16.(3分)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长.17.(3分)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上,点D落在D′处,C′D′交AE于点M.若AB=6,BC=9,则AM的长为.三、解答题(本大题共8小题,共69分,解答应写出文字说明、证明过程或演算步骤)18.(6分)①2sin30°+4cos30°•tan60°﹣cos245°②2cos30°﹣|1﹣tan60°|+tan45°•sin45°.19.(7分)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.20.(7分)小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.请你帮助小玲计算出教学大楼的高度AB是多少米?(注意:根据光的反射定律:反射角等于入射角).21.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC 于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.22.(7分)总高度九十米的莘县燕塔是莘县的标志性建筑之一(如图①).垂直高度为光岳楼的两倍,是鲁西一带最高的古建筑.喜爱数学实践活动的小伟,在80米高的燕塔P处,利用自制测角仪测得正南方县政府A点的俯角为60°,又测得其正前方的县公安局B点的俯角为30°(如图②).求县政府与县公安局之间的距离(结果保留根号)23.(10分)如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.24.(12分)如图,AB是⊙O的直径,PB与⊙O相切于点B,连接PA交⊙O于点C,连接BC.(1)求证:∠BAC=∠CBP;(2)求证:PB2=PC•PA;(3)当AC=6,CP=3时,求sin∠PAB的值.25.(12分)如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.2017-2018学年山东省聊城市度假区九年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的。
山东省聊城市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·蒸湘模拟) 下列图形是轴对称图形但不是中心对称图形的是()A . 线段B . 等边三角形C . 正方形D . 圆2. (2分) (2016九上·孝南期中) 若点(a,6)关于原点的对称点是(﹣5,b),则a+b的值为()A . 1B . ﹣1C . 11D . ﹣113. (2分) (2019九上·宜兴期中) 若关于x的一元二次方程nx2﹣2x﹣1=0无实数根,则一次函数y=(n+1)x﹣n的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)(2018·寮步模拟) 把抛物线y=- 向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A . y=-(x-1)2-3B . y=-(x+1)2-3C . y=-(x-1)2+3D . y=-(x+1)2+35. (2分)若方程有两个不相等的实数根,则m的取值范围在数轴上表示正确的是A .B .C .D .6. (2分) (2019九上·十堰期末) 如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△ ,那么点A的对应点的坐标是().A . (-3,3)B . (3,-3)C . (-2,4)D . (1,4)7. (2分) (2016九上·黄山期中) 目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A . 438(1+x)2=389B . 389(1+x)2=438C . 389(1+2x)=438D . 438(1+2x)=3898. (2分)下列方程中,有实数根的方程是()A .B .C .D .9. (2分) (2016九上·阳新期中) 设二次函数y=ax2+bx+c(a≠0),当x=2时,函数值y=0,则方程ax2+bx+c=0的判别式△=b2﹣4ac必定是()A . △=0B . △<0C . △>0D . △≥010. (2分) (2019九上·南海月考) 如图,菱形ABCD中的边长为1,∠BAD=60°,将菱形ABCD绕点A逆时针方向旋转30°得到菱形AB′CD′,B′C′交CD于点E,连接AE,CC′,则下列结论:①ΔAB′E≌ΔADE;②EC=ED;③AE⊥CC′;④四边形AB′ED的周长为 +2.其中符合题意结论的个数是()A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)11. (1分)已知整数k<5,若△ABC的边长均满足关于x的方程x2﹣3x+8=0,则△ABC的周长是________ .12. (1分)定义新运算“ ”,规则:,如,。
九年级数学期中试卷本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分. 注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.) 1.下列关于x 的方程中,一定是一元二次方程的是( ▲ )A .x -1=0B .x 3+x =3C .x 2+3x -5=0D .ax 2+bx +c =02.关于x 的方程x 2+x -k =0有两个不相等的实数根,则k 的取值范围为( ▲ )新-课 -标-第- 一-网A .k >-14B .k ≥-14C .k <-14D .k >-14且k ≠03.45°的正弦值为( ▲ )A .1B .12C .22D .324.已知△ABC ∽△DEF ,∠A =∠D ,AB =2cm ,AC =4cm ,DE =3cm ,且DE <DF , 则DF 的长为( ▲ )A .1cmB .1.5cmC .6cmD .6cm 或1.5cm5.在平面直角坐标系中,点A (6,3),以原点O 为位似中心,在第一象限内把线段OA 缩小为原来的13得到线段OC ,则点C 的坐标为( ▲ )A .(2,1)B .(2,0)C .(3,3)D .(3,1)6.已知⊙A 半径为5,圆心A 的坐标为(1,0),点P 的坐标为(-2,4),则点P 与⊙A 的位置关系是( ▲ )A .点P 在⊙A 上B .点P 在⊙A 内C .点P 在⊙A 外D .不能确定7.如图,在□ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC =( ▲ )A .1︰3B .1︰4C .2︰3D .1︰28.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =12,AD =4,BC =9,点P 是AB 上一动点,若△P AD 与△PBC 相似,则满足条件的点P 的个数有( ▲ )A . 1个B .2个C .3个D .4个 9.已知线段AB ,点P 是它的黄金分割点,AP >BP ,设以AP 为边的等边三角形的面积 为S 1,以PB 、AB 为直角边的直角三角形的面积为S 2,则S 1与S 2的关系是 ( ▲ )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .S 1≥S 210.如图,△ABC 是等腰直角三角形,∠ACB =90°,点E 、F 分别是边BC 、 AC 的中点,P是AB 上一点,以PF 为一直角边作等腰直角△PFQ ,且∠FPQ =90°,若AB =10,PB =1,则QE 的值为( ▲ ) A . 3 B .3 2 C .4 D .4 2二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置上.)11.已知x :y =2:3,则(x +y ):y = ▲ .12.在相同时刻的物高与影长成比例,如果高为1.5m 的测杆的影长为2.5m ,那么影长为30m 的旗杆的高是 ▲ m .13.某电动自行车厂三月份的产量为1 000辆,由于市场需求量不断增大,五月份的产量提高到1 210辆,则该厂四、五月份的月平均增长率为 ▲ .14.在△ABC 中,∠A 、∠B 为锐角,且||tan A -1+(12-cos B )2=0,则∠C = ▲ °.15.如图,在□ABCD 中,E 在AB 上,CE 、BD 交于F ,若AE :BE =4:3,且BF =2,则DF = ▲ .AD F CBOE(第7题)A CP FEQ(第10题)ACD(第8题)A BCDE F(第15题)16.如图,在△ABC 中,AB =BC ,AC =8,点F 是△ABC 的重心(即点F 是△ABC 的两条中线AD 、BE 的交点),BF =6,则DF = ▲ .17.关于x 的一元二次方程mx 2+nx =0的一根为x =3,则关于x 的方程m (x +2)2+nx +2n =0的根为 ▲ .18.如图,△ABC 是一张等腰直角三角形纸板,∠C =90°,AC =BC =2,在这张纸板中剪出一个尽可能大的正方形称为第1次剪取,记所得正方形面积为S 1(如图1);在余下的Rt △ADE 和Rt △BDF 中,分别剪取一个尽可能大的正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为S 2(如图2);继续操作下去…;第2017次剪取后,余下的所有小三角形的面积之和是 ▲ .三、解答题(本大题共10小题,共84分. 解答需写出必要的文字说明或演算步骤.) 19.计算或解方程:(每小题4分,共16分) (1)计算:(12)-2-4sin60°-tan45°;(2)3x 2-2x -1=0;(3)x 2+3x +1=0(配方法); (4)(x +1)2-6(x +1)+5=0.20.(本题满分6分)如图,在平面直角坐标系中,A (0,4)、B (4,4)、C (6,2). (1)在图中画出经过A 、B 、C 三点的圆弧所在圆的圆心M 的位置; (2)点M 的坐标为 ▲ ;(3)判断点D (5,-2)与⊙M 的位置关系.OABCxy (图2) ACB DE ACDE FACDE F(图1)(第18题)AB D CEF (第16题)……21.(本题满分6分)如图,在四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 中点.(1)求证:AC 2=AB •AD ;(2)若AD =4,AB =6,求ACAF 的值.22.(本题满分6分)已知关于x 的方程x 2+(m -3)x -m (2m -3)=0. (1)证明:无论m 为何值方程都有两个实数根.(2)是否存在正数m ,使方程的两个实数根的平方和等于26?若存在,求出满足条件的正数m 的值;若不存在,请说明理由.23.(本题满分6分)某市的特色农产品在国际市场上颇具竞争力,其中属于菌类的一种猴头菇远销国外.上市时,有一外商按市场价格10元/千克收购了2 000千克猴头菇存入冷库中,据预测,猴头菇的市场价格每天每千克上涨0.5元,但冷库存放这批猴头菇时每天需要支出各种费用合计220元,而且这种猴头菇在冷库中最多能保存130天,同时,平均每天有6千克的猴头菇损坏不能出售.)(1)若外商要将这批猴头菇存放x 天后一次性出售,则x 天后这批猴头菇的销售单价为 ▲ 元,销售量是 ▲ 千克(用含x 的代数式表示); (2)如果这位外商想获得利润24 000元,需将这批猴头菇存放多少天后出售?ADCEF(第21题)24.(本题满分8分)如图1为放置在水平桌面上的台灯的平面示意图,灯臂AO 长为50cm ,与水平桌面所形成的夹角∠OAM 为75°.由光源O 射出的边缘光线OC ,OB 与水平桌面所形成的夹角∠OCA ,∠OBA 分别为90°和30°.(不考虑其他因素,结果精确到0.1cm .参考数据:sin75°≈0.97,cos75°≈0.26,3≈1.73)(1)求该台灯照亮水平桌面的宽度BC .(2)人在此台灯下看书,将其侧面抽象成如图2所示的几何图形,若书与水平桌面的夹角∠EFC 为60°,书的长度EF 为24cm ,点P 为眼睛所在位置,当点P 在EF 的垂直平分线上,且到EF 距离约为34cm (人的正确看书姿势是眼睛离书距离约1尺≈34cm )时,称点P 为“最佳视点”.试问:最佳视点P 在不在灯光照射范围内?并说明理由.25.(本题满分9分)如图,以点P (-1,0)为圆心的圆,交x 轴于B 、C 两点(B 在C 的左侧),交y 轴于A 、D 两点(A 在D 的下方),AD =23,将△ABC 绕点P 旋转180°,得到△MCB .(1)求B 、C 两点的坐标;(2)请在图中画出线段MB 、MC ,并判断四边形ACMB 的形状(不必证明),求出点M 的坐标;(3)动直线l 从与BM 重合的位置开始绕点B 顺时针旋转,到与BC 重合时停止,设直线l 与CM 交点为E ,点Q 为BE 的中点,过点E 作EG ⊥BC 于点G ,连接MQ 、QG .请问在旋转过程中,∠MQG 的大小是否变化?若不变,求出∠MQG 的度数;若变化,请说明理由.OCE D PAC O P BDxy26.(本题满分8分)如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.(1)AB=▲;(2)当∠D=20°时,求∠BOD的度数.(3)若△ACD与△BCO相似,求AC的长.(第26题)27.(本题满分9分)定义:已知x为实数,[x]表示不超过x的最大整数.例如:[3.14]=3,[1]=1,[-1.2]=-2.请你在学习和理解上述定义的基础上,解决下列问题:设函数y=x-[x].(1)当x=2.15时,求y=x-[x]的值.(2)当0<x<2时,求函数y=x-[x]的表达式,并画出对应的函数图像.(3)当-2<x<2时,在平面直角坐标系中,以O为圆心,r为半径作圆,且r≤2,该圆与函数y=x-[x]恰有一个公共点,请直接写出r的取值范围.(第27题)28.(本题满分10分)如图1,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD ∥BC ,交AB 于点D ,连接PQ .已知点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t ≥0).(1)用含t 的代数式表示:QB = ▲ ,PD = ▲ ;(2)是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由.并探究如何改变匀速运动的点Q 的速度,使四边形PDBQ 在某一时刻为菱形,求出此时点Q 的速度.(3)如图2,在整个P 、Q 运动的过程中,点M 为线段PQ 的中点,求出点M 经过的路径长.ABC PDQ(图1)MA BCPQ(图2)九年级数学期中试卷参考答案与评分标准2017.11一.选择题(本大题共有10小题,每题3分,共30分)⒈C ⒉A ⒊C ⒋C ⒌A ⒍A ⒎D 8.B 9.B 10.D 二、填空题(本大题共8小题,每小题2分,共计16分)11、5:3 12、18 13、10%14、75°15、16、2.517、1或-2 18、1/22016三、解答题(10小题,共84分)19.(每小题4分)(1)1—2 (2)x 1=1,x 2=-31(3)x 1=25,x 2=25(4)x 1=0,x 2=420.(本题6分) 解:(1)略 ……2分(2)M 的坐标:(2,0);……3分(3)∵,……4分∴……5分∴点D 在⊙M 内……6分21. 解:(1)∵AC 平分∠DAB ,∴∠DAC =∠BAC 又∵∠ADC =∠ACB =90°∴△ADC ∽△ACB …………………………………………(1分) ∴AC AD = A B AC∴AC 2=AB •AD ………………………………………(2分)(2)∵∠ACB =90°,E 为AB 中点.∴CE =21AB =AE =3∴∠EAC =∠ECA ………………………………………(3分) 又∵AC 平分∠DAB , ∴∠DAC =∠EAC∴∠DAC =∠ECA ………………………………………(4分) ∴AD ∥EC∴△ADF ∽△ECF ………………………………………(5分) ∴FC AF =EC AD =34 ∴ AF AC =47. ………………………………………(6分)22.(1)(2分)(2)(6分,不排除扣2分)23.(1)10+0.5x,(1分) 2000―6x;(1分)(2)由题意得:(10+0.5x)(2000―6x)―10×2000―220x=24000.(2分)解得x1=40,x2=200(不合题意,舍去)(1分)答:存放40天后出售。
聊城市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2017七下·独山期末) 下列二次根式中,最简二次根式是()A .B .C .D .2. (2分)一元二次方程x2=9的解是()A . x1=3,x2=﹣3B . x=3C . x=﹣3D . x1=3,x2=03. (2分) (2017八下·钦南期末) 如图,D,E为△ABC的边AB,AC上的点,DE∥BC,若AD:DB=1:3,AE=2,则AC的长是()A . 10B . 8C . 6D . 44. (2分)(2019·濮阳模拟) 已知关于x的一元二次方程(k-2)x2+2x-1=0有两个不相等的实数根,则k 的取值范围为()A .B . 且C . 且D .5. (2分)(2017·连云港模拟) 下列计算中,正确的是()A .B .C .D .6. (2分)下列无理数中,在﹣1与2之间的是()A . -B . -C .D .7. (2分)某市商品房的均价原为18150元/m2 ,经过连续两次降价后均价为15000元/m2 .设平均每次降价的百分率为x,根据题意所列方程正确的是()A . 18150(1﹣x)2=18150﹣15000B . 18150(1﹣x2)=15000C . 18150(1﹣2x)=15000D . 18150(1﹣x)2=150008. (2分) (2016九上·仙游期末) 下列图形中,不是相似三角形的是()A . 任意两个等边三角形B . 有一个角是45°的两个直角三角形C . 有一个角是92°的两个等腰三角形D . 有一个角是45°的两个等腰三角形二、填空题 (共6题;共6分)9. (1分)若关于x的代数式的取值范围为x>﹣1,则这个代数式可以为________ (只需写一个)10. (1分) (2016九上·简阳期末) 将方程x2+6x﹣3=0的左边配成完全平方后所得方程为________.11. (1分)(2017·安岳模拟) 实数a在数轴上的位置如图,化简 +a=________.12. (1分) (2017八下·湖州月考) 已知关于x的一元二次方程(1-m)x2+x-m2+1=0的一个根为0,则m的值为________.13. (1分) (2019八下·温州月考) 如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高,动点P从点A出发,沿A→D方向以 cm/s的速度向点D运动,过P点作PE∥BC交AC于点E,过E点作EF⊥BC 于点F,设△ABP的面积为S1 ,四边形PDFE的面积为S2 ,则点P在运动过程中,S1+S2的最大值为________.14. (1分)(2018·遵义模拟) 如图,在平行四边形ABCD中,AB=12,AD=18,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG= ,则△CEF的周长是________.三、解答题 (共10题;共88分)15. (15分) (2017八下·诸城期中) 计算题(1)( + )× ;(2)÷ ﹣× + ;(3)× ﹣4× ÷(1﹣)0.16. (10分) (2018九上·邗江期中) 解下列方程:(1)(x﹣2)2=3(x﹣2)(2) x2+3x﹣2=0.17. (5分)两个相似五边形,一组对应边的长分别为3cm和4.5cm,如果它们的面积之和是,则这两个五边形面积各是多少?18. (5分)(2017·临泽模拟) 已知x=1是关于x的一元二次方程x2﹣4mx+m2=0的根,求代数式的值.19. (5分)请在方格纸中画出与原图形相似的图形.20. (5分)(2017·巴中) 巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.21. (15分)(2018·深圳模拟) 已知矩形纸片ABCD中,AB=2,BC=3.操作:将矩形纸片沿EF折叠,使点B落在边CD上.探究:(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等,请给出证明,如果不全等,请说明理由;(2)如图2,若点B与CD的中点重合,请你判断△FCB1、△B1DG和△EA1G之间的关系,如果全等,只需写出结果,如果相似,请写出结果和相应的相似比;(3)如图2,请你探索,当点B落在CD边上何处,即B1C的长度为多少时,△FCB1与△B1DG全等.22. (11分)(2017·芜湖模拟) 如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD,我们称该四边形为“可分四边形”,∠DAB称为“可分角”.(1)如图2,若四边形ABCD为“可分四边形”,∠DAB为“可分角”,且∠DCB=∠DAB,则∠DAB=________°.(2)如图3,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长?23. (10分)(2017·阿坝) 某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y 元.(1)当每件商品的售价是多少元时,每个月的利润刚好是2250元?(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?24. (7分)(2017·新吴模拟) 如图所示,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=________,BC=________;(2)判断△ABC与△DEF是否相似?并证明你的结论.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共10题;共88分)15-1、15-2、15-3、16-1、16-2、17-1、18-1、19-1、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、。
2016-2017学年山东省聊城市冠县九年级(上)期中数学试卷一、选择题(本题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.12.(3分)如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是()A.∠D=∠B B.∠E=∠C C.D.3.(3分)在△ABC中,∠C=90°,下列各式不一定成立的是()A.a=bcosA B.a=ccosB C. D.a=btanA4.(3分)下列说法中正确的有()①位似图形都相似;②两个等腰三角形一定相似;③两个相似多边形的面积比为4:9,则周长的比为16:81;④若一个三角形的三边分别比另一个三角形的三边长2cm,那么这两个三角形一定相似.A.1个 B.2个 C.3个 D.4个5.(3分)Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径作圆,若圆C与直线AB相切,则r的值为()A.2cm B.2.4cm C.3cm D.4cm6.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A.B.C.D.7.(3分)如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=35°,则∠CAD 的度数是()A.35°B.45°C.55°D.65°8.(3分)如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1;(2)AB边上的高为;(3)△CDE∽△CAB;(4)△CDE的面积与△CAB面积之比为1:4.其中正确的有()A.1个 B.2个 C.3个 D.4个9.(3分)用一枚直径为25mm的硬币完全覆盖一个正六边形,则这个正六边形的最大边长是()A.mm B.mm C.mm D.mm10.(3分)下列下列说法中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和平分它所对的弦的直线必经过这个圆的圆心11.(3分)如图所示,AB是⊙O的直径,D、E是半圆上任意两点,连接AD、DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件中错误的是()A.∠ACD=∠DAB B.AD=DE C.AD•AB=CD•BD D.AD2=BD•CD12.(3分)数学活动课上,小敏、小颖分别画了△ABC和△DEF,尺寸如图.如果两个三角形的面积分别记作S△ABC 、S△DEF,那么它们的大小关系是()A.S△ABC>S△DEF B.S△ABC<S△DEF C.S△ABC=S△DEF D.不能确定二、填空题(本题共5个小题,每小题4分,共20分,只要求写出最后结果)13.(4分)已知在Rt△ABC中,∠C=90°,tanA=,则sinA=.14.(4分)如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=度.15.(4分)已知矩形ABCD中,AB=1,在BC上取一点E,将△ABE沿AE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD=.16.(4分)如图,⊙O是△ABC的内切圆,切点分别为D、E、F,∠A=80°,点P 为⊙O上任意一点(不与E、F重合),则∠EPF=.17.(4分)如图,在△ABC中,AB=6cm,AC=5cm,点P从A点出发,以2cm/S 的速度沿AB方向向B运动,同时点Q从C点出发,以1cm/S的速度沿CA方向向点A运动,当一点到达终止,当一点也停止,连接PQ.设运动时间为ts,当t=S时,△ABC与△APQ相似.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或演算步骤)18.(8分)计算:(1)sin230°+cos30°∙tan60°;(2)sin45°+3tan30°﹣.19.(7分)如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.20.(8分)如图,在直角坐标系中,△ABO三个顶点及点P的坐标分别是O(0,0),A(4,2),B(2,4),P(4,4),以点P为位似中心,画△DEF与△ABO位似,且相似比为1:2,请在网格中画出符合条件的△DEF.21.(8分)如图,在⊙O中,点C是的中点,弦AB与半径OC相交于点D,AB=12,CD=2.求⊙O半径的长.22.(10分)如图,在Rt△AOB中,∠B=40°,以OA为半径,O为圆心作⊙O,交AB于点C,交OB于点D.求的度数.23.(11分)据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.24.(12分)如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)求证:AC2=AD•AB;(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.2016-2017学年山东省聊城市冠县九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.1【解答】解:∵a∥b∥c,∴==.故选:B.2.(3分)如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是()A.∠D=∠B B.∠E=∠C C.D.【解答】解:A和B符合有两组角对应相等的两个三角形相似;C、符合两组对应边的比相等且相应的夹角相等的两个三角形相似;D、对应边成比例但无法证明其夹角相等,故其不能推出两三角形相似.故选:D.3.(3分)在△ABC中,∠C=90°,下列各式不一定成立的是()A.a=bcosA B.a=ccosB C. D.a=btanA【解答】解:A、∵cosA=,∴b=c•cosA,本选项错误;B、∵cosB=,∴a=c•cosB,本选项正确;C、∵sinA=,∴c=,本选项正确;D、∵tanA=,∴a=b•tanA,本选项正确;故选:A.4.(3分)下列说法中正确的有()①位似图形都相似;②两个等腰三角形一定相似;③两个相似多边形的面积比为4:9,则周长的比为16:81;④若一个三角形的三边分别比另一个三角形的三边长2cm,那么这两个三角形一定相似.A.1个 B.2个 C.3个 D.4个【解答】解:①正确.②两个等腰三角形一定相似,错误不一定相似.③两个相似多边形的面积比为4:9,则周长的比为16:81,错误周长比应该是2:3,④不相似,三边不一定成比例.故选:A.5.(3分)Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径作圆,若圆C与直线AB相切,则r的值为()A.2cm B.2.4cm C.3cm D.4cm【解答】解:Rt△ABC中,∠C=90°,AC=3cm,BC=4cm;由勾股定理,得:AB2=32+42=25,∴AB=5;又∵AB是⊙C的切线,∴CD⊥AB,∴CD=r;=AC•BC=AB•r;∵S△ABC∴r=2.4cm,故选:B.6.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A.B.C.D.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD==.故选:D.7.(3分)如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=35°,则∠CAD 的度数是()A.35°B.45°C.55°D.65°【解答】解:∵∠ABC=35°,∴∠ADC=35°,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD=90°﹣35°=55°.故选:C.8.(3分)如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1;(2)AB边上的高为;(3)△CDE∽△CAB;(4)△CDE的面积与△CAB面积之比为1:4.其中正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:∵DE是它的中位线,∴DE=AB=1,故(1)正确,∴DE∥AB,∴△CDE∽△CAB,故(3)正确,∴S△CDE :S△CAB=DE2:AB2=1:4,故(4)正确,∵等边三角形的高=边长×sin60°=2×=,故(2)正确.故选:D.9.(3分)用一枚直径为25mm的硬币完全覆盖一个正六边形,则这个正六边形的最大边长是()A.mm B.mm C.mm D.mm【解答】解:根据题意得:圆内接半径r为mm,如图所示:则OB=,∴BD=OB•sin30°=×=(mm),则BC=2×=(cm),完全覆盖住的正六边形的边长最大为mm.故选:A.10.(3分)下列下列说法中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和平分它所对的弦的直线必经过这个圆的圆心【解答】解:A、两条直径互相平分,但不一定垂直,故本选项错误;B、平分一条弧的直径垂直于这条弧所对的弦,故本选项错误;C、弦的垂直平分线必经过这条弦所在圆的圆心,故本选项错误;D、在一个圆内平分一条弧和平分它所对的弦的直线必经过这个圆的圆心,故本选项正确.故选:D.11.(3分)如图所示,AB是⊙O的直径,D、E是半圆上任意两点,连接AD、DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件中错误的是()A.∠ACD=∠DAB B.AD=DE C.AD•AB=CD•BD D.AD2=BD•CD【解答】解:A、∵∠ACD=∠DAB,而∠ADC=∠BDA,∴△DAC∽△DBA,所以A 选项的添加条件正确;B、∵AD=DE,∴∠DAE=∠E,而∠E=∠B,∴∠DAC=∠B,∴△DAC∽△DBA,所以B选项的添加条件正确;C、∵∠ADC=∠BDA,∴当DA:DC=DB:DA,即AD2=DC•BD时,△DAC∽△DBA,所以C选项的添加条件不正确;D、∵∠ADC=∠BDA,∴当DA:DC=DB:DA,即AD2=DC•BD时,△DAC∽△DBA,所以D选项的添加条件正确.故选:C.12.(3分)数学活动课上,小敏、小颖分别画了△ABC和△DEF,尺寸如图.如果两个三角形的面积分别记作S△ABC 、S△DEF,那么它们的大小关系是()A.S△ABC>S△DEF B.S△ABC<S△DEF C.S△ABC=S△DEF D.不能确定【解答】解:如图,过点A、D分别作AG⊥BC,DH⊥EF,垂足分别为G、H,在Rt△ABG中,AG=ABsinB=5×sin 50°=5sin 50°,在Rt△DHE中,∠DEH=180°﹣130°=50°,DH=DEsin∠DEH=5sin 50°,∴AG=DH.∵BC=4,EF=4,∴S=S△DEF.△ABC故选:C.二、填空题(本题共5个小题,每小题4分,共20分,只要求写出最后结果)13.(4分)已知在Rt△ABC中,∠C=90°,tanA=,则sinA=.【解答】解:在Rt△ABC中,∠C=90°,∵tanA==,∴设a=3x,则b=4x,则c==5x.sinA===.故答案是:.14.(4分)如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=35度.【解答】解:∵∠AOB=40°,OA=OB,∴∠ABO==70°.∵直径CD∥AB,∴∠BOC=∠ABO=70°,∴∠BAC=∠BOC=35°.故答案为:35.15.(4分)已知矩形ABCD中,AB=1,在BC上取一点E,将△ABE沿AE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD=.【解答】解:∵AB=1,设AD=x,则FD=x﹣1,FE=1,∵四边形EFDC与矩形ABCD相似,∴=,=,解得x1=,x2=(不合题意舍去),经检验x1=是原方程的解.故答案为.16.(4分)如图,⊙O是△ABC的内切圆,切点分别为D、E、F,∠A=80°,点P 为⊙O上任意一点(不与E、F重合),则∠EPF=50°或130°.【解答】解:有两种情况:①当P在弧EDF上时,∠EPF=∠ENF,连接OE、OF,∵圆O是△ABC的内切圆,∴OE⊥AB,OF⊥AC,∴∠AEO=∠AFO=90°,∵∠A=80°,∴∠EOF=360°﹣∠AEO﹣∠AFO﹣∠A=100°,∴∠ENF=∠EPF=∠EOF=50°,②当P在弧EMF上时,∠EPF=∠EMF,∠FPE=∠FME=180°﹣50°=130°,故答案为:50°或130°.17.(4分)如图,在△ABC中,AB=6cm,AC=5cm,点P从A点出发,以2cm/S 的速度沿AB方向向B运动,同时点Q从C点出发,以1cm/S的速度沿CA方向向点A运动,当一点到达终止,当一点也停止,连接PQ.设运动时间为ts,当t=或S时,△ABC与△APQ相似.【解答】解:根据题意得:AP=2tcm,CQ=tcm,则AQ=(5﹣t)cm,∵∠A=∠A,∴分两种情况:①当时,,解得:t=;②当时,,解得:t=;综上所述:t=s或s时,△ABC与△APQ相似;故答案为:或.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或演算步骤)18.(8分)计算:(1)sin230°+cos30°∙tan60°;(2)sin45°+3tan30°﹣.【解答】解:(1)原式=+×=;(2)原式=×+3×﹣2=1﹣.19.(7分)如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.【解答】解:在△ABD和△ACB中,∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴=,∵AB=6,AD=4,∴AC===9,则CD=AC﹣AD=9﹣4=5.20.(8分)如图,在直角坐标系中,△ABO三个顶点及点P的坐标分别是O(0,0),A(4,2),B(2,4),P(4,4),以点P为位似中心,画△DEF与△ABO位似,且相似比为1:2,请在网格中画出符合条件的△DEF.【解答】解:如图所示:.21.(8分)如图,在⊙O中,点C是的中点,弦AB与半径OC相交于点D,AB=12,CD=2.求⊙O半径的长.【解答】解:连接AO,∵点C是弧AB的中点,半径OC与AB相交于点D,∴OC⊥AB,∵AB=12,∴AD=BD=6,设⊙O的半径为R,∵CD=2,∴在Rt△AOD中,由勾股定理得:AD2=OD2+AD2,即:R2=(R﹣2)2+62,∴R=10答:⊙O的半径长为10.22.(10分)如图,在Rt△AOB中,∠B=40°,以OA为半径,O为圆心作⊙O,交AB于点C,交OB于点D.求的度数.【解答】解:连接OC,∵∠O=90°,∠B=40°,∴∠A=180°﹣90°﹣40°=50°,∵OA=OC,∴∠ACO=∠A=50°,∴∠COD=∠ACO﹣∠B=10°,∴的度数是10°..23.(11分)据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.【解答】解:(1)在Rt△ABD中,AD=24m,∠B=31°,∴tan31°=,即BD==40m,在Rt△ACD中,AD=24m,∠ACD=50°,∴tan50°=,即CD==20m,∴BC=BD﹣CD=40﹣20=20m,则B,C的距离为20m;(2)根据题意得:20÷2=10m/s<15m/s,则此轿车没有超速.24.(12分)如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)求证:AC2=AD•AB;(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.【解答】(1)证明:连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠DAC=∠BAC,∴∠OCA=∠DAC,∴OC∥AD,∵AD⊥EF,∴OC⊥EF,∵OC为半径,∴EF是⊙O的切线.(2)证明:连接BC,∵AB为⊙O直径,AD⊥EF,∴∠BCA=∠ADC=90°,∵∠DAC=∠BAC,∴△ACB∽△ADC,∴=,∴AC2=AD•AB.(3)解:∵∠ACD=30°,∠OCD=90°,∴∠OCA=60°,∵OC=OA,∴△OAC是等边三角形,∴AC=OA=OC=2,∠AOC=60°,∵在Rt△ACD中,AD=AC=×2=1,由勾股定理得:DC=,∴阴影部分的面积是S=S梯形OCDA ﹣S扇形OCA=×(2+1)×﹣=﹣π.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。