高数(下)期中测验试题(1)答案
- 格式:doc
- 大小:301.00 KB
- 文档页数:7
高三数学下册期中考试题:含参考答案【】对于高中学生的我们,数学在生活中,考试科目里更是尤为重要,高三数学试题栏目为您提供大量试题,小编在此为您发布了文章:高三数学下册期中考试题:含参考答案希望此文能给您带来帮助。
本文题目:高三数学下册期中考试题:含参考答案一、选择题:本大题共8小题,每小题5分。
满分40分.在每小题给出的四个选项中。
只有一项是符合题目要求的.1.若等差数列前项和为,则复数在复平面上对应的点位于A.第一象限 B .第二象限 C .第三象限 D .第四象限2.下列命题错误的是A. 的充分不必要条件;B. 命题的逆否命题为C.对命题:对方程有实根的否定是: ,方程无实根D. 若命题是 ;3.某校高三(1)班共有60人,现需从中抽取所有座位号能被3整除的同学参加某项测试,下面是四位同学设计的输出参加测试同学座位号的程序框图,则其中设计正确的是4.已知平面,直线,点A,下面四个命题,其中正确的命题是A . 若,则与必为异面直线;B. 若则 ;C. 若则 ;D. 若,则 .5.某项测试成绩满分为10分,先随机抽取30名学生参加测试,得分如图所示,假设得分值的中位数为me ,平均值为,众数为mo ,则A.me=mo=B.me=moC.me6.已知,则的值A.随的增大而减小B.有时随的增大而增大,有时随的增大而减小C.随的增大而增大D.是一个与无关的常数7.已知三个正态分布密度函数( , )的图象如图所示,则A. ,B. ,C. ,D. ,8.已知实数满足 ,给出下列关系式:① ② ③ 其中可能成立的有A. 个B. 个C. 个D. 个二、填空题:本大题共7小题,考生作答6小题.每小题5分.满分30分.(一)必做题(913题)9.设n= ,则二项式(x-2x)n的展开式中,x2项的系数为10.若x2-2x-8是x11.已知双曲线 ( 0)的离心率为2,一个焦点与抛物线的焦点相同,则双曲线的焦点坐标为 ;渐近线方程为 .12.已知一个几何体的主视图及左视图均是边长为2的正三角形,俯视图是直径为2 的圆,则此几何体的外接球的表面积为13.设的三个内角分别为、、,则下列条件中能够确定为钝角三角形的条件共有________个.(二)选做题(1415题,考生只能从中选做一题)14. (坐标系与参数方程选做题)在平面直角坐标系中,已知直线的参数方程为 (参数 ),以直角坐标原点为极点,轴的正半轴为极轴建立相应的极坐标系.在此极坐标系中,若圆的极坐标方程为,则圆心到直线的距离为 ..15.(几何证明选讲选做题)如图4,已知是⊙ 的切线,是切点,直线交⊙于、两点,是的中点,连结并延长交⊙ 于点 .若,,则 = .三、解答题:本大题共6小题,满分80分,解答必须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)17.(本小题满分12分)如图是两个独立的转盘,在两个图中的四个扇形区域的圆心角分别为。
2010 年4月高数A (下)期中考试试题答案班 级 姓 名 学 号一、填空题(每空3分,共30分)1.设()2,z x y f x y =++-且当1y =时,23z x =+,则()f x =21x +。
2.设()222z y f x y =+-,其中()f u 可微,则z zyx x y∂∂+=∂∂2xy 。
3.设z u xy =,则()1,2,2d u =4d 4d 4ln 2d x y z ++。
4.设(),z z x y =由222x x y z yf y ⎛⎫++= ⎪⎝⎭所确定,其中f 为可微函数,则zy∂=∂'22x x x f f y y y y z ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭。
5.曲面222315x y z ++=在点()1,1,2-处的切平面方程是412290x y z -++-=。
6.设函数cos u xy z =,则在点()2,1,0M -处的()div grad u = 2 。
7.设曲面222236,x y z n ++=是曲面上点()1,1,1P 处指向外侧的法线向量,函数u =P 点处沿方向n的方向导数 117 。
8.若交换积分次序,则()1320d ,d y y f x y x -=⎰()()()21133201d ,d d ,d x x x f x y y x f x y y -+⎰⎰⎰⎰。
9.设L 为封闭曲线22143x y +=,其周长为a ,则()22234d L x y s ++=⎰ 14a 。
10. 设()()222d 23d 3d z xy x x x y y =+++,则z =233x y x y C +++。
二、(10分 ) 设()2ln ,,z f x y x y f =-具有二阶连续偏导数,求2zx y∂∂∂。
解:()''''1212'2""""111122122'"""1111222ln ,2,ln 221ln 2ln 2.z z xf y f f yf x y yf z x x y f f y f yf x y y y y x y x f f y y f yf y y y ∂∂=+=-∂∂⎡⎤∂=++-+-⎢⎥∂∂⎣⎦⎛⎫=++-- ⎪⎝⎭三、(10分)计算()2d x y z S ∑++⎰⎰, 其中∑是球面2222R z y x =++中满足0,0x y ≥≥及0z ≥的那部分曲面块,R 为正数。
部分一:直线和圆1.1.(求圆的方程)以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( )1.2.(位置关系问题)直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( )1.3.(切线问题)过坐标原点且与圆0252422=++-+y x y x 相切的直线方程为( )解 化为标准方程25)1()2(22=++-y x ,即得圆心)1,2(-C 和半径25=r .设过坐标原点的切线方程为kx y =,即0=-y kx ,∴线心距251122==++=r k k d ,平方去分母得0)3)(13(=+-k k ,解得3-=k 或31,∴所求的切线方程为x y 3-=或x y 31=, 1.4.(弦长问题)设直线03=+-y ax 与圆4)2()1(22=-+-y x 相交于B A 、两点,且弦AB 的长为32,则=a .解 由已知圆4)2()1(22=-+-y x ,即得圆心)2,1(C 和半径2=r .∵线心距112++=a a d ,且222)2(r AB d =+,∴22222)3()11(=+++a a ,即1)1(22+=+a a ,解得0=a .点评:一般在线心距d 、弦长AB 的一半和圆半径r 所组成的直角三角形中处理弦长问题:222)2(r AB d =+.1.5.(夹角问题)从圆012222=+-+-y y x x 外一点)2,3(P 向这个圆作两条切线,则两切线夹角的余弦值为( )(A)21 (B)53(C)23 (D) 0解 已知圆化为1)1()1(22=-+-y x ,即得圆心)1,1(C 和半径1=r .设由)2,3(P 向这个圆作的两条切线的夹角为θ,则在切线长、半径r 和PC 构成的直角三角形中,522cos=θ,∴5312cos 2cos 2=-=θθ,故选(B). 1.6.(圆心角问题)过点)2,1(的直线l 将圆4)2(22=+-y x 分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率=k .解 由已知圆4)2(22=+-y x ,即得圆心)0,2(C 和半径2=r .设)2,1(P ,则2-=PC k ;∵⊥PC 直线l 时弦最短,从而劣弧所对的圆心角最小,∴直线l 的斜率221=-=PCk k . 1.7.(最值问题)圆0104422=---+y x y x 上的点到直线14-+y x 0=的最大距离与最小距离的差是( )解 已知圆化为18)2()2(22=-+-y x ,即得圆心)2,2(C 和半径23=r .设线心距为d ,则圆上的点到直线014=-+y x 的最大距离为r d +,最小距离为r d -,∴262)()(==--+r r d r d ,BD 部分二:向量2.1.设21,e e 是不共线的向量,已知向量2121212,3,2e e CD e e CB e k e AB -=+=+=,若A,B,D 三点共线,求k 的值 2.2.的两条对角线AC 与BD 交于E ,O 是任意一点,求证:+++=4 解析:证明:∵E 是对角线AC 和BD 的交点 ∴AE =EC =-CE ,BE =ED =-DE在△OAE 中,+=。
高一下学期期中考试高一数学考生注意:本卷共三道大题,满分100分,考试时间120分钟。
一.选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.sin 240的值是( )A. 21-B. 21C. 23-D. 23 2.下列函数中,最小正周期为2π的是( ) A.4sin y x = B.sin cos y x x = C.tan 2xy = D.cos 4y x = 3.半径为10cm ,弧长为20cm 的扇形的圆心角为( )A.︒2B.2弧度C.π2弧度D.10弧度 4.已知在平行四边形ABCD 中,若AC a =,BD b =,则AB =( )A.1()2a b →→-B.1()2b a →→-C. 12a b →→+D.1()2a b →→+5.已知向量=(3, 2),=(x, 4),若与共线,则x 的值为( ) A.6 B.-6 C.38-D.386.若(2,2)a =-,则与a 垂直的单位向量的坐标为( )A.cos 4ππ(,sin )4 B.2222(,-C.22(--)D.( 1, 1)或(-1,-1) 7.函数)sin(ϕω+=x A y ,(πϕω<>,0)在一个周期内的图象如右图所示,此函数的解析式为( ) A.)322sin(2π+=x y B.)32sin(2π+=x yC.)32sin(2π-=x y D.)32sin(2π-=x y8.设α是一个任意角,它的终边与单位圆交于点(,)P x y ,由此定义了正弦(sin α)、余弦(cos α)、正切(tan α),其实还有另外三个三角函数,分别是:余切(cot xyα=)、正割(1sec x α=)、余割(1csc y α=). 则下列关系式错误的是( )A.cos cot sin ααα=B.1sec cos αα=C.1csc sin αα= D.22cot csc 1αα-=二.填空题:本大题共7个小题,每小题3分,共21分,把答案填在答题卡中对应题号后的横线上。
一、选择题1.(0分)[ID :12425]设曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行,则a=( )A .-4B .14-C .14D .42.(0分)[ID :12421]设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥3.(0分)[ID :12416]水平放置的ABC 的斜二测直观图如图所示,若112A C =,111A B C △的面积为22,则AB 的长为( )A .2B .217C .2D .84.(0分)[ID :12398]已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f 2b (log 5),c (2)f f m ,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a << 5.(0分)[ID :12377]<九章算术>中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面,2,4ABC PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π6.(0分)[ID :12356]在我国古代数学名著 九章算术 中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中, AB ⊥平面BCD ,且AB BC CD ==,则异面直线AC 与BD 所成角的余弦值为( )A .12B .12-C 3D .3 7.(0分)[ID :12344]用一个平面去截正方体,则截面不可能是( )A .直角三角形B .等边三角形C .正方形D .正六边形 8.(0分)[ID :12396]若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b9.(0分)[ID :12395]正方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AD ,DD 1的中点,AB =4,则过B ,E ,F 的平面截该正方体所得的截面周长为( )A .62+45B .62+25C .32+45D .32+25 10.(0分)[ID :12387]α,β为两个不同的平面,m ,n 为两条不同的直线,下列命题中正确的是( )①若α//β,m ⊂α,则m//β; ②若m//α,n ⊂α,则m//n ;③若α⊥β,α∩β=n ,m ⊥n ,则m ⊥β ④若n ⊥α,n ⊥β,m ⊥α,则m ⊥β. A .①③ B .①④ C .②③ D .②④ 11.(0分)[ID :12371]若方程21424x kx k +-=-+ 有两个相异的实根,则实数k 的取值范围是( )A .13,34⎛⎤ ⎥⎝⎦ B .13,34⎛⎫ ⎪⎝⎭ C .53,124⎛⎫ ⎪⎝⎭ D .53,124 12.(0分)[ID :12369]某锥体的三视图如图所示(单位:cm ),则该锥体的体积(单位:cm 3)是( )A .13 B .12 C .16 D .113.(0分)[ID :12410]已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( ) A 2 B 3C 2 D 2 14.(0分)[ID :12397]若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,3 15.(0分)[ID :12360]如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )A .64B .643C .16D .163二、填空题16.(0分)[ID :12478]在棱长为1的正方体1111ABCD A B C D -中,BD AC O ⋂=,M 是线段1D O 上的动点,过M 做平面1ACD 的垂线交平面1111D C B A 于点N ,则点N 到点A 的距离最小值是___________.17.(0分)[ID :12463]已知圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆22:(1)(1)1N x y -+-=的位置关系是_________.18.(0分)[ID :12462]若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为 .19.(0分)[ID :12522]在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,3AB =,4BC =,5PA =,则三棱锥P ABC -的外接球的表面积为__________20.(0分)[ID :12508]已知P 是抛物线24y x =上的动点,点Q 是圆22:(3)(3)1C x y ++-=上的动点,点R 是点P 在y 轴上的射影,则PQ PR +的最小值是____________.21.(0分)[ID :12443]已知B 与点()1,2,3A 关于点()0,1,2M -对称,则点B 的坐标是______.22.(0分)[ID :12431]已知棱长等于23的正方体1111ABCD A B C D -,它的外接球的球心为O ﹐点E 是AB 的中点,则过点E 的平面截球O 的截面面积的最小值为________.23.(0分)[ID :12430]若直线:20l kx y --=与曲线()2:111C y x --=-有两个不同的交点,则实数k 的取值范围________.24.(0分)[ID :12432]如图所示,二面角l αβ--为60,,A B 是棱l 上的两点,,AC BD 分别在半平面内,αβ,且AC l ⊥,,4,6,8AB AC BD ===,则CD 的长______.25.(0分)[ID :12450]已知球的表面积为20π,球面上有A 、B 、C 三点.如果2AB AC ==,22BC =,则球心到平面ABC 的距离为__________.三、解答题26.(0分)[ID :12628]已知点()1,0P ,圆22:6440C x y x y +-++=.(1)若直线l 过点P 且到圆心C 的距离为2,求直线l 的方程;(2)设过点()0,1Q -的直线m 与圆C 交于A 、B 两点(m 的斜率为负),当||4AB =时,求以线段AB 为直径的圆的方程.27.(0分)[ID :12597]已知点(3,3)M ,圆22:(1)(2)4C x y -+-=.(1)求过点M 且与圆C 相切的直线方程;(2)若直线40()ax y a -+=∈R 与圆C 相交于A ,B 两点,且弦AB 的长为23,求实数a 的值.28.(0分)[ID :12545]如图所示,已知四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,60,,ABC E F ∠=分别是,BC PB 的中点.(1)证明:AE ⊥平面PAD ;(2)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为3,求二面角B AF C --的正切值.29.(0分)[ID :12622]已知圆22C (4)4x y +-=:,直线:(31)(1)40l m x m y ++--=.(1)求直线l 所过定点A 的坐标;(2)求直线l 被圆C 所截得的弦长最短时直线l 的方程及最短弦长;(3)已知点M (-3,4),在直线MC 上(C 为圆心),存在定点N (异于点M ),满足:对于圆C 上任一点P ,都有||||PM PN 为一常数, 试求所有满足条件的点N 的坐标及该常数.30.(0分)[ID :12542]如图,将棱长为2的正方体1111ABCD A B C D -沿着相邻的三个面的对角线切去四个棱锥后得一四面体11A CB D -.(Ⅰ)求该四面体的体积;(Ⅱ)求该四面体外接球的表面积.【参考答案】2016-2017年度第*次考试试卷参考答案 **科目模拟测试一、选择题1.D2.B3.B4.B5.C6.A7.A8.B9.A10.B11.D12.A13.A14.B15.D二、填空题16.【解析】连结易知面面而即在面内且点的轨迹是线段连结易知是等边三角形则当为中点时距离最小易知最小值为17.相交【解析】【分析】根据直线与圆相交的弦长公式求出的值结合两圆的位置关系进行判断即可【详解】解:圆的标准方程为则圆心为半径圆心到直线的距离圆截直线所得线段的长度是即则圆心为半径圆的圆心为半径则即两个18.2π【解析】试题分析:设圆柱的底面半径为r高为h底面积为S体积为V则有2πr=2⇒r=1π故底面面积S=πr2=π×(1π)2=1π故圆柱的体积V=Sh=1π×2=2π考点:圆柱的体积19.【解析】【分析】以为长宽高构建长方体则长方体的外接球是三棱锥的外接球由此能求出三棱锥的外接球的表面积【详解】由题意在三棱锥中平面以为长宽高构建长方体则长方体的外接球是三棱锥的外接球所以三棱锥的外接球20.【解析】根据抛物线的定义可知而的最小值是所以的最小值就是的最小值当三点共线时此时最小最小值是所以的最小值是3【点睛】本题考查了点和圆的位置关系以及抛物线的几何性质和最值问题考查了转化与化归能力圆外的21.【解析】【分析】根据空间直角坐标系中点坐标公式求结果【详解】设B则所以所以的坐标为【点睛】本题考查空间直角坐标系中点坐标公式考查基本分析求解能力属基础题22.【解析】【分析】当过球内一点的截面与垂直时截面面积最小可求截面半径即可求出过点的平面截球的截面面积的最小值【详解】解:棱长等于的正方体它的外接球的半径为3当过点的平面与垂直时截面面积最小故答案为:【23.【解析】【分析】由题意可知曲线为圆的右半圆作出直线与曲线的图象可知直线是过点且斜率为的直线求出当直线与曲线相切时k的值利用数形结合思想可得出当直线与曲线有两个公共点时实数的取值范围【详解】对于直线则24.【解析】【分析】推导出两边平方可得的长【详解】二面角为是棱上的两点分别在半平面内且的长故答案为:【点睛】本题考查线段长的求法考查空间中线线线面面面间的位置关系等基础知识考查运算求解能力考查函数与方程25.【解析】设球的半径为表面积解得∵在中∴从圆心作平面的垂线垂足在斜边的中点处∴球心到平面的距离故答案为点睛:本题考查的知识点是空间点线面之间的距离计算其中根据球心距球半径解三角形我们可以求出所在平面截三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】求出原函数的导函数,得到函数在2x =时的导数,再由两直线平行与斜率的关系求得a 值.【详解】 解:由31x y x +=-,得()()2213411x x y x x ---=---'=, ∴2'|4x y ==-,又曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行, ∴4a -=-,即4a =.故选D .【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查两直线平行与斜率的关系,是中档题.2.B解析:B【解析】A 中,,αβ也可能相交;B 中,垂直与同一条直线的两个平面平行,故正确;C 中,,αβ也可能相交;D 中,l 也可能在平面β内.【考点定位】点线面的位置关系3.B解析:B【解析】【分析】依题意由111A B C △的面积为114B C =,所以8BC =,2AC =,根据勾股定理即可求AB .【详解】依题意,因为111A B C △的面积为所以11111sin 452AC B C ︒=⨯⋅=11122B C ⨯⨯,解得114B C =, 所以8BC =,2AC =,又因为AC BC ⊥,由勾股定理得:AB ====故选B .【点睛】本题考查直观图还原几何图形,属于简单题. 利用斜二测画法作直观图,主要注意两点:一是与x 轴平行的线段仍然与x '轴平行且相等;二是与y 轴平行的线段仍然与y '轴平行且长度减半. 4.B解析:B【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.5.C解析:C【解析】【分析】先作出三棱锥P ABC -的图像,根据P ABC -四个面都为直角三角形和PA ⊥平面ABC ,可知PC 中点即为球心,利用边的关系求出球的半径,再由24S R π=计算即得.【详解】三棱锥P ABC -如图所示,由于P ABC -四个面都为直角三角形,则ABC 是直角三角形,且2ABC π∠=,2223BC AC AB ∴=-=,又PA ⊥平面ABC ,且PAC 是直角三角形,∴球O 的直径2222PC R PA AB BC ==++2025==,5R ∴=,则球O 的表面积2420S R ππ==.故选:C【点睛】本题考查多面体外接球的表面积,是常考题型.6.A解析:A【解析】如图,分别取,,,BC CD AD BD 的中点,,,M N P Q ,连,,,MN NP PM PQ ,则,MN BD NP AC ,∴PNM ∠即为异面直线AC 和BD 所成的角(或其补角).又由题意得PQ MQ ⊥,11,22PQ AB MQ CD ==. 设2AB BC CD ===,则2PM =又112,222MN BD NP AC ====, ∴PNM ∆为等边三角形,∴60PNM =︒∠,∴异面直线AC 与BD 所成角为60︒,其余弦值为12.选A . 点睛:用几何法求空间角时遵循“一找、二证、三计算”的步骤,即首先根据题意作出所求的角,并给出证明,然后将所求的角转化为三角形的内角.解题时要注意空间角的范围,并结合解三角形的知识得到所求角的大小或其三角函数值. 7.A解析:A【解析】【分析】【详解】画出截面图形如图显然A 正三角形C 正方形:D 正六边形可以画出三角形但不是直角三角形;故选A .用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形;④截面为六边形时,可以是正六边形.故可选A .8.B解析:B【解析】试题分析:对于选项A ,a b 1gc 1gc log c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用c y x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较. 9.A解析:A【解析】【分析】利用线面平行的判定与性质证明直线1BC 为过直线EF 且过点B 的平面与平面11BCC B 的交线,从而证得1,,,B E F C 四点共面,然后在正方体中求等腰梯形1BEFC 的周长即可.【详解】作图如下:因为,E F 是棱1,AD DD 的中点,所以11////EF AD BC ,因为EF ⊄平面11BCC B ,1BC ⊂平面11BCC B ,所以//EF 平面11BCC B ,由线面平行的性质定理知,过直线EF 且过点B 的平面与平面11BCC B 的交线l 平行于直线EF ,结合图形知,l 即为直线1BC ,过B ,E ,F 的平面截该正方体所得的截面即为等腰梯形1BEFC ,因为正方体的棱长AB =4,所以11EF BE C F BC ====所以所求截面的周长为+故选:A【点睛】本题主要考查多面体的截面问题和线面平行的判定定理和性质定理;重点考查学生的空间想象能力;属于中档题.10.B解析:B【解析】【分析】在①中,由面面平行的性质定理得m ∥β;在②中,m 与n 平行或异面;在③中,m 与β相交、平行或m ⊂β;在④中,由n ⊥α,m ⊥α,得m ∥n ,由n ⊥β,得m ⊥β.【详解】由α,β为两个不同的平面,m ,n 为两条不同的直线,知:在①中,若α∥β,m ⊂α,则由面面平行的性质定理得m ∥β,故①正确;在②中,若m ∥α,n ⊂α,则m 与n 平行或异面,故②错误;在③中,若α⊥β,α∩β=n ,m ⊥n ,则m 与β相交、平行或m ⊂β,故③错误; 在④中,若n ⊥α,m ⊥α,则m ∥n ,由n ⊥β,得m ⊥β,故④正确.故选:B .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、推理论证能力,考查化归与转化思想,是中档题.11.D解析:D【解析】【分析】由题意可得,曲线22(1)4(1)x y y +-=与直线4(2)y k x -=-有2个交点,数形结合求得k 的范围.【详解】如图所示,化简曲线得到22(1)4(1)x y y +-=,表示以(0,1)为圆心,以2为半径的上半圆,直线化为4(2)y k x -=-,过定点(2,4)A ,设直线与半圆的切线为AD ,半圆的左端点为(2,1)B -,当AD AB k k k <,直线与半圆有两个交点,AD 与半圆相切时,2|124|21k k --+=+,解得512AD k =, 4132(2)4AB k -==--,所以53,124k ⎛⎤∈ ⎥⎝⎦. 故选:D【点睛】本题考查直线与圆的位置关系,属于中档题.12.A解析:A【解析】【分析】根据三视图知该几何体对应的三棱锥,结合图中数据求得三棱锥的体积.【详解】由题意可知三棱锥的直观图如图:三棱锥的体积为:111211323⨯⨯⨯⨯=. 故选:A .【点睛】本题考查了利用三视图求几何体体积的应用问题,考查了空间想象能力,是基础题.13.A解析:A【解析】【分析】【详解】根据题意作出图形:设球心为O ,过ABC 三点的小圆的圆心为O 1,则OO 1⊥平面ABC ,延长CO 1交球于点D ,则SD ⊥平面ABC .∵CO 1=233323⨯=, ∴116133OO =-=, ∴高SD=2OO 1=263,∵△ABC 是边长为1的正三角形,∴S △ABC =34, ∴132623436S ABC V -=⨯⨯=三棱锥.考点:棱锥与外接球,体积.【名师点睛】本题考查棱锥与外接球问题,首先我们要熟记一些特殊的几何体与外接球(内切球)的关系,如正方体(长方体)的外接球(内切球)球心是对角线的交点,正棱锥的外接球(内切球)球心在棱锥的高上,对一般棱锥来讲,外接球球心到名顶点距离相等,当问题难以考虑时,可减少点的个数,如先考虑到三个顶点的距离相等的点是三角形的外心,球心一定在过此点与此平面垂直的直线上.如直角三角形斜边中点到三顶点距离相等等等.14.B解析:B【解析】【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可【详解】解:函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩单调递增,()301373a a a a ⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤< 所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B .【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题. 15.D 解析:D【解析】根据三视图知几何体是:三棱锥D ABC -为棱长为4的正方体一部分,直观图如图所示:B 是棱的中点,由正方体的性质得,CD ⊥平面,ABC ABC ∆的面积12442S =⨯⨯=,所以该多面体的体积1164433V =⨯⨯=,故选D.二、填空题16.【解析】连结易知面面而即在面内且点的轨迹是线段连结易知是等边三角形则当为中点时距离最小易知最小值为6【解析】连结11B D ,易知面1ACD ⊥面11BDD B ,而1MN ACD ⊥,即1NM D O ⊥,NM 在面11BDD B 内,且点N 的轨迹是线段11B D ,连结1AB ,易知11AB D 是等边三角形,则当N 为11B D 中点时,NA 6 17.相交【解析】【分析】根据直线与圆相交的弦长公式求出的值结合两圆的位置关系进行判断即可【详解】解:圆的标准方程为则圆心为半径圆心到直线的距离圆截直线所得线段的长度是即则圆心为半径圆的圆心为半径则即两个【解析】【分析】根据直线与圆相交的弦长公式,求出a 的值,结合两圆的位置关系进行判断即可.【详解】解:圆的标准方程为222:()(0)M x y a a a +-=>,则圆心为(0,)a ,半径R a =,圆心到直线0x y +=的距离d =,圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是∴即24a =,2a =,则圆心为(0,2)M ,半径2R =,圆22:(1)(1)1N x y -+-=的圆心为(1,1)N ,半径1r =,则MN =3R r +=,1R r -=,R r MN R r ∴-<<+,即两个圆相交.故答案为:相交.【点睛】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a 的值是解决本题的关键.18.2π【解析】试题分析:设圆柱的底面半径为r 高为h 底面积为S 体积为V 则有2πr=2⇒r=1π故底面面积S=πr2=π×(1π)2=1π故圆柱的体积V=Sh=1π×2=2π考点:圆柱的体积解析:2π【解析】试题分析:设圆柱的底面半径为r ,高为h ,底面积为S ,体积为V ,则有2πr =2⇒r =1π,故底面面积S =πr 2=π×(1π)2=1π,故圆柱的体积V =Sh =1π×2=2π. 考点:圆柱的体积 19.【解析】【分析】以为长宽高构建长方体则长方体的外接球是三棱锥的外接球由此能求出三棱锥的外接球的表面积【详解】由题意在三棱锥中平面以为长宽高构建长方体则长方体的外接球是三棱锥的外接球所以三棱锥的外接球 解析:50π【解析】以,,AB BC PA 为长宽高构建长方体,则长方体的外接球是三棱锥P ABC -的外接球,由此能求出三棱锥P ABC -的外接球的表面积.【详解】由题意,在三棱锥P ABC -中,PA ⊥平面,,3,4,5ABC AB BC AB BC PA ⊥===, 以,,AB BC PA 为长宽高构建长方体,则长方体的外接球是三棱锥P ABC -的外接球, 所以三棱锥P ABC -的外接球的半径为22215234522R =++=, 所以三棱锥P ABC -的外接球的表面积为225244()502S R πππ==⨯=. 【点睛】 本题主要考查了三棱锥的外接球的表面积的计算问题,其中解答中根据几何体的结构特征,以,,AB BC PA 为长宽高构建长方体,得到长方体的外接球是三棱锥P ABC -的外接球是解答的关键,着重考查了数形结合思想,以及推理与运算能力.20.【解析】根据抛物线的定义可知而的最小值是所以的最小值就是的最小值当三点共线时此时最小最小值是所以的最小值是3【点睛】本题考查了点和圆的位置关系以及抛物线的几何性质和最值问题考查了转化与化归能力圆外的 解析:【解析】根据抛物线的定义,可知1PR PF =-,而PQ 的最小值是1PC -,所以PQ PR +的最小值就是2PF PC +-的最小值,当,,C P F 三点共线时,此时PF FC +最小,最小值是()()2231305CF =--+-= ,所以PQ PR +的最小值是3.【点睛】本题考查了点和圆的位置关系以及抛物线的几何性质和最值问题,考查了转化与化归能力,圆外的点和圆上的点最小值是点与圆心的距离减半径,最大值是距离加半径,抛物线上的点到焦点的距离和到准线的距离相等,这样转化后为抛物线上的点到两个定点的距离和的最小值,即三点共线时距离最小.21.【解析】【分析】根据空间直角坐标系中点坐标公式求结果【详解】设B则所以所以的坐标为【点睛】本题考查空间直角坐标系中点坐标公式考查基本分析求解能力属基础题解析:()1,4,1--【解析】【分析】根据空间直角坐标系中点坐标公式求结果.【详解】设B (),,x y z ,则1230,1,2222x y z +++=-==,所以1,4,1x y z =-=-=,所以B 的坐标为()1,4,1--.【点睛】本题考查空间直角坐标系中点坐标公式,考查基本分析求解能力,属基础题. 22.【解析】【分析】当过球内一点的截面与垂直时截面面积最小可求截面半径即可求出过点的平面截球的截面面积的最小值【详解】解:棱长等于的正方体它的外接球的半径为3当过点的平面与垂直时截面面积最小故答案为:【 解析:3π.【解析】【分析】当过球内一点E 的截面与OE 垂直时,截面面积最小可求截面半径,即可求出过点E 的平面截球O 的截面面积的最小值.【详解】解:棱长等于1111ABCD A B C D -,它的外接球的半径为3,||OE =当过点E 的平面与OE 垂直时,截面面积最小,r 33S ππ=⨯=, 故答案为:3π.【点睛】本题考查过点E 的平面截球O 的截面面积的最小值及接体问题,找准量化关系是关键,属于中档题.23.【解析】【分析】由题意可知曲线为圆的右半圆作出直线与曲线的图象可知直线是过点且斜率为的直线求出当直线与曲线相切时k 的值利用数形结合思想可得出当直线与曲线有两个公共点时实数的取值范围【详解】对于直线则 解析:4,23⎛⎤ ⎥⎝⎦【解析】【分析】由题意可知,曲线C 为圆()()22111x y -+-=的右半圆,作出直线l 与曲线C 的图象,可知直线l 是过点()0,2-且斜率为k 的直线,求出当直线l 与曲线C 相切时k 的值,利用数形结合思想可得出当直线l 与曲线C 有两个公共点时实数k 的取值范围.【详解】对于直线:2l y kx =-,则直线l 是过点()0,2P -且斜率为k 的直线,对于曲线()2:111C y x --=-,则101x x -≥⇒≥,曲线C 的方程两边平方并整理得()()22111x y -+-=,则曲线C 为圆()()22111x y -+-=的右半圆,如下图所示:当直线l 与曲线C 相切时,0k >()222123111k k k k ---==++-,解得43k =, 当直线l 过点()1,0A 时,则有20k -=,解得2k =.结合图象可知,当4,23k ⎛⎤∈ ⎥⎝⎦时,直线l 与曲线C 有两个交点. 故答案为:4,23⎛⎤ ⎥⎝⎦. 【点睛】本题考查利用直线与曲线的交点个数求参数,解题的关键就是将曲线C 化为半圆,利用数形结合思想求解,同时要找出直线与曲线相切时的临界位置,考查数形结合思想的应用,属于中等题.24.【解析】【分析】推导出两边平方可得的长【详解】二面角为是棱上的两点分别在半平面内且的长故答案为:【点睛】本题考查线段长的求法考查空间中线线线面面面间的位置关系等基础知识考查运算求解能力考查函数与方程 解析:217【解析】【分析】推导出CD CA AB BD =++,两边平方可得CD 的长.【详解】二面角l αβ--为60︒,A 、B 是棱l 上的两点,AC 、BD 分别在半平面α、β内, 且AC l ⊥,BD l ⊥,4AB =,6AC =,8BD =,∴CD CA AB BD =++,∴22()CD CA AB BD =++2222CA AB BD CA BD =+++361664268cos12068=+++⨯⨯⨯︒=,CD ∴的长||68217CD ==.故答案为:217.【点睛】本题考查线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.25.【解析】设球的半径为表面积解得∵在中∴从圆心作平面的垂线垂足在斜边的中点处∴球心到平面的距离故答案为点睛:本题考查的知识点是空间点线面之间的距离计算其中根据球心距球半径解三角形我们可以求出所在平面截 3【解析】设球的半径为r ,表面积24π20πS r ==,解得5r =ABC 中,2AB AC ==,22BC =222AB AC BC +=,∴90BAC ∠=︒,从圆心作平面ABC 的垂线,垂足在斜边BC 的中点处,∴球心到平面ABC 的距离22132d r BC ⎛⎫=-= ⎪⎝⎭3 点睛:本题考查的知识点是空间点、线、面之间的距离计算,其中根据球心距d ,球半径R ,解三角形我们可以求出ABC 所在平面截球所得圆(即ABC 的外接圆半径),构造直角三角形,满足勾股定理,我们即可求出球心到平面ABC 的距离是与球相关的距离问题常用方法.三、解答题26.(1)1x =或0y =;(2)()()22134x y -++=.【解析】【分析】(1)对直线l 的斜率是否存在进行分类讨论,利用圆心到直线l 的距离等于2可求得直线l 的方程;(2)先通过点到直线的距离及勾股定理可解得直线m 的斜率,然后将直线m 的方程与圆的方程联立,求出线段AB 的中点,作为圆心,并求出所求圆的半径,进而可得出所求圆的方程.【详解】(1)由题意知,圆C 的标准方程为()()22329x y -++=,∴圆心()3,2C -,半径3r =,①当直线l 的斜率k 存在时,设直线的方程为()01y k x -=-,即kx y k 0--=, 则圆心到直线l的距离为2d ==,0k ∴=.∴直线l 的方程为0y =;②当直线l 的斜率不存在时,直线l 的方程为1x =,此时圆心C 到直线l 的距离为2,符合题意.综上所述,直线l 的方程为1x =或0y =;(2)依题意可设直线m 的方程为1y kx =-,即()100kx y k --=<,则圆心()3,2C -到直线m的距离d === 22320k k ∴+-=,解得12k =或2k =-, 又0k <,2k ∴=-,∴直线m 的方程为210x y ---=即210x y ++=,设点()11,A x y 、()22,B x y ,联立直线m 与圆C 的方程得()()22210329x y x y ++=⎧⎪⎨-++=⎪⎩, 消去y 得251010x x -+=,122x x ∴+=,则线段AB 的中点的横坐标为1212x x +=,把1x =代入直线m 中得3y =-, 所以,线段AB 的中点的坐标为()1,3-, 由题意知,所求圆的半径为:122AB =, ∴以线段AB 为直径的圆的方程为:()()22134x y -++=.【点睛】本题考查利用圆心到直线的距离求直线方程,同时也考查了圆的方程的求解,涉及利用直线截圆所得弦长求参数,考查计算能力,属于中等题.27.(1)3x =或34210x y +-=;(2)34-. 【解析】【分析】(1)考虑切线的斜率是否存在,结合直线与圆相切的的条件d=r ,直接求解圆的切线方程即可.(2)利用圆的圆心距、半径及半弦长的关系,列出方程,求解a 即可.【详解】(1)由圆的方程得到圆心(1,2),半径2r .当直线斜率不存在时,直线3x =与圆C 显然相切;当直线斜率存在时,设所求直线方程为3(3)y k x -=-,即330kx y k -+-=,2=,解得34k =-, ∴ 方程为33(3)4y x -=--,即34210x y +-=. 故过点M 且与圆C 相切的直线方程为3x =或34210x y +-=. (2)∵ 弦长AB为 2.圆心到直线40ax y -+=的距离d =∴2242⎛⎛⎫+= ⎝⎭, 解得34a =-. 【点睛】本题考查直线与圆的位置关系的综合应用,考查切线方程的求法,考查了垂径定理的应用,考查计算能力. 28.(1)见证明;(2) 【解析】【分析】(1)由PA ⊥面ABCD 可知PA AE ⊥,又可证AE BC ⊥,根据线面垂直的判定即可证明(2) 取AB 中点M ,作MN AF ⊥于N ,连CN ,可证MNC ∠是二面角B AF C --的平面角,解三角形即可求解.【详解】(1)PA ⊥面ABCD ,AE ⊂面ABCD ,PA AE ∴⊥; 又底面ABCD 为菱形,60ABC ∠=,E 为BC 中点,,//,,AE BC AD BC AE AD ∴⊥∴⊥AE ∴⊥面PAD ;(2)AE 面PAD ,AHE ∴∠是EH 与面PAD 所成角,tan ,AE AHE AH PO AH∠=⊥时,AH 最小,tan AHE ∠最大,AHE ∠最大, 令2AB =,则3,1AE AH ==,在Rt AHD ∆中,2,30AD ADH =∠=, 在Rt PAD ∆中,233PA = PA ⊥面ABCD ,∴面PAB ⊥面ABCD ,且交线为AB ,取AB 中点M ,正ABC ∆中,,CM AB CM ⊥∴⊥面PAB ,作MN AF ⊥于N ,连CN ,由三垂线定理得CN AF ⊥,MNC ∠是二面角B AF C --的平面角.3CM =.在PAB ∆中,23,2,3BF AF AB ===边AF 上的高11,2BG MN ==, tan 23CM MNC MN∠==【点睛】 本题主要考查了线面垂直的判定,线面垂直的性质,二面角的求法,属于难题. 29.(1)A (1,3);(2)直线l 方程为20x y -+=,最短弦长为223)在直线MC 上存在定点4,43N ⎛⎫-⎪⎝⎭,使得||||PM PN 为常数32. 【解析】【分析】(1)利用直线系方程的特征,直接求解直线l 过定点A 的坐标;(2)当AC ⊥l 时,所截得弦长最短,由题知C (0,4),2r,求出AC 的斜率,利用点到直线的距离,转化求解即可;(3)由题知,直线MC 的方程为4y =,假设存在定点N (t ,4)满足题意,则设。
大一下学期高等数学期中考试试卷及答案一、选择题(共40题,每题2分,共80分)1. 计算∫(4x-3)dx的结果是:A. 2x^2 - 3x + CB. 2x^2 - 3x + 4C. 2x^2 - 3x + 1D. 2x^2 - 3x答案:A2. 曲线y = 2x^3 经过点(1, 2),则函数y = 2x^3的导数为:A. 2x^2B. 6x^2C. 6xD. 2x答案:D3. 若a,b为实数,且a ≠ 0,则 |a|b 的值等于:A. aB. abC. 1D. b答案:B4. 设函数f(x) = x^2 + 2x + 1,g(x) = 2x - 1,则f(g(-2))的值为:A. 19B. 17C. 16D. 15答案:C5. 已知√2是无理数,则2-√2是:A. 有理数B. 无理数C. 整数D. 分数答案:A二、填空题(共5题,每题4分,共20分)1. 设函数f(x) = 3x^2 - 2x + 1,则f'(1)的值为____。
答案:42. 已知函数f(x) = 4x^2 + ax + 3,若其图像与x轴有两个交点,则a的取值范围是____。
答案:(-∞, 9/4) ∪ (9/4, +∞)3. 三角形ABC中,AB = AC,角A的度数为α,则角B的度数为____。
答案:(180°-α)/24. 若函数y = f(x)在点x = 2处的导数存在,则f(x)在点x = 2处____。
答案:连续5. 若直线y = kx + 2与曲线y = x^2交于两个点,则k的取值范围是____。
答案:(-∞, 1) ∪ (1, +∞)三、解答题(共5题,每题20分,共100分)1. 计算∫(e^x+1)/(e^x-1)dx。
解:令u = e^x-1,则du = e^xdx。
原积分变为∫(1/u)du = ln|u| + C = ln|e^x-1| + C。
2. 求函数y = x^3 + 2x^2 - 5x的驻点和拐点。
高数下期中试题及答案高数下期中试题及答案高数的选择题,在推导和演算的基础上对选项做出选择。
下面是小编收集整理的高数下期中试题及答案,希望对您有所帮助!高数下期末试题《高等数学》试卷结构(一)考试内容与要求执行全国高校网络教育考试委员会于2010年制定的考试大纲相应部分,见《高等数学》(2010年修订版)。
(二)试卷分值试卷满分为100分。
(三)试题类型试题的类型全部为选择题,在推导和演算的基础上对选项做出选择。
每套试卷为20小题,每小题均为5分。
其中“二选一”共10道题,对命题作“正确”或“不正确”的选择。
“四选一”共10道题,在四个备选答案中选出一个符合题目要求的答案。
“四选一”的题目包括对运算结果的选择、对运算过程正确性的判定等多种形式。
(四)试题难度试题难度分为容易题、中等题和较难题,其分值比例为5:4:1。
(五)试题内容比例一元函数微积分约90%,常微分方程约10%。
(六)考试方式与时间考试方式为机考、闭卷。
考试时间为90分钟。
答卷时应该注意以下一些问题:1、要认真阅读试卷和试题的指导语,弄清答题的要求和方式。
要正确解答二选一的题,首先必须把有关知识弄清楚,其次还有必要掌握一定的解题方法。
以下是几种比较常用的解答二选一的`题的方法。
分析推理:即根据有关的数学知识,通过分析推理,作出判断。
计算求解:即根据题目的条件,通过计算等过程,求出正确答案,再作判断。
寻找反例:即从反面思考,看看是否存在与题目所说相反的情况。
如有,只要找出一个相反的例子,就能断定原题是错的。
假设验证:有些二选一的题,如果直接判断有困难,有时可以假设一个或几个具体的数,验证结论是否成立,再作出判断。
在实际解答二选一的题时,究竟选用哪种方法,要根据题目的具体特点来决定。
有些题目可以用不同的方法来判断,又有些题目可以把某两种方法结合起来判断。
四选一的题常用的方法有淘汰法和直接法:淘汰法的特点是,根据已学知识经过判断去掉不合题意者,剩下的一个就是正确的答案;直接法的特点是,根据已学知识经过推论或计算得出答案,以此答案对照各备选答案,相同者为正确答案,解题时找到一个正确答案后,剩下部分可以不再考虑。
高三数学下期中试卷(附答案)一、选择题1.已知正数x 、y 满足1x y +=,且2211x y m y x +≥++,则m 的最大值为( ) A .163B .13C .2D .42.在中,,,,则A .B .C .D .3.已知x ,y 满足2303301x y x y y +-≤⎧⎪+-≥⎨⎪≤⎩,z =2x +y 的最大值为m ,若正数a ,b 满足a +b =m ,则14a b+的最小值为( ) A .3B .32C .2D .524.若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅< ,则使0n S >成立的最大自然数n 是( ) A .198B .199C .200D .2015.若变量x ,y 满足约束条件1358x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,,,则2yz x =-的取值范围是( ) A .113⎡⎤-⎢⎥⎣⎦, B .11115⎡⎤--⎢⎥⎣⎦,C .111153⎡⎤-⎢⎥⎣⎦, D .3153⎡⎤-⎢⎥⎣⎦,6.“0x >”是“12x x+≥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.设x ,y 满足不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩,若Z ax y =+的最大值为29a +,最小值为2a +,则实数a 的取值范围是( ).A .(,7]-∞-B .[3,1]-C .[1,)+∞D .[7,3]--8.已知{}n a 为等差数列,若20191<-a a ,且数列{}n a 的前n 项和n S 有最大值,则n S 的最小正值为( )A .1SB .19SC .20SD .37S9.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( ) A .10B .120C .130D .14010.当()1,2x ∈时,不等式220x mx ++≥恒成立,则m 的取值范围是( ) A .()3,-+∞B .()22,-+∞C .[)3,-+∞D .)22,⎡-+∞⎣11.已知:0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2- B .(][),42,-∞-+∞U C .()2,4-D .(][),24,-∞-⋃+∞12.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,60A =︒,43a=,4b =,则B =( ) A .30B =︒或150B =︒ B .150B =︒ C .30B =︒ D .60B =︒二、填空题13.若变量,x y 满足约束条件12,{20,20,x y x y x y +≤-≥-≤ 则z y x =-的最小值为_________.14.设函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+⎪⎝⎭恒成立,则实数m 的取值范围是 .15.已知向量()()1,,,2a x b x y ==-r r ,其中0x >,若a r 与b r 共线,则yx的最小值为__________.16.设,,若,则的最小值为_____________.17.已知数列{}n a 中,11a =,且1113()n nn N a a *+=+∈,则10a =__________.(用数字作答)18.已知等差数列{}n a 的前n 项n S 有最大值,且871a a <-,则当0n S <时n 的最小值为________.19.设不等式组30,{230,1x y x y x +-<--≤≥表示的平面区域为1Ω,平面区域2Ω与1Ω关于直线20x y +=对称,对于任意的12,C D ∈Ω∈Ω,则CD 的最小值为__________.20.某校数学课外小组在坐标纸上为学校的一块空地设计植树方案为:第K 棵树种植在点(),k k k P x y 处,其中11x =,11y =,当2K ≥时,111215551255k k k k k k x x T T k k y y T T --⎧⎡⎤--⎛⎫⎛⎫=+--⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎨--⎛⎫⎛⎫⎪=+- ⎪ ⎪⎪⎝⎭⎝⎭⎩()T a 表示非负实数a 的整数部分,例如()2.62T =,()0.20T =.按此方案第2016棵树种植点的坐标应为_____________.三、解答题21.已知数列{}n a 中,11a =,121n n a a n +=+-,n n b a n =+. (1)求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .22.在ABC △中,,,A B C 对应的边为,,a b c .已知1cos 2a C cb +=. (Ⅰ)求A ;(Ⅱ)若4,6b c ==,求cos B 和()cos 2A B +的值.23.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC V 的外接圆半径为R,且sin sin cos 0A B b A --=.(1)求A ∠;(2)若tan 2tan A B =,求sin 2sin 2sin b Ca b B c C+-的值.24.已知等差数列{}n a 的前n 项和为n S ,各项为正的等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S25.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,14cos a C a+=,1b =. (1)若90A ∠=︒,求ABC V 的面积; (2)若ABC Va ,c . 26.已知等差数列{}n a 的前n 项和为n S ,且211a =,7161S =.(1)求数列{}n a 的通项公式;(2)若6512n n S a n >--,求n 的取值范围; (3)若11n n n b a a +=,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】由已知条件得()()113x y +++=,对代数式2211x y y x +++变形,然后利用基本不等式求出2211x y y x +++的最小值,即可得出实数m 的最大值. 【详解】正数x 、y 满足1x y +=,则()()113x y +++=,()()()()()()222222221212111111111111y x y x y x x y y x y x y x y x +-+-⎡⎤⎡⎤----⎣⎦⎣⎦+=+=+=+++++++++444444141465111111y x x y y x x y x y =+-+++-+=+++-=+-++++++()()14441111525311311y x x y x y x y ⎛⎫⎛⎫++=++++-=++-⎡⎤ ⎪ ⎪⎣⎦++++⎝⎭⎝⎭412533⎛≥⨯+-= ⎝, 当且仅当12x y ==时,等号成立,即2211x y y x +++的最小值为13,则13m ≤. 因此,实数m 的最大值为13. 故选:B. 【点睛】本题考查利用基本不等式恒成立求参数,对代数式合理变形是解答的关键,考查计算能力,属于中等题.解析:D 【解析】 【分析】根据三角形内角和定理可知,再由正弦定理即可求出AB .【详解】 由内角和定理知,所以,即,故选D. 【点睛】本题主要考查了正弦定理,属于中档题.3.B解析:B 【解析】 【分析】作出可行域,求出m ,然后用“1”的代换配凑出基本不等式的定值,从而用基本不等式求得最小值. 【详解】作出可行域,如图ABC ∆内部(含边界),作直线:20l x y +=,平移该直线,当直线l 过点(3,0)A 时,2x y +取得最大值6,所以6m =.1411414143()()(5)(5)6662b a b a a b a b a b a b a b +=++=++≥+⨯=,当且仅当4b a a b =,即12,33a b ==时等号成立,即14a b+的最小值为32. 故选:B. 【点睛】本题考查简单的线性规划,考查用基本不等式求最值,解题关键是用“1”的代换凑配出基本不等式的定值,从而用基本不等式求得最小值.解析:A 【解析】 【分析】先根据10a >,991000a a +>,991000a a ⋅<判断出991000,0a a ><;然后再根据等差数列前n 项和公式和等差中项的性质,即可求出结果. 【详解】∵991000a a ⋅<, ∴99a 和100a 异号; ∵1991000,0a a a >+>,991000,0a a ∴><, 有等差数列的性质可知,等差数列{}n a 的公差0d <, 当99,*n n N ≤∈时,0n a >;当100,*n n N ≥∈时,0n a <; 又()()119899100198198198022a a a a S +⨯+⨯==> ,()119919910019919902a a S a+⨯==<,由等差数列的前n 项和的性质可知,使前n 项和0n S >成立的最大自然数n 是198. 故选:A . 【点睛】本题主要考查了等差数列的性质.考查了学生的推理能力和运算能力.5.A解析:A 【解析】 【分析】画出满足条件的平面区域,求出角点的坐标,结合2yz x =-的几何意义求出其范围,即可得到答案. 【详解】由题意,画出满足条件的平面区域,如图所示: 由358y x x y =⎧⎨+=⎩,解得11A (,),由1x y x=-⎧⎨=⎩,解得(11)B --,, 而2yz x =-的几何意义表示过平面区域内的点与0(2)C ,的直线斜率, 结合图象,可得1AC k =-,13BC k =, 所以2y z x =-的取值范围为113⎡⎤-⎢⎥⎣⎦,, 故选:A.【点睛】本题主要考查了简单的线性规划问题,其中解答中作出约束条件所表示的平面区域,结合图象确定出目标函数的最优解是解答的关键,着重考查了数形结合思想,以及计算能力,属于基础题.6.C解析:C【解析】先考虑充分性,当x>0时,1122x xx x+≥⋅=,当且仅当x=1时取等.所以充分条件成立.再考虑必要性,当12xx+≥时,如果x>0时,22210(1)0x x x-+≥∴-≥成立,当x=1时取等.当x<0时,不等式不成立. 所以x>0.故选C.7.B解析:B【解析】【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【详解】作出不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩对应的平面区域(如图阴影部分),目标函数z ax y =+的几何意义表示直线的纵截距,即y ax z =-+,(1)当0a <时,直线z ax y =+的斜率为正,要使得z 的最大值、最小值分别在,C A 处取得,则直线z ax y =+的斜率不大于直线310x y --=的斜率, 即3a -≤,30a ∴-≤<.(2)当0a >时,直线z ax y =+的斜率为负,易知最小值在A 处取得,要使得z 的最大值在C 处取得,则直线z ax y =+的斜率不小于直线110x y +-=的斜率1a -≥-, 01a ∴<≤.(3)当0a =时,显然满足题意. 综上:31a -≤….故选:B . 【点睛】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.8.D解析:D 【解析】 【分析】由已知条件判断出公差0d <,对20191<-a a 进行化简,运用等差数列的性质进行判断,求出结果. 【详解】已知{}n a 为等差数列,若20191<-a a ,则2019190a a a +<, 由数列{}n a 的前n 项和n S 有最大值,可得0d <,19193712029000,,0,370a a a a a S <=∴+<>>, 31208190a a a a ∴+=+<,380S <,则n S 的最小正值为37S 故选D 【点睛】本题考查了等差数列的性质运用,需要掌握等差数列的各公式并能熟练运用等差数列的性质进行解题,本题属于中档题,需要掌握解题方法.9.B解析:B 【解析】 【分析】根据幂函数所过点求得幂函数解析式,由此求得n a 的表达式,利用裂项求和法求得n S 的表达式,解方程10n S =求得n 的值. 【详解】设幂函数为()f x x α=,将()4,2代入得142,2αα==,所以()f x =所以n a =1na =1n S =L 1=,由110n S ==解得120n =,故选B. 【点睛】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.10.D解析:D 【解析】由()1,2x ∈时,220x mx ++≥恒成立得2m x x ⎛⎫≥-+⎪⎝⎭对任意()1,2x ∈恒成立,即max 2,m x x ⎡⎤⎛⎫≥-+ ⎪⎢⎥⎝⎭⎣⎦Q当x 时,2x x ⎛⎫-+ ⎪⎝⎭取得最大值m -∴≥-,m 的取值范围是)⎡-+∞⎣,故选D.【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).11.A解析:A 【解析】 【分析】若222x y m m +>+恒成立,则2x y +的最小值大于22m m +,利用均值定理及“1”的代换求得2x y +的最小值,进而求解即可. 【详解】 由题,因为211x y+=,0x >,0y >,所以()2142224448x y x y x y y x ⎛⎫++=+++≥+=+=⎪⎝⎭,当且仅当4x y y x =,即4x =,2y =时等号成立,因为222x y m m +>+恒成立,则228m m +<,即2280m m +-<,解得42m -<<, 故选:A 【点睛】本题考查均值不等式中“1”的代换的应用,考查利用均值定理求最值,考查不等式恒成立问题.12.C解析:C 【解析】 【分析】将已知代入正弦定理可得1sin 2B =,根据a b >,由三角形中大边对大角可得:60B <︒,即可求得30B =︒. 【详解】解:60A =︒Q ,a=4b =由正弦定理得:sin 1sin2b A B a === a b >Q60B ∴<︒ 30B ∴=︒故选C.【点睛】本题考查了正弦定理、三角形的边角大小关系,考查了推理能力与计算能力.二、填空题13.【解析】由约束条件作出可行域如图联立解得化目标函数得由图可知当直线过点时直线在y 轴上的截距最小有最小值为故答案为点睛:本题主要考查线性规划中利用可行域求目标函数的最值属简单题求目标函数最值的一般步骤 解析:4-【解析】由约束条件12,20,20,x y x y x y +≤⎧⎪-≥⎨⎪-≤⎩作出可行域如图,联立12 {20x y x y +=-=,解得()84A ,,化目标函数z y x =-,得y x z =+,由图可知,当直线y x z =+过点()84A ,时,直线在y 轴上的截距最小,z 有最小值为4-,故答案为4-. 点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.14.【解析】【分析】【详解】根据题意由于函数对任意恒成立分离参数的思想可知递增最小值为即可知满足即可成立故答案为解析:33,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭【解析】 【分析】 【详解】根据题意,由于函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,22222()4(1)(1)11xm x x m m--≤--+-,分离参数的思想可知,, 递增,最小值为53,即可知满足33,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭即可成立故答案为33,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭. 15.【解析】【分析】根据两个向量平行的充要条件写出向量的坐标之间的关系之后得出利用基本不等式求得其最小值得到结果【详解】∵其中且与共线∴即∴当且仅当即时取等号∴的最小值为【点睛】该题考查的是有关向量共线 解析:22【解析】 【分析】根据两个向量平行的充要条件,写出向量的坐标之间的关系,之后得出2y x x x=+,利用基本不等式求得其最小值,得到结果. 【详解】∵()1,a x =r , (),2b x y =-r ,其中0x >,且a r 与b r共线∴()12y x x ⨯-=⋅,即22y x =+∴22222y x x x x x+==+≥,当且仅当2x x =即2x =时取等号∴yx的最小值为22. 【点睛】该题考查的是有关向量共线的条件,涉及到的知识点有向量共线坐标所满足的条件,利用基本不等式求最值,属于简单题目.16.3+22【解析】【分析】由已知可得a-1+b=1从而有2a-1+1b=(2a-1+1b)(a-1+b)展开后利用基本不等式即可求解【详解】由题意因为a>1b>2满足a+b=2所以a-1+b=1且a- 解析:【解析】 【分析】 由已知可得,从而有,展开后利用基本不等式,即可求解. 【详解】 由题意,因为满足,所以,且,则,当且仅当且,即时取得最小值.【点睛】本题主要考查了利用基本不等式求最值问题的应用,其中解答中根据题意配凑基本不等式的使用条件,合理利用基本不等式求得最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.17.【解析】【分析】由得为等差数列求得通项公式则可求【详解】则为以首项为1公差为3的等差数列则故答案为:【点睛】本题考查等差数列的定义及通项公式意在考查计算能力是基础题解析:128【解析】 【分析】由1113()n nn N a a *+=+∈得1n a ⎧⎫⎪⎨⎬⎪⎭⎩为等差数列,求得1n a ⎧⎫⎪⎨⎬⎪⎭⎩通项公式,则10a 可求 【详解】1113()n nn N a a *+=+∈则1n a ⎧⎫⎪⎨⎬⎪⎭⎩为以首项为1,公差为3的等差数列,则 ()10111313228n n n a a =+-=-∴= 故答案为:128【点睛】本题考查等差数列的定义及通项公式,意在考查计算能力,是基础题18.14【解析】【分析】等差数列的前n 项和有最大值可知由知所以即可得出结论【详解】由等差数列的前n 项和有最大值可知再由知且又所以当时n 的最小值为14故答案为14【点睛】本题考查使的n 的最小值的求法是中档解析:14 【解析】 【分析】等差数列的前n 项和有最大值,可知0d <,由871a a <-,知1130a a +>,1150a a +<,1140a a +<,所以130S >,140S <,150S <,即可得出结论.【详解】由等差数列的前n 项和有最大值,可知0d <,再由871a a <-,知70a >,80a <,且780a a +<, 又711320a a a =+>,811520a a a =+<,781140a a a a +=+<, 所以130S >,140S <,150S <, 当<0n S 时n 的最小值为14, 故答案为14. 【点睛】本题考查使0n S <的n 的最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.19.【解析】作出不等式组所表示的可行域如图阴影部分由三角形ABC 构成其中作出直线显然点A 到直线的距离最近由其几何意义知区域内的点最短距离为点A 到直线的距离的2倍由点到直线的距离公式有:所以区域内的点与区 解析:25【解析】作出不等式组所表示的可行域1Ω ,如图阴影部分,由三角形ABC 构成,其中(11),(30),(12)A B C -,,, ,作出直线20x y += ,显然点A 到直线20x y +=的距离最近,由其几何意义知,区域12,ΩΩ 内的点最短距离为点A 到直线20x y +=的距离的2倍,由点到直线的距离公式有:22215521d -==+ ,所以区域1Ω 内的点与区域2Ω 内的点之间的最近距离为25,即25CD = .点睛:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题. 巧妙识别目标函数的几何意义是解答本题的关键.20.【解析】【分析】根据题意结合累加法求得与再代值计算即可【详解】由题意知故可得解得当时;当时故第棵树种植点的坐标应为故答案为:【点睛】本题考查数列新定义问题涉及累加法求通项公式属中档题解析:()4031,404. 【解析】 【分析】根据题意,结合累加法,求得k x 与k y ,再代值计算即可. 【详解】由题意知11x =,11y =211015555x x T T ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,211055y y T T ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭322115555x x T T ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,322155y y T T ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭433215555x x T T ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,433255y y T T ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭L11215555k k k k x x T T ---⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,11255k k k k y y T T ---⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭故可得12121105555k k k x x x x x x k T T --⎛⎫⎛⎫+++=+++++-⎪ ⎪⎝⎭⎝⎭L L 12121?10155k k k y y y y y y T T --⎛⎫⎛⎫+++=+++++- ⎪ ⎪⎝⎭⎝⎭L L 解得155k k x k T -⎛⎫=+ ⎪⎝⎭,当2016k =时,2016201654034031x =+⨯=;115k k y T -⎛⎫=+ ⎪⎝⎭,当2016k =时,20161403404y =+=.故第2016棵树种植点的坐标应为()4031,404. 故答案为:()4031,404. 【点睛】本题考查数列新定义问题,涉及累加法求通项公式,属中档题.三、解答题21.(1)证明见解析 (2)()11222n n n n S ++=--【解析】【分析】(1)根据n n b a n =+求得1n b +,化简成含n a 的表达式再得12n n b b +=即可.(2)根据(1)中等比数列的首项与公比求得数列{}n b 的通项公式,再代入n n b a n =+即可求得数列{}n a 的通项公式,再根据分组求和求解即可. 【详解】(1)证明:因为121,n n n n a a n b a n +=+-=+所以()()()11121122n n n n n b a n a n n a n b ++=++=+-++=+=, 又因为11120b a =+=≠,则12n nb b +=, 所以数列{}n b 是首项为2,公比为2的等比数列.(2)由(1)知2n n n a n b +==,所以2nn a n =-,所以()()()()232122232nn S n =-+-+-+⋅⋅⋅+-()()232222123n n =+++⋅⋅⋅+-+++⋅⋅⋅+()()()121211221222nn n n n n +-++=-=---【点睛】本题主要考查了数列的递推公式证明等比数列的方法,同时也考查了分组求和与等比等差数列求和的公式等.属于中等题型. 22.(Ⅰ)π3A =(Ⅱ)1114- 【解析】 【分析】(Ⅰ)先根据正弦定理化边为角,再根据两角和正弦公式化简得结果,(Ⅱ)根据余弦定理求a,代入条件求得sin B =,解得cos B =,最后根据两角和余弦定理得结果.【详解】(Ⅰ)解:由条件1cos 2a C c b +=,得1sin sin sin sin 2A C CB +=,又由()sin sin B AC =+,得1sin cos sin sin cos cos sin 2A C C A C A C +=+.由sin 0C ≠,得1cos 2A =,故π3A =.(Ⅱ)解:在ABC V 中,由余弦定理及π4,6,3b c A ===,有2222cos a b c bc A =+-,故a =由sin sin b A a B =得sinB =,因为b a <,故cos B =.因此sin22sin cos 7B B B ==,21cos22cos 17B B =-=.所以()11cos 2cos cos2sin sin214A B A B A B +=-=-. 【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.23.(1)6π;(2). 【解析】 【分析】(1)由正弦定理化简已知三角等式,根据sin 0B ≠可得tan A =,即可求出角A ;(2)由(1)可得tan 6B =,利用2sin 1A =及正弦定理将分式化简,再利用余弦定理化简分式得()1tan 2A B -+,最后利用正切和角公式代入tan A ,tan B ,可求出结果. 【详解】(1)∵sin sin cos 0A B b A -=,由正弦定理得:sin sin 2sin cos 0A B R B A -=,即)sin cos 0BA A -=,∵()0,B π∈,∴sin 0B ≠,cos A A =,tan 3A =, ∵()0,A π∈,∴6A π∠=.(2)由(1)知:tan A =,tan B =,1sin 2A =,∴2sin 1A =, ∴sin 2sin sin 2sin 2sin 2sin 2sin 2sin b C Ab Ca b B c C Aa b B c C =+-+-222sin ab Ca b c =+-由余弦定理得:()sin sin 11tan tan 2sin 2sin 2cos 22b C C C A B a b Bc C C ===-++-1tan tan 21tan tan 10A B A B +=-⨯=--. 【点睛】本题考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查学生数形结合、转化与化归以及运算求解能力,解决此类问题的关键是灵活运用正、余弦定理进行边角的互化,属于中等题. 24.(1)12n n b -=, (2)36s =-【解析】 【分析】(1)首先设出等差数列的公差与等比数列的公比,根据题中所给的式子,得到关于d 与q 的等量关系式,解方程组求得结果,之后根据等比数列的通项公式写出结果即可; (2)根据题中所给的条件,求得其公比,根据条件,作出取舍,之后应用公式求得结果. 【详解】(1)设{}n a 的公差为d ,{}n b 的公比为q ,由22 2.a b +=得d+q=3,由335a b +=得2d+q 2=6, 解得d=1,q=2.所以{}n b 的通项公式为12n n b -=;(2)由131,21b T ==得q 2+q-20=0, 解得q=-5(舍去)或q=4, 当q=4时,d=-1,则S 3=-6。
02-03高数下期中卷(一)及参考答案高数(下)期中卷(一)一. 填空(63?分)1. 设?=xy dt t z 12sin ,则_____=??xz2. 设21arctanyx z +=,则______|)1,1(=dz3. 函数22y x z +=在点)2,1(P 处的最大方向导数是________4. 函数32233x y x z -+=的驻点是_________5. 曲线424,,2t z t y t x ===在)4,1,2(P 处的法平面方程是__________6. 设,10.1:22≤≤≤+Ωz y x 则Ω=________),,(dV z y x f二. 单项选择93(?分) 1. 极限=+-→→22222limyx y x y x ( )(1) 0 (2) 2 (3) -1 (4) 不存在2.),(y x f 在点),(00y x 处两个偏导数存在是),(y x f 在该点连续的( )条件. (1)充分非必要 (2) 必要非充分 (3) 充要 (4) 无关3. 设)2ln(),(x y x y x f +=,则=')0,1(y f ( )(1) 0.5 (2) 1 (3) 2 (4) 04. 设),(00y x 是),(y x f z =的驻点,C y x f B y x f A y x f yy xy xx=''=''=''),(,),(,),(000000. ,2AC B -=?如果满足条件( ),则),(00y x f 是极大值.(1) 0,0>>?A (2) 0,0<>?A (3) 0,0><6. 若曲面224y x z --=上点P 的切平面平行于平面122=++z y x ,则P 点坐标为( )(1) )2,1,1(- (2) )2,1,1(- (3) )2,1,1( (4) )2,1,1(--7. 设12,0,1:D y x y D ≥-≤是D 在第一象限部分,则=+??Dd xy x σ)3(22( )(1) ??+1)3(222D d xy x σ (2) 0 (3) ??12D d σ (4) ??14D d σ8. 二次积分??2cos 0)sin ,cos (πθθθθrddr r r f d 可以写成( )(1)-12),(yy dxy x f dy (2)-1102),(ydxy x f dy (3)1010),(dx y x f dy (4)-102),(xx dy y x f dx9. 设),,(z y x f 是连续函数,则=y xdz z y x f dy dx 01),,(( )(1)yydz z y x f dx dy 0010),,( (2)zdy z y x f dz dx 001 0),,(.(3)11),,(yydx z y x f dz dy (4)11),,(yzdx z y x f dy dz .三.计算题(73?分)1. 设 yx xy y x f z +-=),(22,其中f 具有连续的二阶导数,求yx z 2.2. 计算??-211xydyyedx.3. 设Ω由ax y x =+22和)0,0,0(,22222>>≥=+h a z z ha y x 围成,求Ω的体积.四. 求曲面072222=-++z z y x 在点)1,1,2(-P 处的切平面方程,并求这曲面与平面04352=+-+z y x 的交线在点P处的切线方程. (8分)五. 求曲面z y x 422=+与曲面22yx z +=所围的均匀物体的重心坐标.( 9分 )六. 求在曲线1,154322=+=++yx z y x 上与坐标面XOY 距离最短的点.(10分)七. 设曲面方程,0),(=--by z ax z F 其中),(v u F 具有一阶连续偏导数,且0≠'+'v u F F (1)试证ab yz ax z b=??+?? (2) 试问曲面,0),(=--by z ax z F 上任意一点处的法线方程与向量kab j a i b++有怎样的关系?( 7分)参考答案: 一. 1.22)sin(xy xy xz -=?? 2. )(52|)1,1(dy dx dz -=3. 524. )0,2();0,0(5. 0358=-++z y x6.πθθθ2011),sin ,cos (dz z r r f rdr d二. (4) (4) (1) (4) (4) (3) (3) (4) (3)三. 1. )ln 1()(24122x y x f f xy f y x f xy z y v vv uv uu xy++'+''+''-+''-=''- 2. 1 3.294ha四. 切平面方程:07544=---z y x . 切线方程: 28121372-=+=-z y x五. 重心坐标(0,0,2) 六. 所求的点:)1235,53,54(P七.(1)求出:v u v y v u u x F F F b z F F F a z '+''=''+''=',(2) 向量),,(),,(v u v u F F F b F a n ab a b '+''-'-=⊥。
高等数学(下册) 测验试题 答案 (一)一.填空题1设()xy y z e xsin cos -=,则.1|0ππ--=∂∂==y x x z2.曲面zxy 2=在点()1,1,1的切平面方程为.02=-+y x3.曲线t ez t t y x t2sin ,cos ,=-==在2π=t 处的切线方程.42202πππ-=-=-z y e x4.计算().1cos 121sin 121-=⎰⎰dx dy yx 5.把直角坐标系下的二次积分化为极坐标系下的二次积分有()()rdr r r f d dx yyy x f dy ⎰⎰⎰⎰=---1001110sin ,cos ,22θθθπ 6.积分().16242224π=⎰⎰-+≤+dxdy y x x x7.()e e x e d x y x y x 11ln 211112-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++-⎰⎰≤≤-≤≤-+σ8.()222222112ln 21.1dxdy y x yx yxπ+≤--=-++⎰⎰二. 计算题 1。
设zy x xzyu =的全微分du解:两边取对数z x y z x y u ln ln ln ln ++=-----(1), 再对(1)两边取全微分:⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=dz z x zdx ydz dy y zxdy dx x y du u ln ln ln 1 .ln ln ln dz z x y dy y z x dx z x y ⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=所以,.ln ln ln dz z x y dy y z x dx z x y u du ⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+= 2.计算由方程yzz x ln=确定的函数()y x z z ,=的全微分。
解:21ln ln 1ln ln zydz dx dy z y z y =++-+- or dy yzxy z dx z y dz ++-=2223.设()y x z z ,=,由方程0,,=⎪⎪⎭⎫⎝⎛x z z y y x F 确定,且F 为可微函数,求dz 。
解:方程两边求全微分,并注意到一阶全微分形式的不变性,有:.0/3/2/1=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛x z d z y d y x d F F F 即: 01112/32/22/1=⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-dz x dx z dz y dy z dy x dx y x F z F y F ,整理,.11/3/22/12/2/3/22/32/1dy x x z dx x z y dz F F z F y F F F z F x F ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⇒3.设()2,sin ,222+-=xxx y y x f z ,其中f 有二阶连续偏导数,求.;22y zx z ∂∂∂∂解:(一)⎥⎦⎤⎢⎣⎡+++=∂∂x x y xf xz fff x 2cos 2.2/3/2/12(二)⎥⎦⎤⎢⎣⎡+=∂∂-x yzffxsin /2/12,所以⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡+-=∂--∂x x x z ff f f x ysin sin sin //22//21//12//112224。
求曲线..0,6:222⎪⎩⎪⎨⎧=++=++Γz y x zy x 在点()1,2,1-的切线。
解:方程组两边关于x 求导,得:..01,0222⎪⎪⎩⎪⎪⎨⎧=++=++dxdz dx dy dxdz z dx dy y x ,.1,0||11-====x x dx dz dx dy 切线向量为:{}1,0,1-= 曲线在点()1,2,1-的切线为:.110211--=+=-z y x 5. 计算,422σd I Dyx ⎰⎰--=其中D 是x yx 222≤+。
解: .932384cos 20222-=-=⎰⎰-πθθππrdr d I r 6.计算dx dy I yxye ⎰⎰=110解:()2211100011.2|yy xxx xx I dx dy x dx x dx ee e ⎡⎤===-=⎢⎥⎣⎦⎰⎰⎰⎰ 三.试证明:点()2,3是函数()()⎪⎭⎫ ⎝⎛--=y x y x y x f 2246,的极值点。
解:()()()()().246,,426,2/2/⎪⎩⎪⎨⎧--=⎪⎭⎫ ⎝⎛--=y x y x y x y x x f y f yx()(),02,32,3//==f f y x 所以点()2,3是函数()()⎪⎭⎫ ⎝⎛--=y x y x y x f 2246,的驻点。
()()()()()()()26,,2426,,42,2////2//--=--=⎪⎭⎫ ⎝⎛--=x f f y fx y x y x y x y y x yyxy xx 。
()()()0144,182,3,02,3,082,32//////<-=-=∆-===<-==AC B A Bf f f yyxyxx所以,点()2,3是函数()()⎪⎭⎫ ⎝⎛--=y x y x y x f 2246,的极大值点。
四.设Ω是由曲面yx z 224---=和yx z 22+-=所围成的区域,试分别写出()dv z y x f I ⎰⎰⎰Ω=,,在直角坐标;柱坐标;球面坐标系下的三次积分解:Ω向xoy 平面上的投影区域为,:D 222≤+yx 。
(一)在直角坐标系下(),,.I f x y z dz =⎰ (二)在柱坐标下()20cos ,sin ,.rI d f r r z dz πθθθ=⎰⎰(三)在球坐标下()().cos ,sin sin ,cos sin sin ,,2043202ρϕρθϕρθϕρϕϕθθππρd f d d dv z y x f I ⎰⎰⎰⎰⎰⎰==Ω五.试证明()()()()()⎪⎪⎩⎪⎪⎨⎧=≠+=.0,0,,0,0,0,,,22y x y x xy y x f y x 在原点处连续且偏导数存在,但在原点处不可微。
证明:(一)()()0,00|||||||,|022→→→≤+=≤y x y y x y x f yx ,所以,()()0,00,lim 0f y x f y x ==→→,故函数()y x f ,在原点处连续。
(二)因为()(),000lim 0,00,0lim 00=∆-=∆-∆+→∆→∆x xf x f x x 所以,();00,0/=f x类似地,().00,0/=f y故函数()y x f ,在原点处可偏导。
(三)下面考察()()ρρyx z f f y x ∆-∆-∆→0,00,0lim//0,即考察()()[]()()()()()()()()y x y x y x f f yx yx f y x f x y x y x ∆∆∆∆∆∆++∆∆=+∆-∆--∆+∆+→∆→∆→∆222222//.lim0,00,00,00,0lim()()y x yx y x ∆∆+∆∆=→∆→∆220.lim 不存在,故()y x f ,在原点处不可微 。
选作题1.在曲面842232:222=+++++∑yz xz xy z y x 上求点的坐标使此点处的切平面平行于yoz 坐标面。
解:设所求之点为()z y x M 00,,记()842232,,222-+++++=yz xz xy z y x F z y x,则曲面∑在()z y x M 0,,处的切平面的法向量为()()(){}{}y x z z x y z y x M F M F M F zyx///426,424,222,,++++++==因为{}0,0,1//n ,所以,有:()⎪⎪⎩⎪⎪⎨⎧∑∈=-+++++=++=++M z y z x y x z y x y x z z x y 0000000202020000000.0842232.0426,0424 , 解之,.0,2,4000==±=z y x 因此,所求之点()0,2,40 ±M 。
2. 试求平面 0=++z y x γβα 与圆柱面 ()0,12222>=+B A By A x相交所成的椭圆的面积.解:注意到此椭圆中心在坐标原点()0,0,0O ,要计算椭圆的面积ab S π=,只须 算出椭圆的长、短半轴.也就是要求出函数222z y x ++=ρ在两条件及12222=+By A x 下的条件极值.以2222z y x +==ρ替换ρ, 令()[].12,,,,2222222⎥⎦⎤⎢⎣⎡-+-+++++=B y A x z y x z y x z y x L μγβαλμλ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧---=+='----=++='---=+='---=+⎪⎭⎫ ⎝⎛-='---=+⎪⎭⎫ ⎝⎛-=')5(.1)4(0)3(,0)2(,011)1(,011222222By A x L z y x L z L B y L A x L z y x μλγβαλγλβμλαμ ()()()3.2.1.γβα++,得:()y Bx A22222μβμαγβαλ+=++(代入(1)、(2)式)λμβμβλμαμα112222-+-=BB AA即()222γβαλ++λμμβλμμα2222BA -+-= 消去λ ,并变形得:()()()()()()222222222A B B A -+-=--++μμβμμαμμγβα 整理,得关于μ的方程:()0222222222222222=+++⎪⎪⎭⎫ ⎝⎛+++-γβαγμγαγβμB A A B A B (6) ()()()3.2.1.z y x ++,得:()μγβαλμ=++-⎪⎪⎭⎫⎝⎛+=++z y x B y A x z y x 2222222设b a ,分别为所讨论之椭圆的长、短半轴,则它们应是222z y x ++=ρ的极值,而222z y x ++=ρ与2222z y x +==ρ的极值点相同,(7)式表明2ρ极 值就等于μ.又μ满足方程(6),设(6)的两个根分别为21,μμ,则21,μμ应分 别为22,b a . 21.μμππ==b a S 韦达定理, =21μμ()222222γβαγ++B A所以,.222γβαγπ++=ABS3.求dz xyx yx dy dx I z ⎰⎰⎰---+=2222210221解:()2222401sin .15cos I d d d πππθϕϕϕρρ==⎰⎰4.已知某一物体由,2,222==+z z yx 及8=z 所围成且每一点处的面密度函数为yx 22+=ρ,试求该物体的质量。