目标探测与识别技术
- 格式:ppt
- 大小:1.34 MB
- 文档页数:30
对固定或移动目标进行非接触测量,而测量到的信号经过特殊识别方法正确得到相关信息的过程。
⏹目标截获(Target Acquisition):是将位置不确定的目标图像定位,并按所期望的水平辨别它的整个过程。
目标获取包括搜寻过程和辨别过程。
⏹搜寻(Search):是利用器件显示或肉眼视觉搜索含有潜在的目标的景物以定位捕获目标的过程。
⏹位置确定(Localize):通过搜寻过程确定出目标的位置。
⏹辨别(Discrimination):是指目标在被观察者所觉察的细节量的基础上确定看得清的程度。
辨别的等级可以分为探测、识别、确认。
⏹探测(Detection):可分为纯探测(Pure Detection)和辨别探测(Discrimination Detection)两种。
前者是在局部均匀的背景下察觉一个物体。
而后者需要认出某些外形或形状,以便将目标从背景的杂乱物体里区别出来。
⏹识别(Recognition):是能辨别出目标属于哪一类别(如坦克、车辆、人)。
⏹确认(Identification):是能认出目标,并能足够清晰地确定其类型。
声压就是大气压受到扰动后产生的变化,即为大气压强的余压,它相当于在大气压强上的叠加一个扰动引起的压强变化。
声强是垂直于传播方向的单位面积上声波所传递的能量随时间的平均变化率,即单位面积上的平均功率。
采用对数强度叫做声强级 由“声纳”是英文缩拼读音的谐音,其原意是“声音导航和测距”,是利用声波进行水下探测、识别、定位和通信的电子设备⏹ 由纵波和横波叠加而成的,沿介质表面传播,并随传播深度的增加而呈指数衰减。
⏹ 运动轨迹为逆进椭圆,弹性介质的质点运动在地表处位移的水平分量与垂直分量的幅值比约为2/3 。
⏹ 瑞雷波的传播速度略小于同一介质中横波的传播速度。
⏹ 一般来讲,瑞雷波频率较低,其主要频率成分集中在0~140Hz 范围内。
在均匀介质条件下,瑞雷波的频率与其传播速度无关;而在非均匀介质条件下,瑞雷波速度随频率变化而变化。
探测与识别技术引言探测与识别技术是现代科技中不可或缺的一部分,因为它能在多个领域中为人类带来极大的便利和利益。
本文将介绍探测与识别技术的基本原理和常见应用领域,并探讨其在未来的发展趋势和挑战。
一、探测技术1. 基本原理探测技术是指通过不同形式的能量或信号来获取对某物体、现象或信号的识别、检测、监测和测量等信息过程,其基本原理是将物体或现象转化为可测量的信号并通过信号处理装置进行处理后输出结果。
2. 常见探测技术(1)雷达技术雷达技术利用电磁波在空气或其他介质中的传输和反射,通过测量信号的时间差和频率差等特征来识别、跟踪和探测目标。
广泛应用于航空、军事、气象、地质勘探等领域。
(2)红外技术红外技术利用红外光的能量和波长与物体的特定属性相互作用,通过感应和探测物体发出的红外辐射或对周围红外辐射的反应来进行识别、跟踪和探测。
广泛应用于安防、医疗、工业生产等领域。
(3)毫米波技术毫米波技术是一种高频、高分辨率的无线通信技术,其利用毫米波的短波长和高频率来进行高速数据传输和远距离通信。
此外,毫米波技术还可用于跨境追踪、边境安全、人员筛查等领域。
二、识别技术1. 基本原理识别技术是指通过对目标物或信息进行分析、比对和匹配等操作,从而确定其身份或特征的技术过程。
其基本原理是将目标物转化为可测量的数据,并通过模式识别和数据挖掘等算法来进行分析和识别。
2. 常见识别技术(1)生物识别技术生物识别技术是一种通过人体生理特征进行身份识别的技术,如指纹识别、虹膜识别、面部识别等。
生物识别技术应用于人员出入、金融支付、医疗健康等领域,受到广泛关注和研究。
(2)智能图像识别技术智能图像识别技术利用计算机视觉和机器学习技术,从图像和视频等多种媒介中识别目标物和特征,并将其分类或归集。
智能图像识别技术应用于智能安防、智能交通、智能医疗等领域。
(3)语音识别技术语音识别技术是利用计算机视觉和人工智能技术,将人的声音信息转化为数字信号并进行语音分析和比对,以实现自动识别和处理。
目标探测与识别技术专业就业方向目标探测与识别技术是一门涉及多个学科的交叉领域,具有广泛的应用前景。
随着科技的不断发展,目标探测与识别技术在军事、安全、医疗、交通等领域发挥着重要的作用。
对于专业人才而言,掌握这一领域的技术和知识,将具备更多的就业机会和发展空间。
目标探测与识别技术的就业方向主要包括军事、安全、医疗、交通等领域。
在军事方面,目标探测与识别技术广泛应用于军事侦查、目标跟踪、导航制导等领域。
军事技术的不断发展对专业人才的需求量大,对于掌握目标探测与识别技术的人才将有更多的就业机会。
在安全领域,目标探测与识别技术可应用于视频监控、人脸识别、图像分析等方面。
随着社会安全形势的不断变化,对安全监控的需求越来越高。
掌握目标探测与识别技术的专业人才将在安防行业中有着广阔的就业前景。
在医疗领域,目标探测与识别技术可应用于医学影像诊断、疾病辅助诊断等方面。
医学影像技术在现代医疗中起着重要的作用,而目标探测与识别技术的应用可以提高医学影像的分析和诊断能力。
对于掌握目标探测与识别技术的医学专业人才而言,将能在医疗行业中找到更多的就业机会。
在交通领域,目标探测与识别技术应用广泛,如交通监控、智能驾驶等方面。
随着智能交通系统的不断发展,对目标探测与识别技术的需求也越来越大。
掌握这一技术的专业人才将在交通行业中有着广阔的就业前景。
目标探测与识别技术专业人才的就业前景广阔,但同时也面临一些挑战。
首先,随着技术的不断进步,目标探测与识别技术的发展也在不断变化,专业人才需要不断学习和更新知识,以适应行业的需求。
其次,目标探测与识别技术需要与其他学科相结合,形成多学科交叉的综合能力。
因此,专业人才需要具备较强的学习和沟通能力,以便与其他领域的专业人士进行合作。
作为目标探测与识别技术专业人才,应注重培养自身的核心竞争力。
首先,要掌握目标探测与识别技术的基本理论和方法,熟悉各种常用的目标探测与识别算法。
其次,要具备较强的编程和计算机技术能力,能够熟练运用相关软件和工具进行目标探测与识别的实验和模拟。
空间目标探测与识别中的数据处理技术研究随着信息技术的日益发展,航天技术也在不断提高。
世界各国纷纷开始探索太空,开展空间探测与利用,包括定位导航、通信、卫星遥感、空间科学、天文观测等多个方面。
在空间探测过程中,数据处理技术起着重要的作用。
尤其是在空间目标探测与识别方面,数据处理技术对于实现任务、提高精度具有至关重要的作用。
本文就空间目标探测与识别中的数据处理技术研究展开讨论。
一、空间目标探测与识别空间目标探测与识别是现代空间技术的重要组成部分,它是指在太空中对各种空间目标进行探测与识别的过程。
其中,探测是指检测空间目标的存在与状态,包括目标的位置、速度、姿态等信息;识别则是指确定空间目标的种类、用途、质量等信息。
空间目标一般包括卫星、空间站、空间舱、太空垃圾等多种类型。
在探测与识别过程中,数据处理技术是必不可少的工具。
利用数据处理技术可以对目标的位置、形态、动态等信息进行分析和计算,判断其种类和用途,实现对目标的探测与识别。
二、空间目标探测与识别中的数据处理技术1. 光电数据处理技术光电数据处理技术是空间目标探测与识别中常用的技术之一。
光电数据处理技术是利用卫星对地面进行拍照或遥感数据的方式对空间目标进行探测与识别。
在数据处理过程中,首先需要进行图像增强,以提高数据的可视性,同时还需要进行图像分割和特征提取,以便针对每个目标分别进行分析和识别。
2. 雷达数据处理技术雷达数据处理技术是针对微波信号进行处理的一种技术。
雷达可以探测到隐蔽目标,解决光学探测不能解决的问题,如雾、云、夜晚等情况下的探测。
在数据处理过程中,首先需要进行信号处理,包括信号滤波、调制和解调等。
其次,需要对目标的距离、方位和速度进行解算和处理,最后对目标进行分类和识别。
3. 数据挖掘技术数据挖掘技术是一种通过分析大量数据,发现其中包含的未知模式和标志,用于预测和推测未来情况的技术。
在空间目标探测与识别中,通过对大量记录的空间目标数据进行处理和分析,可以发现目标之间的关系和规律,预测其运动状态和行为。
空间目标探测与识别方法研究一、概述空间目标探测与识别作为航天领域的重要研究方向,旨在实现对地球轨道上各类空间目标的精确探测和有效识别。
随着航天技术的不断发展,空间目标数量日益增多,类型也日趋复杂,这给空间目标探测与识别带来了前所未有的挑战。
深入研究空间目标探测与识别方法,对于提升我国航天事业的国际竞争力、维护国家空间安全具有重要意义。
空间目标探测主要依赖于各类传感器和探测设备,如雷达、光电望远镜、红外传感器等。
这些设备能够捕获空间目标的信号或特征信息,为后续的目标识别提供数据支持。
由于空间环境的复杂性和目标特性的多样性,探测过程中往往伴随着大量的噪声和干扰,这要求我们必须采用先进的信号处理技术来提取有用的目标信息。
空间目标识别则是基于探测到的目标信息,利用模式识别、机器学习等方法对目标进行分类和识别。
识别的准确性直接影响到后续的空间态势感知、目标跟踪以及空间任务规划等工作的质量。
如何提高识别算法的准确性和鲁棒性,是当前空间目标识别领域的研究重点。
本文将对空间目标探测与识别方法进行深入研究,包括探测设备的选择与优化、信号处理技术的研究与应用、以及识别算法的设计与实现等方面。
通过对这些关键技术的探讨,旨在为提升我国空间目标探测与识别的能力提供理论支持和技术保障。
1. 空间目标探测与识别的背景与意义随着科技的飞速发展和人类对宇宙探索的深入,空间目标探测与识别技术逐渐成为当今科研领域的热点。
空间目标包括各类卫星、太空碎片、深空探测器以及潜在的太空威胁等,它们的存在与活动对人类的航天活动、地球安全以及宇宙资源的开发利用具有重要影响。
在空间目标探测与识别领域,通过高精度、高可靠性的技术手段对空间目标进行实时、准确的监测与识别,对于保障航天器的安全运行、预防太空碰撞、维护国家安全和促进航天事业的发展具有重要意义。
对于深空探测和宇宙资源的开发利用,空间目标探测与识别技术也提供了有力的技术支撑。
随着太空竞争的加剧,空间目标探测与识别技术也成为各国军事竞争的重要领域。
第一章绪论1.目标探测与识别:对固定或移动目标的非接触测量,测量的信号中包含距离、位置、方位角或高度信息等,这种测量的装置可以使固定,也可以是运动的,而测量到的信号经过特殊的识别方法能正确地给出相关的信息。
2.高新技术弹药:在弹药上采用了末端敏感技术、末端制导技术、弹道修正技术等,此类弹药都具有一定的目标探测功能。
3.“三打”:打武装直升机、打巡航导弹、打隐形机。
4.“三防”:防侦查、防电子干扰、防精确打击。
5.智能导弹工作原理:智能雷弹由声传感器探测1000m左右直升机螺旋桨产生的噪声,一旦分析出这种信号,雷弹锁定其频率,当信号或噪声增加到一定水平时,第二个探测系统开始工作,它能探测到直升机的接近距离或敏感到直升机主螺旋桨下降气流产生的大气压力变化,一旦达到预定的距离或压力变化时,雷弹可被弹射到一定的高度爆炸,毁伤直升机。
6.水下反鱼雷三种三种方式:声纳、磁探测技术、两者的复合技术。
7.灵巧化的精确制导的两项关键的核心技术:1)高分辨率、高灵敏度的毫米波或红外探测敏感技术;2)智能化信息技术处理与识别技术。
第二章目标特性1.坦克的主要特性与特征:红外辐射特征、声传播特征、行驶过程中产生的地面震动特征。
2.大气窗口:在某些波长范围内,其辐射能较好地通过,几乎一切与大气有关的光学设备都只能去适应这些窗口。
3.喷气式飞机的4种红外辐射源:作为发动机燃烧室的热金属空腔、排出的热燃气、飞机壳体表面的自身辐射、飞机表面反射的环境辐射。
4.蒙皮辐射在8~14μm波段内占有极重要的地位的3个原因:1)蒙皮辐射的峰值波长约为10μm,正好处在8~14μm波段范围内;2)此波段的宽度较宽;3)飞机蒙皮的面积非常大,它的辐射面积比喷口面积大许多倍。
第三章声探测技术1.声压:声音为纵波,其传播引起空气的疏密变化,从而引起气压的变化,该压力与大气压的差值即为声压。
2.声强:垂直于传播方向的单位面积上声波所传递的能量随时间的平均变化率,也就是单位面积上输送的平均功率。
地下目标的探测与识别技术研究地下目标的探测与识别技术研究随着科技的不断发展,地下目标的探测与识别技术也得到了极大的提升。
地下目标包括各类地下设施、管道、水源以及未爆炸的炸弹等,对于国家安全以及城市建设具有重要的意义。
本文将从地下目标的探测与识别技术的发展现状、主要方法以及存在的问题等方面进行论述。
地下目标的探测与识别技术主要有电磁方法、地球物理方法、化学方法以及声学方法等多种手段。
电磁方法是常见的一种技术,通过测量地下目标与地下土壤的电磁参数来判断地下目标的存在与否。
地球物理方法则利用地球物理场的异常变化来定位地下目标,例如利用重力场的异常来发现地下设施。
化学方法主要是通过检测地表土壤中的化学成分或气体浓度来判断地下目标的存在。
声学方法则是利用声波在地下的传播特点进行检测。
传统的地下目标探测与识别方法存在一些问题。
首先,传统的方法需要大量的人力和物力进行勘探工作,效率低下。
其次,传统的方法无法对地下目标进行精准的识别,可能误判或漏判。
此外,一些地下目标在掩埋深度较深或地质条件复杂的情况下,传统的探测方法效果受到限制。
近年来,随着技术的发展,一些新的方法被引入到地下目标的探测与识别中。
例如无人机技术,可以利用无人机搭载的各种传感器对地面进行高效率的勘探工作。
此外,激光雷达技术的使用也成为了一种常见的地下目标探测技术,通过对地面进行激光扫描,可以建立起高分辨率的地形模型,进而识别地下目标。
人工智能、机器学习技术也被应用于地下目标的探测与识别中,通过对大量数据进行分析和学习,可以实现对地下目标的自动识别。
然而,目前地下目标探测与识别技术仍然存在一些问题。
首先,由于地下目标的种类繁多,地质环境的复杂性以及目标与地下土壤之间的相互作用等因素的影响,地下目标的识别仍然存在一定的误差率。
其次,一些新技术的应用还面临着成本高、设备体积庞大等问题,使得这些技术无法广泛应用。
此外,一些地下目标在探测过程中可能受到人为因素的影响,例如周围环境的噪声干扰等。
目录目标探测与识别1.概述2.去伪装目标探测2.1数据浏览与准备目标波谱2.2目标探测流程化工具2.2.1选择输入/输出文件2.2.2大气校正2.2.3输入目标波谱2.2.4输入背景波谱2.2.5执行MNF变换2.2.6选择及运行分析方法2.2.7浏览结果以及提取目标2.2.8结果后处理2.2.9输出结果3.基于BandMax向导的SAM目标探测3.1工具功能介绍3.2详细操作流程3.2.1数据打开与目视解译3.2.2收集目标与背景波谱3.2.3启动SAM Target Finder with BandMax1、概述高光谱图像分类方法与传统的多光谱分类有本质的区别,从高光谱图像的每个像元均可以获取一条连续的波谱曲线,就可以考虑用已知的波谱曲线和图上每个像元获取的波谱曲线进行对比,理想情况下,如果两条波谱曲线一样,就能说明这个像元是哪种物质。
高光谱图像的这个特性,使它除了应用于一般的图像分类,还应用于物质识别、目标探测等。
图像分类更多关注的是地物覆盖和物质成分,目标识别和探测是对特定对象的搜索,其结果是"有"或者"没有"。
因此我们把高光谱图像分类、物质识别、探测等称为波谱识别。
本节以两个专题为例(去伪装目标探测与基于BandMax向导工具的SAM目标探测),学习ENVI中提供的高光谱目标探测与识别功能。
2、去伪装目标探测去伪装目标探测也是利用高光谱图像的地物识别能力,从图像上探测遮掩或者伪装的目标,比如一种特殊物质、矿物甚至军事目标等。
下面以从图像上探测一个目标为例(练习数据存放在"..\18.目标探测与识别\数据\1. 目标探测"中),介绍ENVI的Target Detection Wizard工具的操作流程。
在本例中,示例数据是包含384个波段,波段覆盖382nm~2500nm的高光谱数据。
主要过程如下:从图上目视解译一个目标(可以是多个目标),以这个目标的平均波谱作为参考,搜索整个图像,识别具有类似或者相同波谱的目标。
雷达跟踪系统中的目标探测与识别技术雷达技术一直在航空、导航、军事等领域扮演着重要的角色。
雷达跟踪系统中的目标探测与识别技术是其中至关重要的一环。
本文将探讨雷达目标探测与识别的相关技术,以及当前的研究和发展趋势。
第一部分:目标探测技术雷达目标探测是指利用雷达系统进行目标的探测与确认。
传统上,雷达系统使用连续波雷达或脉冲雷达进行目标的探测。
连续波雷达通过发送连续的电磁波并接收被目标散射的波,根据接收到的信号来判断目标是否存在。
脉冲雷达则利用发射短时脉冲的方式来检测被目标反射的脉冲信号。
然而,随着科技的不断发展,新的目标探测技术也应运而生。
比如,目标探测技术中的成像雷达,它能够获取目标的图像信息,从而实现对目标的更准确的探测。
成像雷达通过发射短脉冲序列,并利用波束形成和合成孔径雷达技术,可以获取目标的三维形状和位置信息。
第二部分:目标识别技术雷达目标识别是指根据目标的雷达特性,对目标进行分类和识别。
传统上,目标识别主要依靠目标的回波信号的特征,如目标的反射截面、多普勒频移等。
基于这些特征,通过与数据库进行匹配或者使用特征提取算法,可以对目标进行分类和识别。
近年来,随着人工智能和深度学习的发展,新的目标识别技术也逐渐兴起。
深度学习技术可以从大量的数据中学习和识别特征,从而实现对目标的自动分类和识别。
例如,通过构建深度神经网络模型,并使用大量的雷达图像数据进行训练,可以实现对雷达目标的高效自动识别。
第三部分:研究和发展趋势雷达目标探测与识别技术正不断地发展和演进。
未来的研究和发展趋势有以下几个方向:1. 多传感器融合:将雷达与其他各种传感器技术相结合,如红外传感器、光学传感器等,以形成更完整、准确的目标探测与识别系统。
2. 多维信息提取:除了传统的距离和速度等信息外,还可以提取更多维度的信息,比如目标的形状、材料组成等,以更全面地识别和判别目标。
3. 实时目标跟踪:目标跟踪是对目标在时间上的连续追踪。
未来的目标跟踪技术将更加注重对目标的轨迹、运动模式等动态信息的捕捉和分析。
目标探测识别约翰逊准则-回复什么是目标探测识别?目标探测识别(Target Detection and Recognition)是一种重要的遥感应用技术,旨在从遥感图像中自动识别和提取出特定区域的目标。
目标可以是地面建筑物、道路、森林、岛屿、河流、冰雪、农田等自然和人工构成的区域。
目标探测识别技术广泛应用于军事、环境、城市规划、农业等领域,其核心是利用遥感图像的信息和特征,实现目标的自动化识别、分类和定位。
在目标探测识别中,约翰逊准则是常用的评价标准之一。
什么是约翰逊准则?约翰逊准则(Johnson’s Criteria)是介于目标检测的信噪比和人眼视觉特性之间的一种经验公式,它描述了当目标的信噪比大于某个临界值时,人类视觉系统才能够跟踪目标,从而实现目标的探测和识别。
约翰逊准则的公式为:S/N≥K其中,S/N为信噪比,K为临界常数,其值取决于目标特性和观测条件等因素。
约翰逊准则的物理意义是什么?约翰逊准则的物理意义是指当目标的信噪比达到一定阈值以上时,人类视觉系统才能够确信探测到目标,从而实现目标的识别和定位。
这个阈值就是约翰逊准则中的临界常数K。
当信噪比越大,目标越容易被探测和识别,而当信噪比越小,目标就越难以被探测和识别。
因此,约翰逊准则是一种衡量目标探测性能和目标识别能力的重要标准之一。
如何应用约翰逊准则进行目标探测识别?为了实现目标探测识别,我们需要采集遥感图像,并根据图像的特征和目标的特性进行信噪比的计算。
具体步骤如下:1.采集遥感图像在进行目标探测识别之前,我们需要先获取目标所在区域的遥感图像。
遥感图像通常采用空间分辨率高、时间分辨率短、光谱分辨率宽的高分辨率多光谱遥感影像,包括卫星影像、航空影像和无人机影像等。
2.计算信噪比在获取遥感图像后,我们需要根据信号强度和噪声强度计算信噪比。
信号强度通常指目标的辐射灰度值,而噪声强度通常是指遥感图像的背景噪声。
信号强度和噪声强度可以通过灰度直方图分析或小波分析等方法进行计算。
国外空间目标探测与识别系统发展现状研究一、本文概述随着科技的不断进步,空间领域的探索与利用已成为全球竞争的重要焦点。
空间目标探测与识别系统作为空间领域的重要组成部分,对于国家安全、空间科学研究以及空间资源开发等方面具有重要意义。
本文旨在全面梳理和分析国外空间目标探测与识别系统的发展现状,以期为我国的空间领域研究和应用提供有益的参考。
本文首先界定了空间目标探测与识别系统的基本概念和主要功能,为后续研究奠定基础。
接着,从技术角度对国外空间目标探测与识别系统的发展历程进行回顾,梳理了关键技术的演变和进步。
在此基础上,对国外空间目标探测与识别系统的应用领域和典型案例进行深入分析,揭示了其在国家安全、空间科学研究以及空间资源开发等方面的重要作用。
本文还对国外空间目标探测与识别系统的发展趋势进行展望,探讨了未来可能的技术创新和应用拓展。
结合我国的实际情况,提出了针对性的建议和思考,以期推动我国空间目标探测与识别系统的发展和应用。
通过本文的研究,我们可以更全面地了解国外空间目标探测与识别系统的发展现状和趋势,为我国在该领域的研究和应用提供有益的参考和借鉴。
也为我国空间领域的科技创新和国家安全建设提供有力的支撑。
二、国外空间目标探测与识别系统概述随着科技的飞速发展,空间目标探测与识别技术逐渐成为世界各国竞相研究的热点领域。
目前,美国、俄罗斯、欧洲等国家和地区在空间目标探测与识别技术方面均取得了显著的进展。
美国作为空间科技领域的领先者,其空间目标探测与识别系统发展尤为成熟。
美国国防部建立了一套完善的空间监视网络,包括地基和空间基传感器,用于实时监测和跟踪在轨空间目标。
美国还积极开发高分辨率成像技术、光学和红外探测技术等,以提高对空间目标的识别精度和分辨率。
俄罗斯作为航天大国,其空间目标探测与识别技术同样具备较高水平。
俄罗斯通过构建全球性的空间监测网络,实现对空间目标的全面覆盖和实时监测。
同时,俄罗斯还注重提高空间目标探测的自动化和智能化水平,以减少人工干预和提高探测效率。